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POSITIVE SOLUTIONS
OF QUASILINEAR ELLIPTIC EQUATIONS

Yisheng Huang

1. Introduction

In this paper we are concerned with the existence of positive solutions for
a class of quasilinear elliptic equations of the form

(1.1)

{
−∆pu = λa(x)|u|p−2u + f(x, u, λ),

u ∈ D1,p
0 (Ω),

where Ω is an unbounded domain in RN with smooth boundary ∂Ω, ∆pu :=
div(|∇u|p−2∇u) (p > 1) is the p-Laplacian, D1,p

0 (Ω) is the completion of C∞
0 (Ω)

in the norm ‖u‖ = {
∫
Ω
|∇u|p}1/p, 0 < a(x) ∈ L∞(Ω) ∩ L1(Ω), λ ≥ 0 is a real

parameter and f satisfies some conditions to be given later.
It is not difficult to show that the eigenvalue problem

(1.2)

{
−∆pu = λa(x)|u|p−2u,

u ∈ D1,p
0 (Ω),

has the least eigenvalue λ1 > 0 with a positive eigenfunction e1 and λ1 is the only
eigenvalue having this property (cf. Proposition 3.1). This gives us a possibility
to study the existence of an unbounded branch of positive solutions bifurcating
from (λ1, 0). When Ω is bounded, the result is well-known, we refer to the survey
article of Amann [2] and the paper of Ambrosetti and Hess [4] for the case p = 2,
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and to the recent paper of Ambrosetti, Azorero and Peral [3] for the general case
p > 1. When Ω = RN , the problem was studied by Drábek and Huang [10] in
a situation where a and f may change sign. In [10] an extra assumption was
needed that, roughly speaking, (1.1) has no nonzero solution for λ = λ1 when u

is small (see [10, (4.12) of Theorem 4.5]). It seems that this condition is essential
in the proof in [10] even if a and f are positive. On the other hand, if Ω is
bounded, we know (cf. [11, Theorem 1]) that when h > 0 satisfies appropriate
conditions, the equation −∆pu = λ|u|p−2u + h(x) has no solution for λ = λ1,
where λ1 is the first eigenvalue of the equation −∆pu = λ|u|p−2u. A similar
result is given in this paper when Ω is unbounded (see Lemma 3.5). Using this
we will be able to obtain the existence of a branch of positive solutions without
the assumption of Drábek and Huang mentioned above (see Theorem 3.2 for the
details). Our approach in this paper is via a fixed point index that is based
on the one of Amann [2], which we give in Section 2. In Section 4, using the
fixed point index we established, we obtain several existence results for positive
solutions of equations involving the p-Laplacian.

2. Preliminaries

Throughout this paper we denote by Ω an unbounded domain in RN with
smooth boundary ∂Ω. X = D1,p

0 (Ω), where p > 1, is the completion of C∞
0 (Ω) in

the norm ‖u‖ = {
∫
Ω
|∇u|p}1/p. We denote by 〈 · , · 〉 the duality pairing between

X∗ and X, and let P = {u ∈ X | u(x) ≥ 0 a.e. in Ω}, P ∗ = {f ∈ X∗ | 〈f, u〉 ≥
0 ∀u ∈ P}, Pε = {u ∈ P | ‖u‖ < ε}. A mapping F : X → X∗ is said to be
completely continuous if it maps weakly convergent subsequences to strongly
convergent ones.

Similarly as in Lemma 3.3 of [9], we have

Proposition 2.1. Let J : X → X∗ be a mapping defined by

(2.1) 〈J(u), v〉 =
∫

Ω

|∇u|p−2∇u · ∇v dx, ∀u, v ∈ X.

Then J is bounded (i.e., J maps bounded sets to bounded ones), strictly monotone
and continuous. Furthermore, J−1 : X∗ → X is bounded and continuous.

Proposition 2.2. J−1(P ∗) ⊂ P .

Proof. For all h ∈ P ∗, we want to show the solution u of the equation
J(u) = h is nonnegative. We have∫

Ω

|∇u|p−2∇u · ∇v =
∫

Ω

h · v, ∀v ∈ X.
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Let v = u−, where u− = max{−u, 0}. Then
∫
Ω
|∇u|p−2∇u · ∇u− =

∫
Ω

hu−.
Notice that∫

Ω

|∇u|p−2∇u · ∇u− =
∫

u≤0

|∇u|p−2∇u · ∇u− = −
∫

Ω

|∇u−|p = −‖u−‖p

which yields −‖u−‖p =
∫
Ω

h · u− ≥ 0, hence we obtain that u− = 0 and u ≥ 0.�

Now consider the operator equation

(2.2) J(u) = F (u), u ∈ P.

Since P is a closed convex subset of X, it is a retract of X. Let U be a bounded
open subset of P . If F : U → P ∗ is completely continuous and (2.2) has no
solution on ∂U , then J−1 ◦F : U → P is completely continuous and has no fixed
point on ∂U . Therefore, according to Amann [2, Section 11], the fixed point
index i(J−1 ◦ F,U), where i(J−1 ◦ F,U) = deg(id − J−1 ◦ F ◦ ρ, ρ−1(U), 0) and
ρ : X → P is an arbitrary retraction, is well defined.

We define the solution index of (2.2) relative to F , ind(F,U), by

ind(F,U) = i(J−1 ◦ F,U).

The index ind(F,U) has the following properties which are an immediate
consequence of the definition of ind(F,U) and the corresponding properties of
the fixed point index (cf. [2, Section 11]).

Proposition 2.3.

(i) If q ∈ J(U), then the constant mapping F (u) ≡ q has index ind(F,U) =
1.

(ii) If ind(F,U) 6= 0, then (2.2) has a solution u ∈ U .
(iii) For every open subset V ⊂ U such that (2.2) has no solution in U\V ,

ind(F,U) = ind(F, V ).
(iv) For every pair of disjoint open subsets U1, U2 of U such that the equa-

tion (2.2) has no solution on U\(U1 ∪ U2), ind(F,U) = ind(F,U1) +
ind(F,U2).

(v) For every compact interval I and every completely continuous homotopy
H : I × U → P ∗ such that the equation J(u) = H(t, u) has no solution
for (t, u) ∈ I × ∂U , the index ind(H( · , u)) is independent of t ∈ I.

(vi) Let Λ be a nonempty compact interval and U a bounded open subset
of Λ× P . For a fixed λ ∈ Λ, we denote Uλ = {u ∈ P | (λ, u) ∈ U} (the
slice of U at λ). If h : U → P ∗ is completely continuous and the equation
J(u) = h(λ, u) has no solution for (λ, u) ∈ ∂U , then ind(h(λ, · ), Uλ) is
well-defined and independent of λ ∈ Λ.

As a consequence of Proposition 2.3, we give a result which will be used later.
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Proposition 2.4. Let P , J be as above, U a bounded open subset of P ,
0 ∈ U , and Q : U → P ∗ a completely continuous mapping. Suppose that

〈J(u), u〉 > 〈Q(u), u〉 ∀u ∈ ∂U.

Then ind(Q,U) = 1.

Proof. Since 0 ∈ U , 0 = J(0) ∈ J(U) and we see by (i) of Proposition 2.3
that ind(0, U) = 1. Set H(t, u) = tQ(u). Then

〈J(u)− tQ(u), u〉 = (1− t)〈J(u), u〉+ t〈J(u)−Q(u), u〉 > 0 ∀u ∈ ∂U

since 〈J(u), u〉 > 0 unless u = 0. Thus we obtain that the equation J(u) =
H(t, u) has no solutions on [0, 1]×∂U , and this implies by (v) of Proposition 2.3
that ind(Q,U) = ind(0, U) = 1. �

Let F : R+ × P → P ∗ and consider the equation

(2.3) J(u) = F (λ, u), (λ, u) ∈ R+ × P.

Suppose that F (λ, 0) = 0 for all λ ∈ R+. Then the pairs (λ, 0) ∈ R+×P are
solutions of (2.3); they will be called the trivial solutions. (λ, 0) ∈ R+×P is said
to be a bifurcation point of (2.3) if there exists a sequence {(λn, un)} of solutions
of (2.3) such that un 6= 0 and (λn, un) → (λ, 0).

Proposition 2.5. Let F be a completely continuous mapping with F (0, u) =
F (λ, 0) = 0. Suppose that there is a positive number λ0 such that if λ > λ0, then
(λ, 0) is not a bifurcation point for equation (2.3) and ind(F (λ, · ), Pε) = 0 for
all ε small enough. Then there exists λ1 ∈ [0, λ0] such that the set of nontrivial
solutions of (2.3) contains an unbounded subcontinuum bifurcating from (λ1, 0).

Proof. Let Σ+ be the closure of the set of nontrivial solutions of (2.3)
in R+ × P and C the component of Σ+ ∪ ([0, λ0] × {0}) containing [0, λ0] ×
{0}. Suppose that C is bounded, then there exist r > 0 and µ > λ0 such that
the boundary of [0, µ]×Pr ( in R+×P ) does not meet C. Let C1 = C∪([0, µ]×{0}),
then there exists a bounded open subset U of [0, µ]×P such that C1 ⊂ U and (2.3)
has no solution for (λ, u) ∈ ∂U∪({µ}×(Uµ\{0})) (this follows from a well-known
argument in bifurcation theory, see e.g. [2, proof of Theorem 18.3]). If ε is small
enough, Pε ⊂ Uµ and hence, by (i), (iii) and (vi) of Proposition 2.3

1 = ind(F (0, · ), U0) = ind(F (µ, · ), Uµ) = ind(F (µ, · ), Pε).

This contradicts the assumption that ind(F (λ, · ), Pε) = 0 for λ > λ0 and suffi-
ciently small ε. �
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3. Bifurcation of Positive Solutions

In this section we consider the equation

(3.1)


−∆pu = λa(x)up−1 + f(x, u, λ),

u ≥ 0 in Ω,

u ∈ D1,p
0 (Ω).

Let 1 < p < N , denote p∗ = Np/(N − p) and p′ = p/(p − 1). We assume
0 < a(x) ∈ L∞(Ω) ∩ L1(Ω) and f satisfies

(f1) f : Ω × R+ × R+ → R+ is a Carathéodory function, i.e., f(x, · , · ) is
continuous for a.e. x ∈ Ω and f( · , s, λ) is measurable for all (s, λ) ∈
R+ × R+;

(f2) f(x, s, λ) ≤ c(λ)(σ(x) + ρ(x) sq−1) for a.e. x ∈ Ω and s ∈ R+, where
c(λ) ≥ 0 is continuous on R+, p < q < p∗, 0 ≤ ρ(x) ∈ Lr(Ω) ∩ L∞loc(Ω),
where r = p∗/(p∗ − q), 0 ≤ σ(x) ∈ L(p∗)′(Ω) ∩ LN/p(Ω);

(f3) the following limit exists:

lim
s→0+

f(x, s, λ)
a(x) sp−1

= 0

uniformly with respect to a.e. x ∈ Ω and λ on bounded intervals.

By a solution of (3.1) we understand a pair (λ, u) ∈ R+ × P satisfying (3.1)
in the weak sense, i.e.,∫

Ω

|∇u|p−2∇u · ∇v =
∫

Ω

(λa(x)up−1 + f(x, u, λ))v, ∀v ∈ X.

We define the operator F : R+ × P → P ∗ as

(3.2) F = λG1 + G2,

where the operators G1 : P → P ∗, G2 : R+ × P → P ∗ are given by

(3.3) 〈G1(u), v〉 =
∫

Ω

a(x)up−1v ∀v ∈ X,

(3.4) 〈G2(λ, u), v〉 =
∫

Ω

f(x, u, λ)v ∀v ∈ X.

Under conditions (f1) and (f2), we shall show that G1 and G2 are well de-
fined and completely continuous, hence so is F . Using Hölder’s and Sobolev’s
inequalities, we have

(3.5) |〈G1(u), v〉| ≤
∫

Ω

aup−1 |v| ≤
( ∫

Ω

a up

)1/p′( ∫
Ω

a |v|p
)1/p

≤
( ∫

Ω

aN/p

)p/N( ∫
Ω

up∗
)(p−1)/p∗( ∫

Ω

|v|p
∗
)1/p∗

≤ c1 ‖u‖p−1‖v‖,
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which yields that G1 is well defined. For G2 we have

|〈G2(λ, u), v〉| ≤ c(λ)
( ∫

Ω

σ |v|+
∫

Ω

ρ uq−1 |v|
)

.

By (f2),

(3.6)
∫

Ω

σ|v| ≤
( ∫

Ω

σ(p∗)′
)1/(p∗)′( ∫

Ω

|v|p
∗
)1/p∗

≤ c2‖v‖

and ∫
Ω

ρuq−1|v| ≤
( ∫

Ω

ρ(p∗)′u(q−1)(p∗)′
)1/(p∗)′( ∫

Ω

|v|p
∗
)1/p∗

(3.7)

≤
( ∫

Ω

ρr

)1/r( ∫
Ω

up∗
)(q−1)/p∗( ∫

Ω

|v|p
∗
)1/p∗

≤c3‖u‖q−1‖v‖.

Hence G2 is well defined. We will show the complete continuity of G2.
Let un ⇀ u0 in X. Denote Σk = Ω ∩ B(0,K), where B(0,K) is the ball

centered at 0 and having radius K > 0. We get

(3.8) ‖G2(λ, un)−G2(λ, u0)‖∗ = sup
‖v‖≤1

|〈G2(λ, un)−G2(λ, u0), v〉|

≤ sup
‖v‖≤1

∫
ΣK

|f(x, un, λ)− f(x, u0, λ)||v|

+ sup
‖v‖≤1

∫
Ω\ΣK

|f(x, un, λ)− f(x, u0, λ)||v|.

Noting that {un} is bounded, we obtain as in (3.6) and (3.7) that

(3.9) sup
‖v‖≤1

∫
Ω\ΣK

|f(x, un, λ)− f(x, u0, λ)||v|

≤ c4

( ∫
Ω\ΣK

σ(p∗)′
)1/(p∗)′

+ c5

( ∫
Ω\ΣK

ρr

)1/r

,

where c4 and c5 are constants independent of K and n. For all ε > 0 we can
choose K such that the right-hand side of (3.9) is < ε/2. By the compact
embedding theorem, going if necessary to a subsequence, we can assume that
un → u0 in Ls(ΣK), where s = (q − 1)(p∗)′ (note that s < p∗). Using the
continuity of the Nemytskĭı operator u 7→ f(x, u, λ) from Ls(ΣK) to L(p∗)′(ΣK)
(cf. [12, Theorem 2.1]), we can choose N0 so that

sup
‖v‖≤1

∫
ΣK

|f(x, un, λ)− f(x, u0, λ)| |v|

≤ c6

( ∫
ΣK

|f(x, un, λ)− f(x, u0, λ)|(p
∗)′

)1/(p∗)′

< ε/2
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if n > N0. Thus G2 is completely continuous. Since a(x) ∈ L∞(Ω) ∩ LN/p(Ω),
using the same argument we get that G1 is completely continuous.

We notice that the existence of the first eigenvalue λ1 of the equation (1.2)
can be established by solving the constrained variational problem

(3.10) λ1 = inf
{ ∫

Ω

|∇u|p |
∫

Ω

a|u|p = 1, u ∈ X

}
.

Indeed, λ1 > 0 is obvious by (3.10) and Sobolev’s inequality. The boundedness of
a minimizing sequence {un} for (3.10) and the weak continuity of the functional
u 7→

∫
Ω

a|u|p (cf. [6, Proposition 2.1]) imply that there exists some u0 ∈ X for
which the infimum in (3.10) is attained, and then u0 is a (weak) solution of (1.2)
by the Euler–Lagrange principle. If u0 minimizes (3.10), so does |u0|. Hence it
can be assumed that u0 ≥ 0, and then u0 > 0 in Ω by Harnack’s inequality [15,
Theorem 1.1]. Thus there exists a positive eigenfunction corresponding to λ1.
Using the same argument as in [13] (where Ω was assumed to be bounded and a ≡
1) we can show that λ1 is simple and there are no other eigenvalues having
nonnegative eigenfunctions, here we have used that a(x) ∈ L∞(Ω) ∩ L1(Ω).
Therefore, we get

Proposition 3.1.

(i) The first eigenvalue λ1 of (1.2) is positive and simple.
(ii) The corresponding eigenfunction e1 can be chosen so that e1 > 0 in Ω;

moreover, λ1 is the only eigenvalue having an eigenfunction not chang-
ing sign in Ω.

The main result of this section is the following theorem.

Theorem 3.2. We suppose that f satisfies the conditions (f1)–(f3) and
f(x, s, 0) = 0. Then the set of nontrivial solutions of (3.1) contains an un-
bounded subcontinuum bifurcating from (λ1, 0).

Before proving Theorem 3.2, we show the following results.

Lemma 3.3. There exists a sequence {Ωn} of open bounded subsets of Ω
such that Ω =

⋃
n≥1 Ωn, Ωn ⊂ Ωn+1 and ∂Ωn is smooth.

This result is well-known but since we could not find any convenient reference,
we give a brief proof below.

Proof. For each n ∈ N, let Σn = Ω∩B(0, n), and let dn(x) be the distance
from x to RN\Σn. It follows from [14, Theorem 2 of Chapter 6] that there exist
functions δn(x) and constants c7, c8 (c7 < c8) independent of n such that

c7dn(x) ≤ δn(x) ≤ c8dn(x)
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and δn(x) ∈ C∞(Σn). It follows from Sard’s theorem that for each n ∈ N there
exist εn > 0 such that δ−1

n (εn) is smooth, and we can choose εn so that εn ≤
c7εn−1/c8. We complete the proof by taking Ωn = {x ∈ RN | δn(x) > εn}. �

Lemma 3.4. Let Ωn be as in Lemma 3.3. Define

λ1(n) = inf
u∈W 1,p

0 (Ωn)
u 6=0

∫
Ωn

|∇u|p∫
Ωn

a|u|p
.

Then lim
n→∞

λ1(n) = λ1.

Proof. For each n ∈ N, λ1(n) is the first eigenvalue of the problem{
−∆pu = λa(x)|u|p−2u in Ωn,

u ∈ W 1,p
0 (Ωn).

Since W 1,p
0 (Ωn) ⊂ W 1,p

0 (Ωn+1) ⊂ X, it is clear that λ1(n) ≥ λ1 for all n

and λ1(n) is decreasing. Hence lim λ1(n) = λ ≥ λ1. Let e1 ∈ X be the posi-
tive eigenfunction corresponding to λ1 (cf. Proposition 3.1). There exists a se-
quence {ϕn} ⊂ C∞

0 (Ω) such that ϕn → e1 in X. So
∫
Ω
|∇ϕn|p →

∫
Ω
|∇e1|p

and
∫
Ω

a|ϕn|p →
∫
Ω

aep
1. It follows that

λ1 =

∫
Ω
|∇e1|p∫
Ω

aep
1

= lim
n→∞

∫
Ω
|∇ϕn|p∫

Ω
a|ϕn|p

.

If λ > λ1, we may pick ϕn0 such that

∫
Ω
|∇ϕn0 |p∫

Ω
a|ϕn0 |p

< λ. On the other hand, we can

take n so large that ϕn0 ∈ C∞
0 (Ωn) ⊂ W 1,p

0 (Ωn). Then λ1(n) ≤
∫
Ωn

|∇ϕn0 |p∫
Ωn

a|ϕn0 |p
< λ

which is impossible. Thus we get lim
n→∞

λ1(n) = λ1. �

Lemma 3.5. Let Φ ∈ C∞
0 (Ω), Φ ≥ 0, Φ 6≡ 0. Then the equation

(3.11) −∆pu = λa(x)|u|p−2u + Φ(x)

has no solution u ∈ P if λ > λ1.

Proof. Suppose that u ∈ P is a solution of (3.11), then u 6≡ 0. Since
λ > λ1, it follows from Lemma 3.4 that we can choose n0 such that λ1(n0) < λ.
Denote u0 = u|Ωn0

, then u0 is a supersolution of the equation

(3.12)

{
−∆pu = λa(x)|u|p−2u + Φ(x) in Ωn0 ,

u = 0 on ∂Ωn0 ,

and obviously 0 is a subsolution of (3.12). It follows from [7] that there exists
a solution u of (3.12) such that 0 ≤ u ≤ u0. Furthermore, we know that u ∈
C1,α(Ωn0) for some α ∈ (0, 1) (cf. [5, Corollary (A.1)]). It follows from the strong
maximum principle (cf. [16, Theorem 5]) that u > 0 in Ωn0 and ∂u(x)/∂ν > 0
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for all x ∈ ∂Ωn0 ; here ν is the unit interior normal at x. Let h(x) = (λ −
λ1(n0))a(x)up−1 +Φ(x), then h(x) ≥ 0, h 6≡ 0 and u is a solution of the equation

(3.13)

{
−∆pu = λ1(n0)a(x)up−1 + h(x) in Ωn0 ,

u = 0 on ∂Ωn0 .

On the other hand, let e0
1 be the first eigenfunction corresponding to λ(n0).

Applying an inequality due to Dı́az and Saa [8, Lemma 2] to u and te0
1, t > 0,

we have ∫
Ωn0

(
−∆pu

up−1
− −∆p(te0

1)
(te0

1)p−1

)
(up − (te0

1)
p) ≥ 0

which leads (letting t → ∞) to
∫
Ωn0

h(x)(e0
1)

p/up−1 = 0, but this is impossible
because h ≥ 0 and h 6≡ 0. This contradiction completes the proof. �

Lemma 3.6. If (λ, 0) is a bifurcation point for (3.1), then λ is an eigenvalue
of (1.2) with some eigenfunction v ∈ P\{0}; hence λ = λ1.

Proof. By the assumption there exists a sequence {(λn, un)} of nontrivial
solutions of the equation (3.1) such that λn → λ, un 6= 0 and un → 0 in X,
and then

(3.14)
∫

Ω

|∇un|p−2∇un · ∇ϕ = λn

∫
Ω

aup−1
n ϕ +

∫
Ω

f(x, un, λn)ϕ, ∀ϕ ∈ X.

Let vn = un/‖un‖. (3.14) yields that

(3.15)
∫

Ω

|∇vn|p−2∇vn · ∇ϕ = λn

∫
Ω

avp−1
n ϕ +

∫
Ω

f(x, un, λn)
‖un‖p−1

ϕ, ∀ϕ ∈ X.

We claim that for all ε > 0 there exists δ > 0 such that ‖u‖ < δ yields

sup
‖ϕ‖≤1

∫
Ω

f(x, u, λ)
‖u‖p−1

|ϕ| < ε, i.e.,

(3.16) lim
‖u‖→0

sup
‖ϕ‖≤1

∫
Ω

f(x, u, λ)
‖u‖p−1

|ϕ| = 0.

Indeed, by (f3), given any ε̂ > 0, there exists a δ̂ > 0 such that

f(x, s, λ)
a(x)sp−1

< ε̂ if s < δ̂ and x ∈ Ω.

Let ‖u‖ < δ, δ being free for now. Set Ω
bδ = {x ∈ Ω | u(x) ≥ δ̂} and v = u/‖u‖.

Then we have as in (3.5)∫
Ω\Ω

bδ

f(x, u, λ)
‖u‖p−1

|ϕ| =
∫

Ω\Ω
bδ

f(x, u, λ)
aup−1

avp−1|ϕ|

≤ ε̂

∫
Ω

avp−1|ϕ| ≤ c9ε̂‖v‖p−1‖ϕ‖.
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Hence

sup
‖ϕ‖≤1

∫
Ω\Ω

bδ

f(x, u, λ)
‖u‖p−1

|ϕ| ≤ c9ε̂.

We now choose ε̂ so that c9ε̂ < ε/2 and determine a corresponding δ̂. Using
Hölder’s and Sobolev’s inequalities as in (3.5) and (3.7) again, we obtain∫

Ω
bδ

f(x, u, λ)
‖u‖p−1

|ϕ| ≤ c(λ)

δ̂p−1

∫
Ω
bδ

σvp−1|ϕ|+ c(λ)
‖u‖p−1

∫
Ω

ρuq−1|ϕ|

≤ c10

( ∫
Ω
bδ

σN/p

)p/N

‖v‖p−1‖ϕ‖+ c11‖u‖q−p‖ϕ‖.

Therefore

(3.17) sup
‖ϕ‖≤1

∫
Ω
bδ

f(x, u, λ)
‖u‖p−1

|ϕ| ≤ c10

( ∫
Ω
bδ

σN/p

)p/N

+ c11δ
q−p.

On the other hand, if we set Ω
bδ(n) = Ω

bδ ∩B(0, n), n ∈ N, then we have

(3.18) δ̂p∗meas Ω
bδ(n) ≤

∫
Ω
bδ
(n)

up∗ ≤
∫

Ω

up∗ ≤ c12‖u‖p∗ < c12δ
p∗ ,

where c12 is a constant independent of n. It follows from (3.18) that meas Ω
bδ =

lim meas Ω
bδ(n) ≤ c12(δδ̂−1)p∗. Thus we can choose δ so that the right-hand side

of (3.17) is < ε/2 and (3.16) is proved.
It follows from (3.16) that G2(λn, un)/‖un‖p−1 → 0 in X∗ as n →∞.
Equation (3.15) can be written as

J(vn) = λnG1(vn) + G2(λn, un)/‖un‖p−1,

or

(3.19) vn = J−1(λnG1(vn) + G2(λn, un)/‖un‖p−1),

where the mappings J and G1 are defined as in (2.1) and (3.3), respectively.
Since {vn} is bounded, without any loss of generality we may assume vn ⇀ v

in X. Taking the limit in (3.19), using the complete continuity of G1 and the
continuity of J−1, we have v = J−1(λG1(v)) that is, v satisfies −∆pv = λvp−1.

Taking ϕ = vn in (3.15), we get

1 =
∫

Ω

|∇vn|p = λn

∫
Ω

avp
n +

∫
Ω

f(x, un, λn)
‖un‖p−1

vn.

It follows from (3.16) and the weak continuity of the functional u 7→
∫
Ω

aup that

1 = λ

∫
Ω

avp

which yields v 6= 0. Hence λ is an eigenvalue of (1.2) with some eigenfunction
v ∈ P\{0}. By Proposition 3.1, λ = λ1. �
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Lemma 3.7. Let F be as in (3.2) and let λ > λ1. Then for all r > 0 small,
ind(F (λ, · ), Pr) = 0.

Proof. Define H : [0, 1]× P → P ∗ as

〈H(t, u), v〉 =
∫

Ω

(λa(x)up−1 + tf(x, u, λ))v ∀v ∈ X.

A similar argument as for F gives that H is completely continuous.
We claim that the operator equation J(u) = H(t, u) has no solution on

∂Pr for r > 0 small, 0 ≤ t ≤ 1. Indeed, otherwise there exist {un} and {tn}
such that un 6= 0, un → 0 in X, tn → t0 ∈ [0, 1] and J(un) = H(tn, un). By
the argument of Lemma 3.6 we get that λ(> λ1) is an eigenvalue of (1.2) with
some eigenfunction v ∈ P\{0}, but by Proposition 3.1, this is impossible. Thus
we obtain from (v) of Proposition 2.3 that for r > 0 small,

ind(λG1(u), Pr) =ind(H(0, u), Pr)(3.20)

=ind(H(1, u), Pr) = ind(F (λ, u), Pr).

Now define K : [0, 1]× P → P ∗ as

〈K(t, u), v〉 =
∫

Ω

(λ a(x) up−1 + tΦ(x))v, ∀v ∈ X,

where Φ(x) is as in Lemma 3.5. Obviously K is completely continuous. It follows
from Lemma 3.5 that for all r > 0, for all λ > λ1,

(3.21) ind(λG1(u), Pr) = ind(K(0, u), Pr) = ind(K(1, u), Pr) = 0.

Here we use the fact that u = 0 is not a solution of equation (3.11). The equalities
(3.20) and (3.21) yield ind(F (λ, u), Pr) = 0 for all λ > λ1 and r > 0 small. �

Proof of Theorem 3.2. Taking λ0 = λ1 in Proposition 2.5, we see by
Lemma 3.6 and Lemma 3.7 that all conditions of Proposition 2.5 are satisfied.
Hence it follows from Proposition 2.5 that the set of nontrivial solutions of (3.1)
contains an unbounded subcontinuum bifurcating from (λ1, 0). �

Remark 3.8.

(a) In order to obtain the compactness of G2 the condition ρ ∈ L∞loc can be
relaxed to ρ ∈ Lr1

loc, where r1 = p∗/
(
p∗ − 1 − k(q − 1)

)
, 1 < k <

(p∗ − 1)/(q − 1).
(b) If u ∈ P\{0} is a solution of (3.1), it follows from the strong maximum

principle (cf. [16, Theorem 5]) that u(x) > 0 in Ω.

Remark 3.9.

(i) A result similar to Theorem 3.2 but for bounded Ω was obtained by
Ambrosetti, Azorero and Peral in a recent paper [3]. They considered
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the problem (1.1) in a closed subset of C(Ω); therefore they did not
need the growth restrictions for the nonlinearity f .

(ii) In a very recent paper [10], Drábek and Huang gave a similar result to
Theorem 3.3 in the case Ω = RN . However, we do not need the as-
sumption in [10] that (3.1) with λ = λ1 has no solution u satisfying
0 < ‖u‖ < δ.

Remark 3.10. For the case p ≥ N , when Ω = RN , (1.2) has no eigenvalue
λ > 0 with positive eigenfunction (cf. [1]); hence there is no bifurcation from
the set of trivial solutions for (3.1). So our assumption that p < N is essential.

4. Existence results

In this section we let J , λ1 and a(x) be as previously, i.e., J : X → X∗

is defined by (2.1), λ1 is the first eigenvalue of equation (1.2) and 0 < a(x) ∈
L∞(Ω) ∩ L1(Ω). First, we have

Theorem 4.1. Suppose that f satisfies (f1) and the following conditions:

(f2)′ f(x, s, λ) ≤ c(λ)(α(x) + β(x)sp−1) for a.e. x ∈ Ω and s ∈ R+, where
0 ≤ α(x) ∈ L(p∗)′(Ω) and 0 ≤ β(x) ∈ LN/p(Ω) ∩ L∞loc(Ω);

(f4) lim
s→+∞

f(x, s, λ)
a(x)sp−1

= 0 uniformly with respect to a.e. x ∈ Ω.

Then the equation (3.1) has a solution if 0 ≤ λ < λ1.

Note that if f(x, 0, λ) = 0 for almost all x, then the above conclusion is
trivially true (since u = 0 is a solution).

To prove this theorem we will need the following result.

Lemma 4.2. Under the assumptions of Theorem 4.1,

(4.1) lim
‖u‖→∞

sup
‖ϕ‖≤1

∫
Ω

f(x, u, λ)
‖u‖p−1

|ϕ| = 0.

Proof. By (f4), for all ε > 0 there exists A > 0 such that

f(x, s, λ)
a(x)sp−1

< ε ∀s > A.

Define ΩA = {x ∈ Ω | u(x) ≤ A} and v = u/‖u‖. We split the integral in (4.1)
into integrals over Ω\ΩA and ΩA. Then we have as in (3.5), for each ϕ ∈ X,∫

Ω\ΩA

f(x, u, λ)
‖u‖p−1

|ϕ| =
∫

Ω\ΩA

f(x, u, λ)
aup−1

avp−1|ϕ|

≤ ε

( ∫
Ω

avp

)1/p′( ∫
Ω

a|ϕ|p
)1/p

≤ c13ε‖ϕ‖,
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where c13 is independent of A. Denote ΩA(K) = ΩA ∩ B(0,K). By (f2)′, for
the second integral we have∫

ΩA

f(x, u, λ)
‖u‖p−1

|ϕ| ≤ c(λ)
( ∫

ΩA

α

‖u‖p−1
|ϕ|+

∫
ΩA

βup−1

‖u‖p−1
|ϕ|

)
.

By using Hölder’s and Sobolev’s inequalities, we see that

(4.2)
∫

ΩA

α(x)
‖u‖p−1

|ϕ| ≤
c14‖α‖L(p∗)′ (Ω)‖ϕ‖

‖u‖p−1

and ∫
ΩA

βup−1

‖u‖p−1
|ϕ| =

∫
ΩA(K)

βup−1

‖u‖p−1
|ϕ|+

∫
ΩA\ΩA(K)

βup−1

‖u‖p−1
|ϕ|(4.3)

≤ c15(K)‖ϕ‖
‖u‖p−1

+ c16‖β‖LN/p(ΩA\ΩA(K))‖ϕ‖.

Now we can choose K so that the second term on the right-hand side of (4.3) is
≤ ε‖ϕ‖, and then R such that the right-hand side of (4.2) and the first term on
the right-hand side of (4.3) are ≤ ε‖ϕ‖ if ‖u‖ ≥ R. Thus we get (4.1). �

Proof of Theorem 4.1. Let F (λ, u) = λG1(u) + G2(λ, u), where G1, G2

are defined as in (3.3), (3.4). Then by (f1) and (f2)′, F : R+ × P → P ∗ is
completely continuous. We claim that there exists R > 0 such that

(4.4) 〈J(u), u〉 > 〈F (λ, u), u〉, ∀u ∈ ∂PR.

Indeed, if not, then there exists {un}, ‖un‖ → ∞, such that

〈J(un), un〉 ≤ 〈F (λ, un), un〉.

Let zn = un/‖un‖, then the above inequality yields

(4.5) 〈J(zn), zn〉 ≤ λ〈G1(zn), zn〉+ 〈G2(λ, un)/‖un‖p−1, zn〉.

We may assume that zn ⇀ z. Passing to the limit in (4.5), using Lemma 4.2,
weak continuity of the functional z 7→ 〈G1(z), z〉 and the characterization (3.10)
of λ1, we obtain

λ1〈G1(z), z〉 ≤ ‖z‖p ≤ 1 ≤ λ〈G1(z), z〉.

Hence λ ≥ λ1, a contradiction. We thus conclude that (4.4) holds. By Proposi-
tion 2.4, ind(F (λ, u), PR) = 1 which implies the equation (3.1) has a solution.�

Remark 4.3. Suppose that f satisfies all conditions of Theorem 4.1 and
0 < b(x) ∈ L∞loc(Ω) ∩ Lp∗/(p∗−γ)(Ω), where 1 < γ < p. Then the equation

(4.6)


−∆pu = λb(x)uγ−1 + f(x, u, λ),

u ≥ 0 in Ω,

u ∈ D1,p
0 (Ω),
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has a solution for all λ ≥ 0.
This is a consequence of Proposition 2.4 and Lemma 4.2. Indeed, if there

exists {un}, ‖un‖ → ∞, such that

‖un‖p =
∫

Ω

|∇un|p ≤ λ

∫
Ω

b(x)uγ
n +

∫
Ω

f(x, un, λ)un,

then by Hölder’s and Sobolev’s inequalities and Lemma 4.2, we have

1 ≤ λc16‖b‖Lp∗/(p∗−γ)(Ω)‖un‖γ−p +
∫

Ω

f(x, un, λ)
‖un‖p−1

un

‖un‖
→ 0 as ‖un‖ → ∞.

This contradiction and Proposition 2.4 imply that ind(F̃ (λ, u), PR) = 1 for large
R > 0, where F̃ : R+ × P → P ∗ is defined by 〈F̃ (λ, u), v〉 =

∫
Ω
(λb(x)uγ−1 +

f(x, un, λ))v. Hence it follows from (ii) of Proposition 2.3 that (4.6) has a solu-
tion.

In the remainder of this section we study the existence positive nontrivial
(i.e., 6= 0) solutions of the problem

(4.7)


−∆pu = g(x, u),

u ≥ 0 in Ω,

u ∈ D1,p
0 (Ω),

where g satisfies

(g1) g : Ω× R+ → R+ is a Carathéodory function;
(g2) g(x, s) ≤ α(x) + β(x)sp−1 for a.e. x ∈ Ω and s ∈ R+, where 0 ≤ β(x) ∈

LN/p(Ω) ∩ L∞loc(Ω) and 0 ≤ α(x) ∈ L(p∗)′(Ω) ∩ LN/p(Ω).

Then we have the folowing results.

Theorem 4.4. Suppose that g satisfies (g1), (g2), 0 < a(x) ∈ L∞(Ω)∩L1(Ω)
and the following limits exist uniformly with respect to x ∈ Ω:

(g3) lim
s→0

g(x, s)
a(x)sp−1

= λ < λ1,

(g4) lim
s→∞

g(x, s)
a(x)sp−1

= λ > λ1.

Then (4.7) has a nontrival solution.

Proof. Define G : P → P ∗ as

(4.8) 〈G(u), v〉 =
∫

Ω

g(x, u)v, ∀v ∈ X.

It follows from conditions (g1) and (g2) that G is completely continuous. We will
show that the index ind(G, Pr) takes different values for small r and for large r.



Positive Solutions of Quasiline Equations 105

First, we claim that J(u) = tG(u) ( 0 ≤ t ≤ 1 ) has no solutions on ∂Pr

for small r > 0. Otherwise we can find {un} and {tn} with un → 0, un 6= 0,
tn → t ∈ [0, 1] such that J(un) = tnG(un). Let vn = un/‖un‖, then we have

(4.9)
∫

Ω

|∇vn|p−2∇vn · ∇ϕ = tn

∫
Ω

g(x, un)
‖un‖p−1

ϕ, ∀ϕ ∈ X.

According to condition (g3), we can write g as

(4.10) g(x, s) = λa(x)sp−1 + f(x, s),

where f satisfies

(4.11) lim
s→0

f(x, s)
a(x)sp−1

= 0 uniformly with respect to x ∈ Ω.

Then (4.9) can be written as

(4.12)
∫

Ω

|∇vn|p−2∇vn · ∇ϕ = tnλ

∫
Ω

avp−1
n ϕ + tn

∫
Ω

f(x, un)
‖un‖p−1

ϕ.

We may assume without any loss of generality that vn ⇀ v0 in X. By (4.10)
and (4.11), similarly as in the proof of Lemma 3.6, we find that v0 satisfies
−∆pu = tλa(x)up−1.

Taking ϕ = vn in (4.12) and letting n →∞, we obtain

1 = tλ

∫
Ω

avp
0

which yields that v0 6= 0 and λ1 = tλ. Since λ < λ1, this is a contradiction.
Hence

(4.13) ind(G, Pr) = ind(0, Pr) = 1.

Let Q(t, u) = tλG1(u)+(1− t)G(u) (0 ≤ t ≤ 1), where G1 and G are as in (3.3)
and (4.8), respectively. Then Q maps [0, 1] × P to P ∗ and Q is completely
continuous. We claim that J(u) = Q(t, u) has no solution on ∂PR for large R.
Arguing by contradiction, we can find {un} and {tn} such that ‖un‖ → ∞,
tn → t0 ∈ [0, 1] satisfying J(un) = Q(tn, un).

Let vn = un/‖un‖. Without loss of generality we may assume that vn ⇀ v

in X, and {vn} satisfies, for all ϕ ∈ X,

(4.14)
∫

Ω

|∇vn|p−2∇vn · ∇ϕ = tnλ

∫
Ω

a(x) vp−1
n ϕ + (1− tn)

∫
Ω

g(x, un)
‖un‖p−1

ϕ

= λ

∫
Ω

a(x)vp−1
n ϕ + (1− tn)

∫
Ω

g(x, un)− λa(x)up−1
n

‖un‖p−1
ϕ.
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By the assumptions on g and Lemma 4.2 (with g(x, un)−λa(x)up−1
n replacing f),

we have

lim
‖un‖→∞

sup
‖ϕ‖≤1

∫
Ω

g(x, un)− λa(x)up−1
n

‖un‖p−1
|ϕ| = 0.

Similarly as in the proof of Lemma 3.6, we can get from (4.14) that v (v 6= 0)
satisfies the equation −∆pu = λa(x)up−1, which is impossible because λ > λ1

and λ1 is the only eigenvalue of equation (1.2) having a positive eigenfunction.
Therefore it follows as in (3.21) that

ind(G, PR) = ind(Q(0, u), PR) = ind((Q(1, u), PR) = ind(λG1, PR) = 0.

This, (4.13) and (iv) of Proposition 2.3 imply that

ind(G, PR\Pr) = ind(G, PR)− ind(G, Pr) = −1.

Hence (4.7) has a nontrivial solution. �

Theorem 4.5. Suppose that g satisfies (g1), (g2), 0 < a(x) ∈ L∞(Ω)∩L1(Ω)
and the following limits exist uniformly with respect to x ∈ Ω:

(g3)′ lim
s→0

g(x, s)
a(x)sp−1

= β > λ1,

(g4)′ lim
s→∞

g(x, s)
a(x)sp−1

= β < λ1.

Then (4.7) has a nontrivial solution.

Proof. By the argument of the preceding theorem we show that ind(G, Pr)
= 0 for small r and ind(G, PR) = 1 for large R. Hence the conclusion. �
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équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris 305 (1987), 521–524.
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