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VARIATIONAL THEOREMS OF MIXED TYPE
AND ASYMPTOTICALY LINEAR
VARIATIONAL INEQUALITIES

A. Groli — A. Marino — C. Saccon

1. Introduction

To introduce the problem we are going to deal with, let us consider a bounded
open subset Ω of R

N , which will be assumed to be connected and with smooth
boundary, a function g : Ω × R → R satisfying the Carathéodory’s conditions
and a measurable function ψ : Ω → ]−∞,∞].

We also consider the convex set Kψ defined by

Kψ = {u ∈ W 1,2
0 (Ω) | u ≥ ψ a.e.}.

We are interested in finding solutions of the variational inequality

(P )

{ ∫
Ω

(DuD(v − u) − g(x, u)(v − u) + h(v − u)) dx ≥ 0 for all v in Kψ,

u ∈ Kψ,

where h is a given function in L2(Ω). It is well known that, if ψ ∈ W 2,2(Ω) and g
fulfills some suitable growth conditions with respect to s, then the variational
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inequality (P ) is equivalent to the problem
∆u + g(x, u) ≤ h a.e. in {x ∈ Ω | u(x) = ψ(x)},
∆u + g(x, u) = h a.e. in {x ∈ Ω | u(x) > ψ(x)},
u ≥ ψ a.e. in Ω,

u ∈W 2,2(Ω) ∩W 1,2
0 (Ω).

In all what follows we shall impose on ψ the obvious condition

(K) Kψ �= ∅.
Now we state the assumption that characterizes our problem:

(g, α) lim
s→∞

g(x, s)
s

= α for a.e. x in Ω.

More precisely, we want to estimate the number of solutions of (P ) in dependence
on the value of the parameter α. At this point it seems natural to suppose that:

(g)

{ |g(x, s)| ≤ a|s| + b(x) for a.e. x in Ω, for all s in R,

where a ∈ R, b ∈ L2(Ω).

For technical reasons we shall assume g(x, s) to be Lipschitz continuous in s,
uniformly with respect to x or, more generally, that:

sup
x∈Ω
s1 �=s2

g(x, s2) − g(x, s1)
s2 − s1

<∞.

Set G(x, s) =
∫ s
0
g(x, σ) dσ. We shall use the above written condition on g in the

equivalent form

(G)

{
G(x, s) ≤ G(x, r) + g(x, r)(s − r) + q|s− r|2
for every s, r in R, for a.e. x in Ω, where q ∈ R.

We shall investigate the properties of (P ) exploring the right hand side space h
along the straight lines h = h0 + te1, where h0 ∈ L2(Ω), t ∈ R and e1 is the first
eigenfunction of −∆ in W 1,2

0 (Ω) chosen in such a way that e1 > 0. We denote
by (Pt) the problem (P ) with h = h0 + te1:

(Pt)

{ ∫
Ω

(DuD(v − u) − g(x, u)(v − u) + (h0 + te1)(v − u)) dx ≥ 0,

u ∈ Kψ.

According to the asymptotic nature of the assumptions we shall study prob-
lem (Pt) for t 	 0. As well known the problem has a variational nature: consider
the functional ft : Kψ → R defined by

ft(u) =
1
2

∫
Ω

|Du|2 dx−
∫

Ω

G(x, u) dx+
∫

Ω

u(h0 + te1) dx,
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then it is easy to see that the solutions of (Pt) are the “lower critical points” for
ft on the constraint Kψ (in Section 2 we have synthetically recalled the basic
definitions and the main results in subdifferential analysis needed to deal with
ft on Kψ).

Now let us make some considerations for a better understanding of the nature
of the problem. For this let us denote by (λi)i (i = 1, 2, . . . ) the eigenvalues of
−∆ in W 1,2

0 (Ω): 0 < λ1 < λ2 ≤ λ3 ≤ . . . . We start with observing that, if
α < λ1 and for instance g(x, s) = αs, then, for all real numbers t, (Pt) has
a unique solution.

In the case where α > λ1, it is easy to check that (Pt) has no solutions for
t 
 0. If λ1 < α < λ2, then in [18] it is proved that if g(x, u) = αu, ψ = 0 and
h > 0, the problem (P ) has at least two solutions, while in [12] it is proved that
for all h0 in L2(Ω) there exists t such that, if t > t, then (Pt) has at least two
solutions, if t = t, (Pt) has at least one solution and if t < t, (Pt) has no solutions.
If g(x, s) is convex in s then one can replace all the“at least” by “exactly”.

Moreover, if α > λ2 in [12] it is proved that, in the case where g(x, s) is linear
in s, there exist at least four solutions for t	 0.

The first result of this paper consists in showing that in the previous result
the linearity assumption on g is not actually needed.

Theorem 1.1. Let (g), (g, α), (G) and (K) hold. Then for all α > λ2, there
exists t in R such that for t ≥ t problem (Pt) has at least four solutions.

In [12] the main technique was to pass to an auxiliary constrained problem.
Such an approach seems to be not applicable in a direct way when g is not linear.
For this reason, we apply a completely different technique, based on another kind
of constraint, which has been recently introduced by Marino ans Saccon in [13].
Our main result is the following

Theorem 1.2. Let λk > λ2. There exists σ > 0 such that for all α in
]λk, λk + σ], if (g), (g, α), (G) and (K) hold, then there exists t in R such that
for t ≥ t, problem (Pt) has at least six solutions.

For proving both the above results we have used some variational theorems,
which we call “of mixed type” (the “∇-theorems” 3.8 and 3.9), where there are
both assumptions on the values of a functional (on some suitable sets), and on
the values of its gradient.

Actually, in the proofs of Theorems 1.1 and 1.2, we first examine the case of g
linear (see Sections 4–6) and show that under the assumptions of Theorems 1.1
and 1.2 the conditions for applying the “∇-theorems” are fulfilled. Next we prove
(see Section 7) that such conditions do persist passing from the linear case to
the general one, for t 	 0.
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We conclude this introduction making some comparison between problem
(Pt) and the classical problem of “jumping nonlinearities”, where one studies
the equation {

∆u+ g(x, u) = h0 + te1,

u ∈W 1,2
0 (Ω),

where g : Ω × R → R is a Carathéodory function such that

lim
s→−∞

g(x, s)
s

= β, lim
s→∞

g(x, s)
s

= α,

and, for instance, condition (g) holds. Strong analogies with problem (Pt) are
present: in some sense, in our case, g is such that g(x, s) = −∞ for s < ψ(x).
Actually the results presented in this paper are analogous to those of the jumping
problem in the case where β < λ1 (see for instance [11], [13] and the numerous
references therein).

Among other open problems concerning (Pt) let us point out one which we
feel interesting, also in the case of jumping nonlinearities, that is a more precise
estimate of the number of solutions of (Pt) as t varies in R, under suitable
assumptions (to be individuated) on the function g.

2. Some recalls of subdifferential analysis

In this section we recall some notions and results of subdifferential analysis.
We point out that we will study a convex functional under a convex constraint.
For more details the reader is referred to [2], [4]–[6], [8], [14].

Throughout this section H will denote a Hilbert space with inner product
〈 · , · 〉 and norm ‖ · ‖. Let W be a subset of H and f : W → R∪ {∞} a function
and set D(f) = {u ∈W | f(u) <∞}.

Definition 2.1. Let u ∈ D(f). We call subdifferential of f at u the set
∂−f(u) of all ϕ ∈ H such that

lim inf
v→u

f(v) − f(u) − 〈ϕ, v − u〉
‖v − u‖ ≥ 0.

Since ∂−f(u) is convex and closed, we denote by grad−f(u) the element of
∂−f(u) having minimal norm.

If 0 ∈ ∂−f(u) we say that u is a lower critical point of f . A value c ∈ R is
said to be critical for f if there exists u ∈ W such that 0 ∈ ∂−f(u) and f(u) = c.
If value c is not critical, we say that it is regular.

If W = H and f is convex, the notion of ∂−f coincides with the usual notion
of subdifferential in convex analysis.
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If E ⊂ H , we define the indicator function IE : H → R ∪ {∞} by

IE(u) =

{
0 if u ∈ E,

∞ if u ∈ H \ E.

For every u in E the set ∂−IE(u) is a closed convex cone and is called the outward
normal cone to E at u. If u ∈ E and E is a convex set, then

∂−IE(u) = {ϕ ∈ H | 〈ϕ, v − u〉 ≤ 0, for all v in E}.

The indicator function allows us to consider the lower critical points of f on
a constraint E.

Definition 2.2. We say that u ∈ E is a lower critical point of f on E if
0 ∈ ∂−(f + IE)(u).

Now we introduce a class of functions which has important properties and,
on the other hand, seems to be well fit to our problem.

Definition 2.3. Let p and q be two real continuous functions defined on
D(f). We say that f is of class C(p, q) if

f(v) ≥ f(u) + 〈ϕ, v − u〉 − [p(u)‖ϕ‖ + q(u)]‖v − u‖2,

for all v in W , whenever u in D(f) and ϕ ∈ ∂−f(u).

We point out that no condition is required at the points u such that ∂−f(u) =
∅. For a more general class see [8] and [14]. A significative class of C(p, q)
functions will be introduced in Theorem 2.6.

The next theorem, concerning the functions f on a manifold M , besides
giving us an interesting example of function of class C(p, q), is useful to clarify
the meaning of the constrained critical points. First we give a definition.

Definition 2.4. If A and B are two subsets of H , we say that they are
tangent at the point u of A ∩B if and only if

∂−IA(u) ∩ (−∂−IB(u)) �= {0}.

In the sequel we assume M to be the closure of an open subset of H with
boundary of class C1,1.

Remark 2.5. Let K be a convex subset of H and u in K∩∂M . It is easy to
verify that K and M are not tangent at u if and only if there exists u in K such
that 〈ν(u), u− u〉 < 0, where ν(u) is the outward normal at u with ‖ν(u)‖ = 1.

Theorem 2.6. Let f : H → R ∪ {∞} be a lower semicontinuous function
of class C(0, q0) where q0 is a real valued continuous function defined on D(f).
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If D(f) and M are not tangent at any point, then

(a) for every u in M ∩D(f)

∂−(f + IM )(u) = ∂−f(u) + ∂−IM (u).

(Hence, if ∂−(f + IM )(u) �= ∅, then ∂−f(u) �= ∅.)
(b) There exist two continuous functions C1, C2 : ∂M∩D(f) → R such that

for every u in ∂M ∩D(f), if ϕ ∈ ∂−(f + IM )(u) and λ ≥ 0 is such that
ϕ− λν(u) ∈ ∂−f(u), then λ ≤ C1(u)‖ϕ‖ + C2(u).

(c) There exist two continuous functions p, q : M ∩ D(f) → R such that
f + IM is a function of class C(p, q).

The proof of this result can be obtained from [4, Theorem 1.13], making
simple adaptations (see [9]).

In the following sections we study problems (Pt) and (P ) using suitable va-
riational theorems concerning functionals of class C(p, q). To this end a suitable
version of the classical Deformation Lemma applied to this class of functional
will be used. We start by a definition extending the Palais–Smale property to
the functional of class C(p, q).

Definition 2.7. Let c be a real number and f : H → R∪{∞} be a function.
We say that f verifies the Palais–Smale condition at level c (briefly (P.S.)c), if
for every sequence (un) in D(f) and (ϕn) in H with

lim
n
f(un) = c, for all n ∈ N, ϕn ∈ ∂−f(un), lim

n
ϕn = 0,

there exists a subsequence (uhk) converging to an element u (with the properties:
f(u) = c and 0 ∈ ∂−f(u)).

Remark 2.8. If f is a lower semicontinuous function of class C(p, q), then
the two last properties in Definition 2.7 immediately follow.

In the sequel we set, for every c in R,

f c = {u ∈ D(f) | f(u) ≤ c}, Kc = {u ∈ H | 0 ∈ ∂f(u), f(u) = c}.

Theorem 2.9 (Deformation Theorem). Let c ∈ R. Assume that f : H → ∞
is a lower semicontinuous function of class C(p, q) which satisfies (P.S.)c Then,
given a neighbourhood U of Kc (if Kc = ∅, we allow U = ∅), there exist ε > 0
and a continuous map η : f c+ε × [0, 1] → f c+ε such that for every u ∈ H and
t ∈ [0, 1] we have:

(a) f(η(u, t)) ≤ f(u),
(b) η(f c+ε \ U, 1) ⊆ f c−ε.
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Theorem 2.10 (Noncritical Interval Theorem). Let a, b ∈ R with a < b and
f : H → R ∪ {∞} be a lower semicontinuous function of class C(p, q). Assume
that f satisfies (P.S.)c for every c in [a, b] and there are no lower critical points
of f in f−1([a, b]). Then there exists a continuous map η : f b × [0, 1] → f b such
that

η(u, 0) = u for all u in f b,

f(η(u, t)) ≤ f(u) for all u in f b and for all t in [0, 1],

η(u, 1) ∈ fa for all u in f b.

The proofs easily follow (in “the classical way”) from the next theorem.

Theorem 2.11 (Evolution Theorem). Let f : H → R ∪ {∞} be a lower
semicontinuous function of class C(p, q). Then for every u0 in D(f) there exist
T > 0 and an unique absolutely continuous function U : [0, T ] → H such that
U(0) = u0, U(t) ∈ D(f) for every t in [0, T ], f ◦ U is non increasing and

cU ′(t) = −grad−f(U(t)) for a.e. t in [0, T ],

f ◦ U(t2) − f ◦ U(t1) = −
∫ t2

t1

‖U ′(s)‖2 ds for all t1, t2 in [0, T ].

Moreover, if (un) and (tn) are two sequences such that un ∈ D(f), tn ∈ [0, T ],
un → u, supn f(un) < ∞ and tn → t, then for n large the solutions Un of (2.1)
starting from un are defined in [0, tn], and

Un(tn) → U(t) and f(Un(tn)) → f(U(t)).

For the proof see for example [8], [14]. For more general cases see [7].

3. Some variational theorems of mixed type

In this section we wish to expose the variational theorems we are going to use
for the multiplicity results of Sections 6 and 7. As we said in the introduction,
some of these theorems, which we call “∇-theorems”, contain hypotheses of
“mixed type” concerning both the values of functional and the values of its
gradient.

The following Theorem 3.1 plays a key role in the proof of these results. This
statement is the generalization to the case of nonsmooth functional f of a very
well-known and nice result of K. C. Chang (see Theorem 3.5 of Chapter 3 of [3])
which relates the homology and coohomology groups of the sublevels of f with
the number of its critical points. The idea of ∇-theorems consists mainly in the
introduction of an additional constraint: this constraint on one side increases
the topological complexity of the sublevels (so Theorem 3.1 can be used), on
the other side they are “fictitious” due to the hypothesis on the gradient of
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the functional. Some arguments of this kind have been also used by J. Q. Liu
[10] (even if not explicitly) and by C. Bertocchi and M. Degiovanni [1], for a
functional defined on a sphere.

Let A be a topological space and B be a subspace of A. We will denote
by Hp(A,B) and Hp(A,B) respectively the pth-group of relative homology and
the pth-group of relative coomology of the pair (A,B) with coefficients in an as-
signed field. The symbol ∩ will be denote the “cap product” defined in [17].

Theorem 3.1. Let f : H → R∪{∞} be a lower semicontinuous function of
class C(p̃, q̃). Let a, b be regular values of f with a < b and let p, q ∈ N such that
p ≥ 1 and q ≥ 1. Assume that there exist τ1 in Hp(f b, fa), τ2 in Hp+q(f b, fa)
and ω in Hq(f b) such that τ1 �= 0 and τ1 = τ2 ∩ ω. Moreover, assume that f
satisfies (P.S.)c for all c in [a, b]. Then f has at least two lower critical points
in f−1([a, b]).

We will use this theorem in the proof of the next lemma.

Lemma 3.2. Let m, n in N be such that m ≥ 1 and n ≥ 1. Let g : H →
R∪{∞} be a lower semicontinuous function of class C(p, q). Let S, Σ, X, Y be
four subsets of H such that S ⊂ Σ, Y ⊂ X, S ⊂ H \X, Σ ⊂ H \Y . Assume that

(1) a′ = sup g(S) < inf g(X) = a′′, b′ = sup g(Σ) < inf g(Y ) = b′′,
(2) there exist τ1 in Hn(Σ, S), τ2 in Hn+m(Σ, S) with τ1 �= 0, ω in Hm(Σ)

such that τ1 = τ2 ∩ ω,
(3) the inclusion i : (Σ, S) → (H \ Y,H \X) is such that i∗ : H∗(Σ, S) →

H∗(H\Y,H\X) is injective in dimension n and n+m, i∗ : H∗(H\Y ) →
H∗(Σ) is surjective in dimension m.

Let a ∈ ]a′, a′′[, b ∈ ]b′, b′′[ and suppose that g verifies (P.S.)c for all c in [a, b].
Then g has at least two lower critical points in g−1([a, b]).

Proof. We have

(Σ, S) i1−→ (gb, ga) i2−→ (H \ Y,H \X),

where i1 and i2 are the inclusions. Since i = i2 ◦ i1, then i∗ = i2∗ ◦ i1∗ and
i∗ = i∗1 ◦ i∗2; therefore i1∗ is injective (in dimension n and n + m) and i∗1 is
surjective (in dimension m). Now we take τ ′1 = i1∗(τ1), τ ′2 = i1∗(τ2) and ω′ such
that ω = i∗1(ω

′). Then

τ ′2 ∩ ω′ = i1∗(τ2) ∩ i∗1(ω) = i1∗(τ2 ∩ ω) = i1∗(τ1) = τ ′1.

The proof is achieved applying Theorem 3.1. �
Remark 3.3.

(a) Hypothesis (2) of the previous theorem is, in particular, satisfied if the
pair (Σ, S) is homeomorphic to (Bn × Sm, ∂Bn × Sm) where Bn is
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the n-dimensional ball and Sm is the m-dimensional sphere. (In fact
it is sufficient to take Σ = Φ(Bn × Sm), S = Φ(∂Bn × Sm) where
Φ : Bn × Sm → H is a continuous function such that Φ∗ is injective in
dimension n and n+m and Φ∗ is surjective in dimension m.)

(b) Hypothesis (3) is verified, in particular, if Σ and S are respectively
deformation retracts of H \ Y and H \X .

Now we are going to apply the previous lemma in a concrete situation. First
of all let us introduce some notations.

Notations 3.4. Let X1, X2, X3 be three closed subspaces of H such that

H = X1 ⊕X2 ⊕X3.

Furthermore for i, j = 1, 2, 3 and ρ > 0 we set

Si(ρ) = {u ∈ Xi | ‖u‖ = ρ}, Bi(ρ) = {u ∈ Xi | ‖u‖ < ρ},
Sij(ρ) = {u ∈ Xi ⊕Xj | ‖u‖ = ρ}, Bij(ρ) = {u ∈ Xi ⊕Xj | ‖u‖ < ρ}.

Theorem 3.5. Assume that 1 ≤ dimX1 < ∞ and 1 ≤ dimX2 < ∞. Let
g : H → R ∪ {∞} be a lower semicontinuous function of class C(p, q). Let ρ,
ρ1, R be such that ρ1 > 0 and 0 < ρ < R ≤ ∞. Let Σ = B1(ρ1) × S2(ρ),
S = S1(ρ1)× S2(ρ), X = (X1 ⊕X3) ∪B23(R) and Y = (X1 ⊕X3) ∪ S23(R). (If
R = ∞ then we set S23(R) = ∅ and B23(R) = X2 ⊕X3). Assume that

a′ = sup g(S) < inf g(X) = a′′,

b′ = sup g(Σ) < inf g(Y ) = b′′.

Let a ∈ ]a′, a′′[, b ∈ ]b′, b′′[ and suppose that g verifies (P.S.)c for all c in [a, b].
Then g has at least two lower critical points in g−1([a, b]).

Proof. If dimX2 = 1, then gb has two connected components and in each
one the “splitting sphere” principle (see [11, Theorem 8.1]) can be applied; there-
fore we can limit ourselves to the case dimX2 ≥ 2.

We set n = dimX1, m = dimX2 − 1 and we suppose that R is finite. We
wish to apply Lemma 3.2. By (a) of Remark 3.3 we can deduce that the pair
(Σ, S) verifies hypothesis (2) of Lemma 3.2. Let Z = B23(R)×X1. It is easy to
prove that the inclusion

j : ((H \ Y ) ∩ Z, (H \X) ∩ Z) → (H \ Y,H \X)

generates an isomorphism j∗ in the relative homology group using the excision
property (we excise (H \X) \ Z). Moreover, since

(H \ Y ) ∩ Z = Z \ Y = (B23(R) \B3(R)) ×X1
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and

(H \X) ∩ Z = Z \X = (B23(R) \B3(R)) × (X1 × {0}),
it can be easily seen that Σ and S are respectively deformation retracts of (H \
Y )∩Z and (H \X)∩Z. Therefore also the inclusion i : (Σ, S) → (H \Y,H \X)
induces an isomorphism i∗ : H∗(Σ, S) → H∗(H \ Y,H \X). On the other hand,
we notice that Σ ⊂ H \ Y ⊂ H \ (X1 ⊕ X3) and Σ is a deformation retract of
H \ (X1 ⊕X3), then i∗ : H∗(Σ) → H∗(H \ Y ) is an epimorphism. At this point,
using Lemma 3.2 the assertion follows.

If R = ∞, we can repeat the proof without using the excision property. �

Another concrete situation in which Lemma 3.2 is used is the next theorem.

Theorem 3.6. Assume that 1 ≤ dimX1 < ∞ and 1 ≤ dimX2 < ∞. Let
g : H → R ∪ {∞} be a lower semicontinuous function of class C(p, q), e in
X1 \ {0}, R1 > 0 and ρ > 0. Set

Σ = Q× S2(ρ) and S = (∂X1Q) × S2(ρ),

where Q = {te+ u | 0 ≤ t ≤ 1, u ∈ X1, 〈u, e〉 = 0, ‖u‖ ≤ R1}. Let S′ = {u ∈
span(e) ⊕X2 ⊕X3 | ‖u‖ = R} with ρ < R < ‖e‖. Suppose that

a′ = sup g(S) < inf g(S′ ∪ (X1 ⊕X3)) = a′′,

b′ = sup g(Σ) < inf g(X1 ⊕X3) = b′′.

Let a ∈ ]a′, a′′[, b ∈ ]b′, b′′[ and suppose that g verifies (P.S.)c for all c in [a, b].
Then g has at least two lower critical points in g−1([a, b]).

Proof. If dimX2 = 1, then gb has two connected components and in each
one there is a critical point, obtained by linking argument (see [16]); therefore
we can limit ourselves to the case dimX2 ≥ 2.

We set n = dimX1, m = dimX2−1. We also set X̂1 = {u ∈ X1 | 〈u, e〉 = 0},
B̂1(r) = {u ∈ X̂1 | ‖u‖ < r}, X = S′∪(X1⊕X3), Y = X1⊕X3 and we introduce
the projections P̂ : H → X̂1, Pe23 : H → span(e) ⊕X2 ⊕X3. We wish to apply
Lemma 3.2. It is easy to prove that the pair (Σ, S) verifies hypothesis (2) of
Lemma 3.2; let us prove that hypothesis (3) is satisfied.

We define, for every u in H \ Y and t in [0, 1], the function η : (H \ Y,H \
X) × [0, 1] → (H \ Y,H \X) by

η(t, u) =
(1 − t)Pe23(u) + tP2(u)
‖(1 − t)Pe23(u) + tP2(u)‖‖Pe23(u)‖ + P̂ (u).



Variational Theorems of Mixed Type 119

Then we have

η(u, 0) =u for all u in H \ Y,
η(u, t) =u for all u in (X̂1 ⊕X2) \ X̂1,

η(u, 1) ∈ X̂1 ⊕X2 \ X̂1 for all u in H \ Y,
η(u, 1) ∈ X̂1 ⊕X2 \ (X̂1 ∪ S2(R)) for all u in H \X.

Moreover, η( · , 1) is an homeomorphism from Σ to Σ′, where

Σ′ = (B2(ρ1) \B2(ρ)) × B̂1(R1)

with ρ1 =
√
ρ2 + ‖e‖2, (ρ1 > R) and η(S, 1) = S′ = ∂

�X1⊕X2
Σ′. Now it is simple

to verify that Σ′ and S′ are respectively deformation retracts of (X̂1 ⊕X2) \ X̂1

and (X̂1 ⊕X2) \ (X̂1 ∪ S2(R)). This concludes the proof. �

Now we want to deduce from Theorems 3.6 and 3.6 two propositions (“∇-
theorems”) that we will use in Section 6 and 7.

In these theorems we will make some assumptions on the gradient of the
functional f which allow us to weaken some inequalities on the values of f .

Definition 3.7. Let γ be a real number such that γ > 0 and let X be
a closed subspace of H , we set

Cγ(X) = {u ∈ H | dist(u,X) ≥ γ}.

Let a, b ∈ R ∪ {−∞,∞} with a < b and f : H → R ∪ {∞} be a lower semicon-
tinuous function. We say that the condition (∇)(f, Cγ(X), a, b) holds if

(3.7.1) inf

{
‖ϕ‖ | ϕ ∈ ∂−(f + ICγ(X))(u),

f(u) ∈ [a, b]

u ∈ D(f) ∩ ∂Cγ(X)

}
> 0.

In some sense we are requiring that f|Cγ(X) has no critical points u with
u ∈ ∂Cγ(X) and a ≤ f(u) ≤ b with “some uniformity”.

Theorem 3.8 (∇-Theorem A). Assume that 1 ≤ dimX1 < ∞ and 1 ≤
dimX2 <∞. Let f : H → R∪ {∞} be a lower semicontinuous function of class
C(0, q). Assume that there exist γ, ρ, R, a, b in R, such that 0 < γ < ρ < R ≤ ∞
and, if Cγ = Cγ(X1 ⊕X3),

(1) a′ = sup f(S12(ρ) ∩ ∂Cγ) < inf f(B23(R) ∩ Cγ) = a′′,
(2) b′ = sup f(S12(ρ) ∩ Cγ) < inf f(S23(R) ∩ Cγ) = b′′,
(3) a′ < a < a′′, b′ < b < b′′, the condition (∇)(f, Cγ , a, b) holds and D(f)

and Cγ are not tangent at any point,
(4) f satisfies (P.S.)c for all c ∈ [a, b].
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Figure 1. The topological situation of ∇-Theorem A

Then f has at least two lower critical points in f−1([a, b]).

Proof. Set g = f + ICγ . By Theorem 2.6 g is a function of class C(p, q).
Since f satisfies (P.S.)c for all c ∈ [a, b] and the condition (∇)(f, Cγ , a, b) holds,
we deduce that g satisfies (P.S.)c for all c ∈ [a, b].

In order to apply Theorem 3.5, we set Σ = S12(ρ) ∩ Cγ , S = S12(ρ) ∩ ∂Cγ ,
Y = (X1 ⊕X3) ∪ S23(R) and X = (X1 ⊕X3) ∪B23(R).

In view of Theorem 3.5 (with simple adaptations) we deduce that there
exist two lower critical points u1, u2 for g in g−1([a, b]). Since the condition
(∇)(f, Cγ , a, b) holds, then u1, u2 ∈ int Cγ and so they are critical points of f .�

Theorem 3.9 (∇-Theorem B). Assume that 1 ≤ dimX1 <∞, 1 ≤ dimX2

<∞. Let f : H → R∪{∞} be a lower semicontinuous function of class C(0, q).
Let e in X1 \ {0}, R1 > 0, ρ > 0 we set

Σ = Q× S2(ρ) and S = (∂X1Q) × S2(ρ),

where Q = {te + u | 0 ≤ t ≤ 1, u ∈ X1, 〈u, e〉 = 0, ‖u‖ ≤ R1}. We set
S′ = {u ∈ span(e) ⊕X2 ⊕X3 | ‖u‖ = R} with ρ < R < ‖e‖. Let a, b in R and
suppose that, if Cγ = Cγ(X1 ⊕X3),

(1) a′ = sup f(S) < inf f(S′) = a′′,
(2) b′ = sup f(Σ) <∞,
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Figure 2. The topological situation of ∇-Theorem B

(3) a′ < a < a′′, b′ < b < ∞, and there exists γ in ]0, ρ[ such that the
condition (∇)(f, Cγ , a, b) holds, D(f) and Cγ are not tangent at any
point,

(4) f satisfies (P.S.)c for all c in [a, b].

Then f has at least two lower critical points in f−1([a, b]).

Proof. Set g = f + ICγ . By Theorem 2.6 g is a function of class C(p, q).
Since f satisfies (P.S.)c for all c ∈ [a, b] and the condition (∇)(f, Cγ , a, b) holds,
we deduce that g satisfies (P.S.)c for all c ∈ [a, b]. By Theorem 3.6, g has at least
two lower critical points u1, u2 in g−1([a, b]); since the condition (∇)(f, Cγ , a, b)
holds, then u1, u2 ∈ int Cγ and so they are critical points of f . �

4. The asymptotic problem and some notations

As mentioned in the introduction, in order to study the problem (Pt) with
t	 0, we introduce the following asymptotic problem

(P )

{ ∫
Ω

(DuD(v − u) − α(v − u) + e1(v − u)) dx ≥ 0 for all v ∈ K0,

u ∈ K0,

where K0 = {u ∈ W 1,2
0 (Ω) | u ≥ 0 a.e.} and Ω is an open, connected, bounded

subset of R
N with smooth boundary. More precisely we consider the functional
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fα : L2(Ω) → R ∪ {∞} defined by

fα(u) =


1
2

∫
Ω

|Du|2 dx− α

2

∫
Ω

u2 dx+
∫

Ω

ue1 dx if u ∈ K0,

+∞ if u ∈ L2(Ω) \K0.

As usual we consider L2(Ω) endowed with the inner product 〈u, v〉 =
∫
Ω uv dx

and the norm ‖u‖2 =
∫
Ω u

2 dx. Then the solutions of the problem (P ) are the
lower critical points (see Definition 2.1) of fα; indeed if u ∈ K0 and ϕ ∈ L2(Ω),
then ϕ ∈ ∂−fα(u) if and only if for all v in K0

(4.0.1)
∫

Ω

(DuD(v − u) − αu(v − u) + e1(v − u)) dx ≥
∫

Ω

ϕ(v − u) dx.

Moreover, it is clear that the functional fα is of class C(0, α/2) (see Defini-
tion 2.3).

We will use also the norm ‖u‖2
W =

∫
Ω |Du|2 dx. We notice that if e1 is the

first eigenfunction of the problem{
∆u+ λu = 0 in Ω,

u = 0 in ∂Ω,

with e1 > 0 and λ1 is the first eigenvalue, then for α > λ1, the function e1 =
e1/(α − λ1) is a solution of (P ). The solutions we are going to find “branch”
from e1. This motivates the interest for the increment fα(e1 + z)− fα(e1); with
easy computation one finds:

(4.0.2) fα(e1 + z) − fα(e1) = Qα(z) for all z in K̃,

where Qα(z) = 1
2

∫
Ω

(|Dz|2 − αz2) dx and K̃ = {w ∈W 1,2
0 (Ω) | w ≥ −e1}.

Finally, we denote by (λi)i≥1 and (ei)i≥1 respectively the sequence of eigen-
values and eigenfunctions of problem (∆) (0 < λ1 < λ2 ≤ λ3 ≤ . . . and ‖ei‖ = 1).
Let i, j ∈ N with i, j ≥ 1 and i < j, we set

Hi = span(e1, . . . , ei), H⊥
i = {u ∈ L2(Ω) | 〈u, v〉 = 0, for all v in Hi},

and we consider the orthogonal projections

Pi : H → Hi, Pij : H → Hi ⊕H⊥
j , P

∗
ij : H → span(ei+1, . . . , ej).

Moreover, for every k ≥ 1, ρ > 0, we set

(4.0.3)



Sk(e1, ρ) = {u ∈ Hk | ‖u− e1‖ = ρ},
B(0, ρ) = {u ∈ L2(Ω) | ‖u‖ < ρ},
S(0, ρ) = {u ∈ L2(Ω) | ‖u‖ = ρ},
B∗
k(0, ρ) = {u ∈ span(e2, . . . , ek) | ‖u‖ < ρ},

S∗
k(0, ρ) = {u ∈ span(e2, . . . , ek) | ‖u‖ = ρ}.
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5. The conditions (P.S.) and (∇)

Lemma 5.1. Assume that α > λ1. Let (un), (αn), (ϕn) be three sequences
such that un ∈ K0, αn ∈ R and converges to α, ϕn ∈ ∂−fαn(un) for every n.
Suppose that

sup
n

∣∣∣∣ ∫
Ω

ϕne1 dx

∣∣∣∣ <∞ and sup
n

∣∣∣∣
∫
Ω
ϕnun dx

‖un‖W

∣∣∣∣ <∞.

Then (un) is bounded in W 1,2
0 (Ω).

Proof. We argue by contradiction and suppose that limn→∞ ‖un‖W = ∞.
In view of (4.0.1) it turns out

(5.1.1)
∫

Ω

(DunD(v − un) − αnun(v − un)) dx+
∫

Ω

e1(v − un) dx

≥
∫

Ω

ϕn(v − un) dx for all v in K0.

We set zn = un/‖un‖W ∈ K0. Taking v = un + e1 in (5.1.1), and dividing by
‖un‖W we obtain∫

Ω

(DznDe1 − αnzne1) dx+
∫

Ω

e21
‖un‖W

dx ≥
∫

Ω

ϕne1
‖un‖W

dx.

Up to a subsequence, zn → z in L2(Ω) and zn ⇀ z in W 1,2
0 (Ω) for some z in K0,

then
∫
Ω

(DzDe1 − αze1) dx ≥ 0 which implies z = 0. On the other hand, taking
v = 0 in (5.1.1) and dividing by ‖u‖2

W we obtain

−1 +
∫

Ω

αnz
2
n dx−

∫
Ω

e1zn
‖un‖W

dx ≥ −
∫

Ω

ϕnun

‖un‖2
W

dx.

If n→ ∞, we have a contradiction. �

The following proposition is an immediate consequence of the previous lemma.

Proposition 5.2. Assume that α > λ1. Then the functional fα satisfies
the (P.S.)c for all c ∈ R.

The following statements concern the verification of the (∇) condition (see
Definition 3.7) for the functional fα.

Lemma 5.3. Let i, j in N be such that 1 ≤ j ≤ i, λj < α ≤ λi+1, let
u ∈ K0 ∩ (Hj ⊕H⊥

i ) be a lower critical point of fα on Hj ⊕H⊥
i . Then

(a) either fα(u) ≤ sup fα(∂Hj (K0 ∩Hj)) or
if α < λi+1 then u = e1,
if α = λi+1 then u = e1 + e with e such that ∆e+ λi+1e = 0.
In any case fα(u) = fα(e1),
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(b) if j = 1 then either u = 0 or
if α < λi+1, then u = e1,
if α = λi+1, then u = e1 + e with e such that ∆e+ λi+1e = 0.

In particular, either fα(u) ≤ sup fα(∂Hj (K0 ∩Hj)) or fα(u) = fα(e1).

Proof. Using (4.0.2), if u = e1+z is a lower critical point of fα on Hj⊕H⊥
i

then

(5.3.1) Q′
α(z)(w − z) ≥ 0 for all w in K̃0 ∩ (Hj ⊕H⊥

i ),

where K̃0 = {w ∈ W 1,2
0 (Ω) | w ≥ −e1}. Suppose that z = z1 + z2 with z1 in Hj

and z2 in H⊥
i .

If z1 = 0, then Qα(z) = Qα(z2) ≥ 0. On the other hand taking w = 0 in
(5.3.1) we deduce that Qα(z) ≤ 0. Therefore Qα(z2) = 0.

If z1 �= 0, then there exists t > 0 such that tz1 ∈ K̃0. Taking w = tz1 in
(5.3.1) we obtain

tQα(z1) ≥ Qα(z) ≥ Qα(z1)

which implies t ≤ 1. Assume t = sup{t ∈ R | tz1 ∈ K̃0}, then t ≤ 1. Taking
w = tz1 we have

Qα(z) ≤ 1
t
Qα(w) ≤ Qα(w).

Since w ∈ ∂Hj (K0 ∩ Hj) the assertion follows. Furthermore, if j = 1, since
z1 = e1(

∫
Ω ze1 dx) ≥ −e1 then z1 ∈ K̃0. This implies t ≥ 1 that is z = −e1.

Since z ∈ K̃0 then z2 = 0. �

Lemma 5.4. Let i, j in N be such that 1 ≤ j < k and α ∈ R. If γ > 0 we
set Cγ = Cγ(Hj ⊕H⊥

k ) (see 3.7). Then

(a) if γ > 0, K0 and Cγ are not tangent at any point u in K0 ∩ Cγ ,
(b) if γ > 0, for all u in K0 ∩ ∂Cγ

∂−(fα + ICγ )(u) = ∂−fα(u) + {λP ∗
jk(u) | λ ≤ 0},

(c) there exist two real numbers c1, c2 such that if γ > 0, u ∈ ∂Cγ ∩ K0,
ϕ0 ∈ ∂−fα(u) and λ ≤ 0, then

‖λP ∗
j,k(u)‖ ≤ c1‖ϕ0 + λP ∗

jk(u)‖ + c2(1 + γ + ‖u‖W ).

Moreover, c1, c2 do not depend on α if α varies in a fixed bounded
interval.

Proof. Let us prove (a). Let u ∈ ∂Cγ ∩K0, we take u = 2u ∈ K0 and we
have ∫

Ω

(u − u)(P ∗
jk(u)) dx =

∫
Ω

(P ∗
jk(u))2 dx > 0.

By Remark 2.5 the conclusion follows.
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(b) is a consequence of Theorem 2.6. Let us prove (c). If ϕ0 ∈ ∂−fα(u) then

fα(v) ≥ fα(u) + 〈ϕ0, v − u〉 − α

2
‖v − u‖2 for all v in K0.

If v = u+ (P ∗
jk(u))+, we have

|λ| ‖(P ∗
jk(u))+‖2 ≤ ‖ϕ0 + λP ∗

jk(u)‖‖(P ∗
jk(u))+‖+

α

2
‖(P ∗

jk(u))+‖2+fα(v)−fα(u).

On the other hand,

inf
{‖w+‖

‖w‖ , w ∈ span(ej+1, . . . , ek)
}

= ε > 0,

hence

‖λP ∗
jk(u)‖ ≤ 1

ε2

{
‖ϕ0 + λP ∗

jk(u)‖ +
α

2
‖P ∗

jk(u)‖ +
|fα(v) − fα(u)|

‖P ∗
jk(u)‖

}
Finally,

fα(v) − fα(u)
‖P ∗

jk(u)‖ =
Q′
α(u)((P ∗

jk(u))+) +Qα((P ∗
jk(u))+) +

∫
Ω e1(P

∗
jk(u))+ dx

‖P ∗
jk(u)‖

≤ c(‖u‖W ‖(P ∗
jk(u))+‖

W
+ ‖(P ∗

jk(u))+‖2

W
+ λ1‖P ∗

jk(u)+‖
W

)

‖P ∗
jk(u)‖

≤ λkc(‖u‖W ‖P ∗
jk(u)‖ + λk‖P ∗

jk(u)‖2 + λ1‖P ∗
jk(u)‖)

‖P ∗
jk(u)‖

=λkc‖u‖W + λ2
kcγ + cλ1λk.

The assertion follows. �

Lemma 5.5. Assume that α > λ1 and 1 ≤ j < k. Let (αn) be a sequence
in R which converges to α, (γn) be a bounded sequence of positive real numbers.
Let (un) and (ϕn) be two sequences such that un ∈ K0 ∩ ∂Cγn(Hj ⊕H⊥

k ), ϕn ∈
∂−(fαn +ICγn (Hj⊕H⊥

k ))(un) for all n and supn ‖ϕn‖ <∞. Then (un) is bounded
in W 1,2

0 (Ω).

Proof. By Lemma 5.4 there exists a sequence (λn)n such that λn ≤ 0,
ϕ0,n = ϕn − λnP

∗
jk(un) ∈ ∂−fαn(un) and for suitable c1, c2 in R

+

‖λnP ∗
jk(un)‖ ≤ c1‖ϕn‖ + c2(1 + γn + ‖un‖W ).

We wish to apply Lemma 5.1. We have

sup
n

∣∣∣∣ ∫
Ω

ϕ0,ne1 dx

∣∣∣∣ = sup
n

∣∣∣∣ ∫
Ω

ϕne1 dx

∣∣∣∣ <∞.

Moreover, ∫
Ω

ϕ0,nun
‖un‖W

dx =
∫

Ω

ϕnun
‖un‖W

dx− λn

∫
Ω

unP
∗
jk(un)

‖un‖W
dx.
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We notice that

λn

∫
Ω

unP
∗
jk(un)

‖un‖W
dx =λn

∫
Ω

‖P ∗
jk(un)‖2

‖un‖W
dx

≤ c1‖ϕn‖ + c2(1 + γn + ‖un‖W )
‖un‖W

‖P ∗
jk(un)‖

and the last term is bounded. Applying Lemma 5.1 we deduce the assertion. �

Lemma 5.6. Let i, j in N be such that 1 ≤ j ≤ i. Let ε > 0, δ > 0 there
exist σ > 0, γ0 > 0 such that for every α ∈ [λj + δ, λi+1 + σ] and for every γ in
]0, γ0] the condition (∇)(fα, Cγ(Hj ⊕H⊥

i ), sup fα(∂Hj (K0 ∩Hj))+ ε, fα(e1)− ε)
holds.

Proof. We argue by contradiction and suppose that there exist ε > 0, δ > 0,
and four sequences (αn), (γn), (un) (ϕn) such that αn → α in [λj + δ, λi+1],
γn → 0, (un)n ∈ K0 ∩ ∂Cγn(Hj ⊕H⊥

i ) and (ϕn) ∈ ∂−(fαn + ICγ(Hj⊕H⊥
i ))(un)

for all n, ϕn → 0 and sup fα(∂Hj (K0 ∩Hj)) + ε ≤ fαn(un) ≤ fαn(e1) − ε.
By Lemma 5.5, (un) is bounded in W 1,2

0 (Ω); hence, up to a subsequence,
we can suppose that un → u in L2(Ω) and un ⇀ u in W 1,2

0 (Ω) for some u

in K0 ∩ (Hj ⊕ H⊥
i ). In view of Lemma 5.4, there exists λn ≤ 0 such that

ϕn − λnP
∗
ji(un) ∈ ∂−fαn(un) and λnP

∗
ji(un) is bounded. We can suppose, up

to a subsequence, that λnP ∗
ji(un) converges to a vector ν ∈ span(ej+1, . . . , ei).

Then

(5.6.1) fαn(v) ≥ fαn(u) + 〈ϕn − λnP
∗
ji(un), v − un〉 − αn

2
‖v − un‖2

for all v in K0. If v ∈ Hj ⊕H⊥
i , then 〈ν, v − u〉 = 0 therefore u is a lower critical

point of fα on Hj ⊕H⊥
i . On the other hand taking v = u in (5.6.1) we have

lim
n→∞ fαn(un) = fα(u)

from which we deduce that fα(u) ∈ [sup fα(∂Hj (K0 ∩Hj))+ ε, fα(e1)− ε]. This
is impossible in view of Lemma 5.3. �

6. Multiple solutions of the asymptotic problem

In this section we consider the asymptotic problem and we state two theorems
which play the same role of Theorems 1.1 and 1.2.

Proposition 6.1. For every α ∈ R
+, the origin is a local minimum point

for the functional fα.

Proof. Let us consider the cone K∗ = {v ∈ K0 | Qα(v) ≤ ‖v‖2
W /4}. In

K0 \K∗ the thesis is clear. On the other hand we claim that

inf
{∫

Ω

ve1 dx

∣∣∣∣ v ∈ K∗, ‖v‖W = 1
}

= c > 0.
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By contradiction, suppose that there exists a sequence (vk)k in K∗ with ‖vk‖W
= 1 and

∫
Ω
vke1 dx → 0, then we can suppose that vk → v in L2(Ω) for some v

in K∗. Since 1
2α <

∫
Ω
v2 dx then v �= 0 which is impossible. Moreover, if v ∈ K∗,

we have

fα(v) =
∫

Ω

e1v dx+Qα(v) ≥ c‖v‖W +Qα(v) ≥ c
√
λ1‖v‖ − α

2
‖v‖2

L.

If ‖v‖ is small, f(v) ≥ 0. �

We notice that since Ω has smooth boundary, then e1 ∈ intHi(K0 ∩Hi) for
i ≥ 1 (this is due to the Hopf maximum principle).

Lemma 6.2. Let k ≥ 2 and α > λk. Then, for every ε > 0, there exist
τ0 > 0, T0 > 0 such that for all τ in ]0, τ0], for all T in ]0, T0] there exists ρ > 0
such that

sup fα({τe1, T e1} × S∗
k(0, ρ)) < ε(6.1)

sup fα(∂Hk([τe1, T e1] × B∗
k(0, ρ))) < fα(e1)(6.2)

proof. Since fα(0) = 0 and limt→+∞ fα(te1) = −∞ then, for all τ > 0
small and all T > 0 large, fα(te1) < ε and fα(Te1) < ε. Moreover, if τ and T

are fixed there exists ρ > 0 such that [τe1, T e1]×B∗
k(0, ρ) ⊂ K0 and (6.1) holds.

By (4.2), taking account that α > λk we deduce (6.2). �

Now we are able to prove the asymptotic version of Theorem 1.1.

Theorem 6.3. If α > λ2, then fα has at least four lower critical points.

Proof. The origin and the function e are lower critical points of fα. Let k
be an integer such that k ≥ 2 and λk < α ≤ λk+1. By Lemma 6.1 there exists
R > 0 such that

fα(0) < inf{fα(u) | u ∈ S(0, R)} = a′′.

Let 0 < a < a′′. By Lemma 6.2, there exist ρ > 0, τ , T such that 0 < τ < R < T ,
a′ = sup fα({τe1, T e1} × S∗

k(0, ρ)) < a and (6.2) holds.
Set b′ = sup fα([τe1, T e1] × S∗

k(0, ρ)) < fα(e1), take b′ < b < fα(e1), then,
by Lemma 5.6, there exists 0 < γ < ρ such that the condition (∇)(fα, Cγ(H1 ⊕
H⊥
k ), a, b) holds. By Lemma 5.4, Cγ andK0 are not tangent at any points. More-

over, by Proposition 5.2, fα satisfies (P.S.)c for all c in R. Using Theorem 3.9
we deduce that there exist at least two lower critical points in f−1

α ([a, b]). �
Remark 6.4. Use the same notations of the previous theorem. Then for

α > λk+1, α close to λk+1, we still have

sup fα({τe1, T e1} × S∗
k(0, ρ)) < inf fα(S(0, R)),

(∇)(fα, Cγ(H1 ⊕H⊥
k ), a, b)holds.
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Moreover, if b′ = sup fα([τe1, T e1] × S∗
k(0, ρ)) < b < fα(e1), then, by Theo-

rem 3.9, fα still has two lower critical points in f−1
α ([a, b]) (0 < a < a′′ =

inf fα(S(0, R))).

Lemma 6.5. Let i ≥ 1 and α ∈ R. Then there exists min fα(e1 ⊕H⊥
i ) and

it continuously depends on α.

Proof. In view of (4.2) we can evaluate the minimum of Qα on the convex
set {u ≥ −e1 | u ∈ H⊥

i }. This minimum coincides with the minimum in

Ki,α = {u ∈ H1
0 (Ω) | Qα(≤)0, u ≥ −e1, u ∈ H⊥

i }.

We notice that Ki,α is bounded in L2(Ω), therefore it is bounded in W 1,2
0 (Ω)

since
∫
Ω
|Du|2 dx ≤ α

∫
Ω
u2 dx. In fact, by contradiction, suppose that there

exists a sequence (uh) in Ki,α such that ‖uh‖ → +∞. Then zh = uh/‖uh‖
is such that ‖zh‖W ≤ α, therefore we can suppose, up to a subsequence, that
(zh) converges in L2(Ω) to some z with ‖z‖ = 1, z ≥ 0 and z ∈ H⊥

i . This is
impossible. At this point it is easy to deduce the thesis. �

Lemma 6.6. Let k, j be two integers such that 1 ≤ j < k and λj < λj+1 =
λk < λk+1. Let ρ > 0 be such that Sk(e1, ρ) ⊂ K0. Then there exists σ > 0 such
that for every λk < α ≤ λk + σ we have

sup fα(Sj(e1, ρ)) < inf fα(e1 ⊕H⊥
j ),(6.3)

sup fα(Sk(e1, ρ)) < inf fα(e1 ⊕H⊥
k ).(6.4)

Proof. If λk < α ≤ λk+1 using (4.2) we have

sup fα(Sk(e1, ρ)) < fα(e1) = inf fα(e1 ⊕H⊥
k ).

Analogously, if α = λj+1 = λk, we have

sup fα(Sj(e1, ρ)) < inf fα(e1 ⊕H⊥
j ).

By Lemma 6.5, there exists σ > 0 such that, if λj+1 = λk ≤ α ≤ λk + σ, the
previous inequality holds. The assertion follows. �

Now we are able to prove the asymptotic version of Theorem 1.2.

Theorem 6.7. If λk > λ2, there exists σ > 0 such that for every α such
that λk < α ≤ λk + σ, fα has at least six lower critical points.

Proof. We can suppose that λk < λk+1 and choose j such that λj < λj+1 =
λk. By Remark 6.4, there exists b < fα(e1) such that, if σ is enough small, for
every α in ]λj+1, λj+1 + σ] there exist two solutions of (P ) in f−1

α ([a, b]) with
a > fα(0) = 0.
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On the other hand, by Lemma 6.6, up to shrinking σ, (6.3) and (6.4) hold.
By Lemma 5.6, the condition (∇)(fα, Cγ(Hj ⊕H⊥

k ), ã, b̃) holds, where

sup fα(Sj(e1, ρ)) < ã < inf fα(e1 ⊕H⊥
j ),

sup fα(Sk(e1, ρ)) < b̃ < inf fα(e1 ⊕H⊥
k ) = fα(e1).

(Naturally Cγ(Hj⊕H⊥
k ) and K0 are not tangent at any points and (P.S.)c holds

for every c ∈ [ã, b̃].) Using Theorem 3.8, we deduce that there exist two lower
critical points in f−1

α ([ã, b̃]). If σ is small enough, inf fα(e1 ⊕H⊥
j ) is close to

fα(e1) which is greater than b: hence we can suppose that ã > b. This concludes
the proof. �

7. Multiple solutions of problem (Pt)

Now we want to show how the results found in Section 6 for the asymptotic
problem (P ) still hold for the problem (Pt) for t > 0 sufficiently large. More
precisely, we will prove that, in the hypothese considered in the introduction, the
inequalities stated for the functional fα in Section 6, also hold for the functional
f defined in the introduction. Moreover, we will show that the conditions (P.S.)
and (∇) hold for f . The (∇)-theorems of Section 3 will give us the conclusion.

We will use the same notations of the introduction. In particular, if t > 0

Kψ/t = {u ∈W 1,2
0 (Ω) | u ≥ ψ/t a.e.}.

In the sequel we will assume that the hypothesis (K) is fulfilled and we will
denote by u a fixed function of Kψ.

Proposition 7.1. Kψ/t → K0 in the sense of Mosco (see [15]), namely

(1) if (tn), (un) are two sequences such that (tn)n → ∞, un ∈ Kψ/tn and
(un)n weakly converges in W 1,2

0 (Ω) to some u, then u ∈ K0,
(2) for every u in K0, there exists a sequence un in Kψ/tn which strongly

converges in W 1,2
0 (Ω) to u.

Proof. (1) is very easy. Let us prove (2). If u ∈ K0, we take un = u∨u/tn.
Then un ∈ Kψ/tn and un → u in W 1,2

0 (Ω). �

For t > 0, it will be convenient to consider the “rescaled” functional ht :
L2(Ω) → R ∪ {∞} defined by

ht(u) =

{ 1
2

∫
Ω

|Du|2 dx− 1
t2

∫
Ω

G(x, tu) dx+
∫

Ω

ue1 dx if u ∈ Kψ/t,

∞ otherwise.
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Under the hypothese (g) and (G), it is easy to show that given u in Kψ/t, then
ϕ ∈ ∂−ht(u) if and only if

(7.1.1)
∫

Ω

DuD(v − u) dx− 1
t

∫
Ω

g(x, tu)(v − u)dx

+
∫

Ω

e1(v − u) dx ≥
∫

Ω

ϕ(v − u)dx for all v in Kψ/t.

Therefore, u is a lower critical point of ht if and only if tu verifies (Pt) (that is tu
is a lower critical point of f). Under the hypothesis (G) and (g), the functional
ht is of class C(0, q) (see Definition 2.3) for all t in R: that is

(7.1.2)

{
ht(v) ≥ ht(u) + 〈ϕ, v − u〉 − q‖v − u‖2

for all u, v in Kψ/t and for all ϕ in ∂−ht(u).

The following statement is immediate.

Lemma 7.2. Assume that (g, α) and (g) hold. Then for all c in R we have

lim
t→∞ sup

u∈Kψ/t∩K0

‖u‖W≤c

|ht(u) − fα(u)| = 0.

Now we check the conditions (P.S.) and (∇) for the functional ht.

Lemma 7.3. Assume that α > λ1. Let (tn), (un), (ϕn) be three sequences
such that (tn) ∈ R and infn tn > 0, (un)n ∈ Kψ/tn , ϕn ∈ ∂−htn(un) for every n.
Suppose that

sup
n

∣∣∣∣ ∫
Ω

ϕne1 dx

∣∣∣∣ <∞ and sup
n

∣∣∣∣
∫
Ω
ϕnun dx

‖un‖W

∣∣∣∣ <∞.

Then (un) is bounded in W 1,2
0 (Ω).

Proof. One can proceed as in the proof of Lemma 5.1. �

Using this lemma we can deduce the next proposition.

Lemma 7.4. Suppose that (g, α) and (g) are fulfilled and assume that α > λ1.
Let t > 0, then the functional ht satisfies (P.S.)c for all c in R.

Lemma 7.5. Assume that (g) and (G) are fulfilled and let i, j in N be such
that 1 ≤ j < k, t > 0 and γ > 0. Set h̃t = ht + ICγ(Hj⊕H⊥

k ). Then

(a) for every u in Kψ/t ∩ ∂Cγ(Hj ⊕H⊥
k ), Kψ/t and Cγ(Hj ⊕H⊥

k ) are not
tangent at u and

∂−h̃t(u) = ∂−ht(u) + {λP ∗
jk(u) | λ ≤ 0},



Variational Theorems of Mixed Type 131

(b) there exist two real numbers c1, c2 such that if u ∈ ∂Cγ(Hj⊕H⊥
k )∩Kψ/t,

ϕ0 ∈ ∂−ht(u) and λ ≤ 0, then

‖λP ∗
j,k(u)‖ ≤ c1‖ϕ0 + λP ∗

jk(u)‖ + c2

(
1 + γ +

1
t

+ ‖u‖W
)
,

(c) there exist two continuous functions p̃, q̃ : W 1,2
0 (Ω) → R strongly con-

tinuous in L2(Ω) such that for all t ≥ 1,

h̃t(v) ≥ h̃t(u) + 〈ϕ, v − u〉 − [p̃(u)‖ϕ‖ + q̃(u)]‖v − u‖2

for all u, v in D(h̃t) and all ϕ in ∂−h̃t(u).

Proof. Let us prove (a). Let u ∈ Kψ/t ∩ ∂Cγ(Hj ⊕ H⊥
k ), we take u =

u+ (P ∗
jk(u))+ (∈ Kψ/t) and we have

−
∫

Ω

(−P ∗
jk(u))(u − u) dx =

∫
Ω

(P ∗
jk(u))(P ∗

jk(u))+ dx > 0.

By Remark 2.5 the conclusion follows. For the equality of subdifferentials one
can proceed as in Theorem 2.6.

(b) can be proved as in Lemma 5.4. (c) can be proved as in Theorem 2.6, by
noting that for t ≥ 1 the constants are independents of t (in some sense Kψ/t

and Cγ are “uniformly non tangent”). �

Lemma 7.6. Assume that (g, α), (g) and (G) are fulfilled, let α > λ1, and
1 ≤ j < k. Let (tn) be a sequence in R such that infn tn > 0 and γ > 0.
Let (un) and (ϕn) be two sequences such that un ∈ Kψ/tn ∩ ∂Cγn(Hj ⊕ H⊥

k ),
ϕn ∈ ∂−(htn + ICγ(Hj⊕H⊥

k ))(un) for every n and supn ‖ϕn‖ < ∞. Then (un)n
is bounded in W 1,2

0 (Ω). (We can replace γ with a bounded sequence γn and
the assertion still hold.)

Proof. One can proceed as in the proof of Lemma 5.5. �

Lemma 7.7. Assume that (g, α), (g) and (G) are fulfilled, let α > λ1, 1 ≤
j < k and γ > 0. Let (tn), (un), (ϕn) be three sequences such that tn → ∞,
un ∈ Kψ/tn ∩ Cγ(Hj ⊕ H⊥

k ), un → u in L2(Ω), ϕn ∈ ∂−(h̃tn)(un) and ϕn ⇀

ϕ in L2(Ω). Then un → u in W 1,2
0 (Ω) and ϕ ∈ ∂−(f̃α(u)). (We are using

the notations h̃tn = htn + ICγ(Hj⊕H⊥
k ), f̃α = fα + ICγ(Hj⊕H⊥

k ).)

Proof. By Lemma 7.6, up to a subsequence, un ⇀ u in W 1,2
0 (Ω) and, by

Lemma 7.5, there exist two sequences ϕ0,n in ∂−(htn)(un) and (λn)n in R such
that ϕn = ϕ0,n + λnP

∗
jk(un).

In view of (b) of Lemma 7.5, up to a subsequence, λnP ∗
jk(un) → ν = λP ∗

jk(u)
and ϕ0,n is bounded in L2(Ω); therefore, up to a subsequence, ϕ0,n ⇀ ϕ0, hence
ϕ = ϕ0 + λP ∗

jk(u). For every v in Kψ/tn ∩ Cγ(Hj ⊕H⊥
k )

(7.7.1) htn(v) ≥ htn(un) + 〈ϕ0,n, v − un〉 − q‖v − un‖2.
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Fix a point v in K0. By Proposition 7.1 there exists a sequence (vn)n in Kψ/tn

such that vn → v in W 1,2
0 (Ω). Then htn(vn) → fα(v) as n→ ∞. Taking v = vn

in (7.7.1) and using Proposition 7.1 we deduce that

fα(v) ≥ fα(u) + 〈ϕ0, v − u〉 − q‖v − u‖2
.

Then ϕ0 ∈ ∂−fα(u) that is ϕ ∈ ∂−f̃α(u). On the other hand, by Proposition 7.1,
there exists un in Kψ/tn such that un → u in W 1,2

0 (Ω). Taking v = un in (7.7.1)
we deduce that

htn(un) ≥ htn(un) + 〈ϕ0,n, un − un〉 − q‖un − un‖2

and therefore fα(u) ≥ lim supn htn(un). Since lim infn htn(un) ≥ fα(u) we have

lim
n→∞htn(un) = fα(u)

from which we deduce that un → u in W 1,2
0 (Ω). �

Lemma 7.8. Let α > λ1, a, b, γ ∈ R be such that γ > 0, a < b. Let j, k in N

be such that 1 ≤ j < k. If (∇)(fα, Cγ(Hj ⊕ H⊥
k ), a, b) holds, then for t large

enough (∇)(ht, Cγ(Hj ⊕H⊥
k ), a, b) holds.

Proof. The assertion follows from Lemmas 7.1, 7.6 and 7.7. �

Now we are able to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Let k, R, ρ, τ , T , a, b, γ as in the proof of
Theorem 6.3. We divide the proof into several steps.

(I) We have

lim inf
t→∞ (inf ht(S(0, R))) ≥ inf fα(S(0, R)) > 0.

In fact let (tn)n be a sequence such that tn → ∞ and (un)n in S(0, R) be such
that

lim inf
t→∞ (inf ht(S(0, R))) = lim

n→∞(inf htn(S(0, R))) = lim
n→∞ htn(un).

If this limit is equal to ∞ we have finished. Otherwise, since (un)n is bounded
in L2(Ω) and htn is bounded, it is also bounded in W 1,2

0 (Ω) and then, up to a
subsequence, un ⇀ u in W 1,2

0 (Ω) and un → u in L2(Ω) with u ∈ S(0, R). We
easily deduce that

lim
n→∞htn(un) ≥ fα(u) ≥ inf fα(S(0, R)) > 0.

(II) For t > 0 we define πt : W 1,2
0 (Ω) → Kψ/t putting πt(u) = u ∨ u/t. It is

easy to prove that if tn → ∞ and un → u in L2(Ω) (respectively in W 1,2
0 (Ω)),

then πtn(un) → u+ in L2(Ω) (respectively, in W 1,2
0 (Ω)). Moreover, since πt(0) →

0 in W 1,2
0 (Ω), we have

lim
t→∞ht(πt(0)) = 0.
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(III) Set

S̃ = ∂Hk([τe1, T e1] × Bk
∗(0, ρ)),

Σ = [τe1, T e1] × S∗
k(0, ρ),

S = {τe1, T e1} × S∗
k(0, ρ)(⊂ S̃).

For t > 0 set Σt = πt(Σ), St = πt(S), S̃t = πt(S̃).
Now we prove that, up to shrinking ρ, there exists t such that for every t > t

the pair (Σt, St) is homeomorphic to the pair (Σ, S) (in L2(Ω)) and moreover S̃t
is homeomorphic to S̃. To this end we prove that for t large, πt|�S is injective.

Let Ω̃ be an open subset of Ω; we can suppose that ρ is such that

inf
x∈�Ω
u∈�S

u(x) = η > 0.

Moreover, there exist M > 0 and E ⊂ Ω̃ with Ln(E) > 0 such that u(x) ≤
M for all x in E. Therefore, if t = M/η for t > t, u in S̃, x in E,

πt(u)(x) = u(x).

Hence, if u1, u2 ∈ S̃ with πt(u1) = πt(u2), then u1 = u2 in E that implies
u1 = u2.

(IV) For all t > t (up to increasing t) we have

St ∩ S(0, R) = ∅, Σt ⊂ Cγ(Hj ⊕H⊥
k ).

Let us prove the first equality. Assume, by contradiction that there exist tn → ∞
and (un)n in Stn ∩ S(0, R). Therefore there exists (vn)n in S such that un =
πtn(vn). Since S is compact, up to a subsequence, then vn → v in L2(Ω) with
v ∈ S ⊂ K0. Therefore (see (II)) un → v+ = v and v ∈ S(0, R) ∩ S. This is
impossible because S(0, R) ∩ S = ∅. The rest is similar.

(V) We have

lim sup
t→∞

(supht)(Σt) ≤ sup fα(Σ),

lim sup
t→∞

(supht)(St) ≤ sup fα(S),

lim sup
t→∞

(supht)(S̃t) ≤ sup fα(S̃).

We prove, for example the first inequality. Let (tn), (un) be two sequences such
that tn → ∞, un ∈ Σtn and limn→∞ htn(un) = lim supt→∞(supht(Σt)). For
every n there exists vn in Σ such that un = πtn(vn). Since Σ is a compact in
W 1,2

0 (Ω), up to a subsequence vn → v ∈ Σ, hence un → v ∨ 0 = v in W 1,2
0 (Ω).

Moreover, since vn ∈ K0, then un ∈ K0. By Lemma 7.2 we have

lim
n→∞ |htn(un) − fα(un)| = 0.
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Therefore

lim
n→∞htn(un) = lim

n→∞ fα(un) + (htn(un) − fα(un)) = fα(v) ≤ sup
Σ
fα

from which the assertion follows.
(VI) We have

lim
t→∞(inf ht(e1 ⊕H⊥

k )) = fα(e1).

If t > 0, we take ut = e1 + P⊥
k (u)/t (where P⊥

k is the projection on H⊥
k ). Then

ut ∈ (e1 ⊕ H⊥
k ), ut → e1 in W 1,2

0 (Ω) and ut ∈ Kψ/t for t > 0 large. (In fact
ut = e1 −Pk(u)/t+ u/t and e1 > Pk(u)/t for t large). Since ht(ut) → fα(e1) we
deduce that

lim sup
t→∞

(inf ht(e1 ⊕H⊥
k )) ≤ fα(e1).

Let (tn), (un) be two sequences such that tn → ∞, un ∈ (e1 ⊕H⊥
k )∩Kψ/tn and

lim
n→∞ htn(un) = lim inf

n→∞ (inf htn(e1 ⊕H⊥
k )).

We prove that (un)n is bounded in W 1,2
0 (Ω). By contradiction, we suppose that

limn ‖un‖W = ∞ and we consider zn = un/‖un‖W . Up to a subsequence, zn → z

in L2(Ω) and zn ⇀ z in W 1,2
0 (Ω) for some z; then z ∈ K0 ∩ H⊥

k that implies
z = 0. On the other hand

1

‖un‖W 2htn(un) = htn‖un‖W (zn) +
∫

Ω

zn
e1

‖un‖W
dx−

∫
Ω

zne1 dx

from which htn‖un‖W (zn) → 0. Since htn‖un‖W (zn) = 1/2 − o(1) we get a con-
tradiction. Hence up to a subsequence, un → u L2(Ω) and un ⇀ u in W 1,2

0 (Ω)
for some u ∈ K0 ∩ (e1 ⊕H⊥

k ). Then

lim
n
htn(un) ≥ fα(u) ≥ fα(e1).

By (7.8.1) the assertion follows.
(VII) By Lemma 7.8 there exists t > 0 such that for all t ≥ t the condition

(∇)(ht, Cγ(H1 ⊕H⊥
k ), a, b) holds and if t is large enough, ht verifies (P.S.)c for

every c ∈ [a, b].
(VIII) Now we are able to prove the existence of four solutions. By (I) and

(II) we deduce that ht has a local minimum point u1 in B(0, R) for a suitable t
and ht(u1) < a. Moreover,

sup h̃t(St) = supht(St) < a < inf ht(S(0, R)) ≤ inf h̃t(S(0, R))

(where h̃t = ht + ICγ(H1⊕H⊥
k )) and

sup h̃t(Σt) = supht(Σt) <∞.

By Theorem 3.9 we deduce that there exist two lower critical points u2, u3 of
h̃t with a ≤ h̃t(uj) ≤ b (j = 2, 3). By (VII) u2, u3 are not in ∂Cγ(H1 ⊕ H⊥

k ),
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therefore they are lower critical points of ht. Since ht(u1) < a this points are
distinct. If t is large, we have

supht(S̃t) < b < inf ht(e1 ⊕H⊥
k ) = b1 <∞.

By the classical Saddle Theorem (see [16]) there exists a lower critical point u4

of ht with ht(u4) > b1. Since b1 > b, u4 �= uj (j = 1, 2, 3). �

Now we want to conclude with a sketch of the proof of Theorem 1.2.

Sketch of the proof of Theorem 1.2. Let k, j, R, ρ, γ, a, b, ã, b̃ as in
the proof of Theorem 6.7. We set

S = {τe1, T e1} × S∗
j (0, ρ),

Σ = [τe1, T e1] × S∗
j (0, ρ),

S̃j = ∂Hj ([τe1, T e1] × B∗
j (0, ρ)).

Proceeding, as in the previous proof, one can prove (see notations 4.0.3) that for
t large (πt is the same function introduced in the previous proof at step (II))

minht(B(0, R)) < a

and the local minimum point is in the interior of B(0, R). Moreover, one can
prove that

supht(πt(S)) <a < inf ht(S(0, R)),

supht(πt(Σ)) ≤ supht(πt(S̃j)) < b,

supht(πt(Sk(ρ) ∩ ∂Cγ)) < ã < inf ht(e1 ⊕H⊥
j ),

supht(πt(Sk(ρ))) < b̃ < inf ht(e1 ⊕H⊥
k ).

Furthermore, the conditions (∇)(ht, Cγ(H1 ⊕ H⊥
j ), a, b) and (∇)(ht, Cγ(Hj ⊕

H⊥
k ), ã, b̃) hold and the functional ht satisfies (P.S.)c for all c ∈ R. Arguing as

in Theorem 6.7 the assertion follows. �
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[2] H. Brezis, Opérateurs maximaux monotones et semigroupes de contractions dans les
espaces de Hilbert, North-Holland Math. Stud. 5 (1973).

[3] K. C. Chang, Infinite dimensional Morse theory and multiple solution problems, Prog.
Nonlinear Differential Equations Appl. 6 (1993).
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