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FIXED POINTS OF MULTIVALUED MAPPINGS
IN CERTAIN CONVEX METRIC SPACES

Tomoo Shimizu — Wataru Takahashi

1. Introduction

Takahashi [10] introduced a notion of convexity in metric spaces and studied
some fixed point theorems for nonexpansive mappings in such spaces. Let X be
a metric space and I = [0, 1]. A mapping W : X ×X × I → X is said to be a
convex structure on X if for each (x, y, λ) ∈ X ×X × I and u ∈ X,

d(u, W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y).

X together with a convex structure W is called a convex metric space.
Recently, Shimizu and Takahashi [9] proved the following result:
Let X be a bounded convex metric space and let T be a multivalued nonex-

pansive mapping of X into itself such that T (x) is a nonempty compact set for
each x ∈ X. Then T has the almost fixed point property in X, i.e.,

inf
x∈X

d(x, Tx) = 0.

In 1974, Lim [5] showed a fixed point theorem for multivalued nonexpan-
sive mappings in uniformly convex Banach spaces. After that, Goebel [2] gave
a simpler proof of Lim’s theorem using the notion of regular sequences. On
the other hand, in 1980, Goebel, Sȩkowski and Stachura [4] studied hyperbolic
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metric spaces. They showed that a hyperbolic metric is, in some sense, uni-
formly convex, and showed fixed point theorems for single-valued nonexpansive
mappings.

In this paper, we introduce a notion of uniform convexity in convex metric
spaces and prove a fixed point theorem for multivalued nonexpansive mappings
in such spaces by applying ultrafilters, without using the notion of regular se-
quences. This is a generalization of Lim’s result [5] and the proof is simpler than
that of [5].

2. Preliminaries

Let X be a nonempty set. A nonempty family F of subsets of X is called
a filter on X if it has the following properties: (1) ∅ 6∈ F ; (2) if A ⊂ B and
A ∈ F , then B ∈ F ; (3) if A,B ∈ F , then A ∩ B ∈ F . If F1 and F2 are filters
on X with F1 ⊂ F2, then we say that F2 is finer than F1. A filter U on X is
called an ultrafilter if there is no filter on X which is strictly finer than U . A
nonempty class B of subsets of X is called a filterbase on X if it has the following
properties: (1) ∅ 6∈ B; (2) for any A1 and A2 in B, there exists A3 in B such that
A3 ⊂ A1 ∩A2. If B is a filterbase on X, then

F = {A ⊂ X : B ⊂ A, B ∈ B}

is a filter on X. In this case, B is said to be a base of F or to generate F . Let X

be a topological space and let B be a filterbase on X. Then B is said to converge
to a point x in X or to have a limit x in X if for any neighbourhood V of x,
there is a set A in B such that A ⊂ V . If U is an ultrafilter on a compact set X,
then U has a limit in X. Let U be an ultrafilter on a set X and P be a mapping
of X into a set D. Then P (U) is a filterbase on D and it generates an ultrafilter
on D. In fact, it is obvious that since U is an ultrafilter on X, then P (U) is a
filterbase on D. Let

B = {B ⊂ D : P (A) ⊂ B for some A ∈ U}

and let K be a filter on D with K ⊃ B. If K ∈ K, then P−1K ∈ U or P−1Kc ∈ U ,
where Kc is the complement of K. Suppose A = P−1Kc ∈ U . Then P (A) =
P (P−1Kc) ⊂ Kc and hence Kc ∈ B. This is a contradiction. So, P−1K ∈ U .
Since P (P−1K) ⊂ K, we have K ∈ B and hence K = B. This implies that B is
an ultrafilter on D; for details, see [1, 8].

Let X be a convex metric space. A nonempty subset K ⊂ X is convex if
W (x, y, λ) ∈ K whenever (x, y, λ) ∈ K ×K × I. Takahashi [10] has shown that
open spheres B(x, r) = {y ∈ X : d(x, y) < r} and closed spheres B[x, r] = {y ∈
X : d(x, y) ≤ r} are convex. Also, if {Kα : α ∈ A} is a family of convex subsets of
X, then

⋂
{Kα : α ∈ A} is convex. For A ⊂ X, we denote by co A the intersection
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of all closed convex sets containing A and by δ(A) the diameter of A. A convex
metric space X is said to have the property (C) if every decreasing sequence of
nonempty bounded closed convex subsets of X has nonempty intersection.

Let X be a convex metric space and let B be a filterbase on X which contains
at least one bounded subset of X. Then we define

r(x,B) = inf
A∈B

sup
y∈A

d(x, y) = lim
A∈B

sup
y∈A

d(x, y)

for every x ∈ X. Since for every x, y ∈ X, |r(x,B) − r(y,B)| ≤ d(x, y), the
real-valued function r(·,B) on X is continuous. Further, for any real number α,
the set

C = {z ∈ X : r(z,B) ≤ α}

is convex. In fact, let z1, z2 ∈ C and λ ∈ [0, 1]. Then

r(W (z1, z2, λ),B) = inf
A∈B

sup
y∈A

d(W (z1, z2, λ), y) ≤ λr(z1,B) + (1− λ)r(z2,B)

≤ λα + (1− λ)α = α

and hence W (z1, z2, λ) ∈ C.

3. Uniformly convex metric spaces

A convex metric space X is said to be uniformly convex if for any ε > 0,
there exists α = α(ε) such that, for all r > 0 and x, y, z ∈ X with d(z, x) ≤ r,
d(z, y) ≤ r and d(x, y) ≥ rε,

d(z,W (x, y, 1/2)) ≤ r(1− α) < r.

Example 1. Uniformly convex Banach spaces are uniformly convex metric
spaces.

Example 2. Let H be a Hilbert space and let X be a nonempty closed subset
of {x ∈ H : ‖x‖ = 1} such that if x, y ∈ X and α, β ∈ [0, 1] with α + β = 1, then
(αx+βy)/‖αx+βy‖ ∈ X and δ(X) ≤

√
2/2; see [7]. Let d(x, y) = cos−1{(x, y)}

for every x, y ∈ X, where (·, ·) is the inner product of H. When we define a
convex structure W for (X, d) properly, it is easily seen that (X, d) becomes a
complete and uniformly convex metric space.

Remark. The module of convexity of Banach spaces and Goebel, Sȩkowski
and Stachura’s δ in Theorem 1 of [4] are continuous functions, but we only
assume the existence of a positive number α such that α is a function of ε.
Goebel, Sȩkowski and Stachura’s δ depends on γ and ε, but our α only depends
on ε.
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Theorem 1. Let X be a complete and uniformly convex metric space. Then
X has the property (C).

Proof. Let {Kn} be a decreasing sequence of nonempty bounded closed
convex subsets of X. If δ(Kn) > 0 for every positive integer n, then there exist
x, y ∈ Kn such that d(x, y) ≥ δ(Kn)/2. Since d(z, x) ≤ δ(Kn), d(z, y) ≤ δ(Kn)
for all z ∈ Kn and the space is uniformly convex, there exists α > 0 such that

d(z,W (x, y, 1/2)) ≤ δ(Kn)(1− α) < δ(Kn)

for all z ∈ Kn and hence we obtain u1
n ∈ Kn such that

d(z, u1
n) ≤ δ(Kn)(1− α)

for all z ∈ Kn. Let

K1
n = {u1

n, u1
n+1, u

1
n+2, . . .}.

Then it is obvious that K1
n 6= ∅ and K1

n ⊃ K1
n+1 for every n. Suppose δ(K1

n) > 0
for every n. Then there exist x, y ∈ K1

n such that d(x, y) ≥ δ(K1
n)/2. Put

B1
n =

∞⋂
k=0

B[u1
n+k, δ(K1

n)].

Then B1
n ⊃ co(K1

n) and d(z, x) ≤ δ(K1
n), d(z, y) ≤ δ(K1

n) for every z ∈ co K1
n.

Since X is uniformly convex, there exists u2
n ∈ co K1

n ⊂ Kn such that

d(z, u2
n) ≤ δ(Kn)(1− α)2

for all z ∈ co K1
n. By the same method, we obtain co K2

n, co K3
n, . . . and u3

n, u4
n, . . .

It is obvious that

Kn ⊃ co K1
n ⊃ co K2

n ⊃ . . . and δ(co Km
n ) → 0

as m →∞. Since X is complete, there exists un ∈ X such that

∞⋂
m=1

co Km
n = {un}

for every n. From
∞⋂

m=1

co Km
n ⊃

∞⋂
m=1

co Km
n+1,

we obtain u1 = u2 = u3 = . . . Therefore, there exists u with u ∈ Kn for all n

and hence
⋂∞

n=1 Kn 6= ∅.
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Lemma. Let X be a complete and uniformly convex metric space. Let K be
a nonempty closed convex subset of X. If F is a filter on X which contains at
least a bounded subset of X, then there exists a unique point u0 ∈ K such that

r(u0,F) = inf
x∈K

r(x,F).

Proof. Let r = infx∈K r(x,F) and define

Kn = {z ∈ K : r(z,F) ≤ r + 1/n}

for every positive integer n. Then it is obvious that Kn is nonempty, closed and
convex. Further, Kn is bounded. In fact, let u, v ∈ Kn. Then there exists A ∈ F
such that

sup
y∈A

d(u, y) < r + 2/n and sup
y∈A

d(v, y) < r + 2/n.

So, we have

d(u, v) ≤ sup
y∈A

d(u, y) + sup
y∈A

d(v, y) < 2(r + 2/n).

Since {Kn} is a bounded decreasing sequence of nonempty closed convex subsets
of K, we have

∞⋂
n=1

Kn 6= ∅.

Further, we prove that
⋂∞

n=1 Kn consists of one point. Let x, y ∈
⋂∞

n=1 Kn.
If r = 0, then d(x, y) < 4/n for every positive integer n. Hence x = y. In the
case of r > 0, suppose x 6= y. Then, for a fixed positive number b, there exists a
positive number ε such that

d(x, y) ≥ (r + a)ε

for every a ∈ [0, b]. We can also choose a0 ∈ (0, b) such that

(r + a0)(1− α(ε)) < r.

Then there exists A ∈ F such that

sup
z∈A

d(x, z) < r + a0 and sup
z∈A

d(y, z) < r + a0.

Since X is uniformly convex, we have

d(z,W (x, y, 1/2)) ≤ (r + a0)(1− α(ε)) < r

for every z ∈ A. This implies

sup
z∈A

d(z,W (x, y, 1/2)) ≤ (r + a0)(1− α(ε)) < r

and hence r(W (x, y, 1/2),F) < r. This is a contradiction, because W (x, y, 1/2)
∈ K. Therefore we have x = y.
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4. Fixed point theorem

Let X be a metric space. Then, for x ∈ X and A ⊂ X, we define d(x, A) =
inf{d(x, y) : y ∈ A}. Let BC(X) be the family of all nonempty bounded closed
subsets of X. Then a mapping T of X into BC(X) is said to be nonexpansive if

H(Tx, Ty) ≤ d(x, y) for every x, y ∈ X,

where H is the Hausdorff metric with respect to d, i.e.,

H(A,B) = max{sup
x∈B

d(x,A), sup
x∈A

d(x,B)}

for every A,B ∈ BC(X). Now, we can prove a fixed point theorem for multi-
valued nonexpansive mappings in uniformly convex metric spaces.

Theorem 2. Let X be a bounded, complete and uniformly convex metric
space. If T is a multivalued nonexpansive mapping which assigns to each point
of X a nonempty compact subset of X, then T has a fixed point in X.

Proof. By Theorem 1 of [9], there exists a sequence {xn} in X such that
d(xn, Txn) → 0 as n →∞. For every positive integer n, define

An = {xn, xn+1, . . .}.

Then {An} is a filterbase on X and generates a filter F on X. From [1, 8], we
know that there is an ultrafilter U finer than F . Clearly we have

inf
A∈U

sup
x∈A

d(x, Tx) = 0.

By the Lemma, there exists a unique element u0 ∈ X such that

r(u0,U) = inf
x∈X

r(x,U).

Since for each x ∈ X, Tx is nonempty and compact, we obtain elements Sx ∈ Tx

and Px ∈ Tu0 such that

d(x, Sx) = d(x, Tx) and d(Sx, Px) = d(Sx, Tu0).

Thus, we have got a mapping P : X → Tu0. We know that P (U) is a
filterbase on Tu0 and the filter generated by P (U) is an ultrafilter on Tu0. Since
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Tu0 is compact, P (U) has a limit p0 in Tu0. So, we have

r(p0,U) = inf
A∈U

sup
x∈A

d(p0, x) ≤ inf
A∈U

sup
x∈A

{d(p0, Px) + d(Px, Sx) + d(Sx, x)}

= inf
A∈U

sup
x∈A

{d(p0, Px) + d(Sx, Tu0) + d(x, Tx)}

≤ inf
A∈U

sup
x∈A

{d(p0, Px) + H(Tx, Tu0) + d(x, Tx)}

≤ inf
A∈U

sup
x∈A

{d(p0, Px) + d(x, u0) + d(x, Tx)}

= inf
A∈U

sup
x∈A

d(x, u0) = r(u0,U).

By the Lemma, we have u0 = p0 ∈ Tu0. This completes the proof.
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[4] K. Goebel, T. Sȩkowski and A. Stachura, Uniform convexity of the hyperbolic
metric and fixed points of holomorphic mappings in the Hilbert ball, Nonlinear Anal. 4

(1980), 1011–1021.

[5] T. C. Lim, A fixed point theorem for multivalued nonexpansive mappings in a uniformly

convex Banach space, Bull. Amer. Math. Soc. 80 (1974), 1123–1126.

[6] , Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60 (1976),
179–182.

[7] H. V. Machado, Fixed point theorems for nonexpansive mappings in metric spaces with
normal structure, Thesis, The University of Chicago, 1971.

[8] A. P. Robertson and W. J. Robertson, Topological Vector Spaces, Cambridge Uni-
versity Press, 1964.

[9] T. Shimizu and W. Takahashi, Fixed point theorems in certain convex metric spaces,
Math. Japon. 37 (1992), 855–859.

[10] W. Takahashi, A convexity in metric space and nonexpansive mappings I, Kōdai Math.
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