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M-PERIODIC PROBLEM OF ORDER 2k

Dariusz Idczak

1. Introduction

In monograph [2] the Du Bois–Reymond lemma (fundamental lemma) for
periodic functions of order 1 is proved. Next, using the variational method, the
authors prove an existence theorem for the periodic problem

ü(t) = OF (t, u(t)), t ∈ [0, T ] a.e.,

u(0) = u(T ), u̇(0) = u̇(T ),

in the case when a coercivity condition for the average of F is satisfied and the
nonlinearity OF is bounded by an integrable function.

In our paper we prove a generalization of the fundamental lemma and then,
using the variational method, we give sufficient conditions for the existence of a
solution to the following M -periodic problem (matrix-periodic problem)

d

dt

(
. . .

(
d

dt

(
d

dt
u(k) − Fuk−1(t, u, . . . , u

(k−1))
)

(1.1)

+ Fuk−2(t, u, . . . , u
(k−1))

)
+ . . .+ (−1)k−1Fu1(t, u, . . . , u

(k−1))
)

+ (−1)kFu0(t, u, . . . , u
(k−1))

)
= 0, t ∈ [0, T ] a.e.,
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u(0)
u′(0)

...
u(k−1)(0)

 = A


u(T )
u′(T )

...
u(k−1)(T )

 ,

(1.2)



u(k)|t=0(
d

dt
u(k) − Fuk−1

)∣∣∣∣
t=0

...(
d

dt

(
. . .

(
d

dt

(
d

dt︸ ︷︷ ︸
k−1 times

u(k) − Fuk−1

)
+ Fuk−2

)

+ . . .+ (−1)k−2Fu2

)
+ (−1)k−1Fu1

)∣∣∣∣
t=0



= B



u(k)|t=T(
d

dt
u(k) − Fuk−1

)∣∣∣∣
t=T

...(
d

dt

(
. . .

(
d

dt

(
d

dt︸ ︷︷ ︸
k−1 times

u(k) − Fuk−1

)
+ Fuk−2

)

+ . . .+ (−1)k−2Fu2

)
+ (−1)k−1Fu1

)∣∣∣∣
t=T


,

where F : [0, T ]×(Rn)k 3 (t, u0, u1, . . . , uk−1) 7→ F (t, u0, u1, . . . , uk−1) ∈ R, A =
[ai,l]i,l=0,...,k−1 is a nonsingular matrix such that A−1 = A′ (A′ — transposed
matrix) and

B =


ak−1,k−1 −ak−2,k−1 . . . (−1)k−1a0,k−1

−ak−1,k−2 ak−2,k−2 . . . (−1)ka0,k−2

...
...

. . .
...

(−1)k−1ak−1,0 (−1)kak−2,0 . . . a0,0

 .

If k = 3, then equation (1.1) and boundary conditions (1.2) have the form

d

dt

(
d

dt

(
d

dt
u′′′(t)− Fu2(t, u(t), u

′(t), u′′(t))
)

+ Fu1(t, u(t), u
′(t), u′′(t))

)
− Fu0(t, u(t), u

′(t), u′′(t)) = 0, t ∈ [0, T ] a.e.,

 u(0)
u′(0)
u′′(0)

 = A

 u(T )
u′(T )
u′′(T )

 ,
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u′′′|t=0(

d

dt
u′′′ − Fu2

)∣∣∣∣
t=0(

d

dt

(
d

dt
u′′′ − Fu2

)
+ Fu1

)∣∣∣∣
t=0

 = B


u′′′|t=T(

d

dt
u′′′ − Fu2

)∣∣∣∣
t=T(

d

dt

(
d

dt
u′′′ − Fu2

)
+ Fu1

)∣∣∣∣
t=T

 ,
respectively.

In the case of A = I and F not depending on u1, . . . , uk−1 (i.e. F = F (t, u)),
the above boundary conditions and equation (1.1) are reduced to the periodic
problem of type

u(2k)(t) + (−1)kOF (t, u(t)) = 0, t ∈ [0, T ] a.e.,

u(i)(0) = u(i)(T ), i = 0, . . . , 2k − 1.

When A = −I and F = F (t, u), we obtain the antiperiodic problem

u(2k)(t) + (−1)kOF (t, u(t)) = 0, t ∈ [0, T ] a.e.,

u(i)(0) = −u(i)(T ), i = 0, . . . , 2k − 1.

Moreover, in the case of k = 1 and A = I, the results obtained are reduced
to those proved in [2].

2. Fundamental lemma

Let n ≥ 1, k ≥ 2 be some fixed positive integers, A — a k × k-dimensional
nonsingular real matrix with A−1 = A′, T > 0 — a fixed positive number and
I = [0, T ]. We define

Hk,n
0 = {h : I → Rn; h(i) is absolutely continuous on I

and h(i)(0) = h(i)(T ) = 0 for 0 ≤ i ≤ k − 1, h(k) ∈ L2(I,Rn)},
Hk,n

A = {h : I → Rn; h(i) is absolutely continuous on I

for 1 ≤ i ≤ k − 1, [h(0), h′(0), . . . , h(k−1)(0)]′

= A ◦ [h(1), h′(1), . . . , h(k−1)(1)]′, h(k) ∈ L2(I,Rn)}.

In the proof of the fundamental lemma we shall use the following classical
result concerning a moments problem (see, for example [3, Section 5.8]).

Lemma 2.1. If a0, a1, . . . , ak−1 ∈ Rn, then there exists a function l ∈
L2(I,Rn) such that∫

I

1 · l(t) dt = a0,

∫
I

(T − t)l(t) dt = a1, . . . ,

∫
I

(T − t)k−1l(t) dt = ak−1.

We have
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Theorem 2.1 (the fundamental lemma). If v ∈ L2(I,R), w ∈ L1(I,R),
α0, . . . , αk−1 ∈ R and

(2.1)
∫

I

v(t)h(k)(t) dt = (−1)k

∫
I

w(t)h(t) dt+
k−1∑
i=0

(−1)k−1−iαk−1−ih
(i)(T )

for any h ∈ Hk,1
A , then there exist constants c0, . . . , ck−1 ∈ R such that

(2.2) v(t) =
∫ t

0

∫ t1

0

. . .

∫ tk−1

0

w(s) ds dtk−1 . . . dt1 + ck−1t
k−1 + . . .+ c1t+ c0,

for t ∈ I a.e. and (after identifying v with the above right-hand side)
v(0)
v′(0)

...
v(k−1)(0)

 = B ◦


v(T )− α0

v′(T )− α1

...
v(k−1)(T )− αk−1

 ,

where B = [bi,l]i,l=0,...,k−1, bi,l = (−1)l+iak−1−i,k−1.

Proof. The form (2.2) of v follows immediately from the fact that Hk,1
0 ⊂

Hk,1
A and from the generalization of the Du Bois–Reymond lemma to the case of

derivatives of order k and the Dirichlet boundary conditions, proved in [4] (cf.
also [1]). So, let us identify v with the function

I 3 t 7→
∫ t

0

∫ t1

0

. . .

∫ tk−1

0

w(s) ds dtk−1 . . . dt1 + ck−1t
k−1 + . . .+ c1t+ c0.

Integrating by parts, we obtain∫
I

v(t)h(k)(t) dt = v(t)h(k−1)(t)|t=T
t=0 −

∫
I

v′(t)h(k−1)(t) dt

= v(t)h(k−1)(t)|t=T
t=0 − v′(t)h(k−2)(t)|t=T

t=0 +
∫

I

v′′(t)h(k−2)(t) dt

= . . . = v(t)h(k−1)(t)|t=T
t=0 − v′(t)h(k−2)(t)|t=T

t=0

+ . . .+ (−1)k−1v(k−1)(t)h(t)|t=T
t=0 + (−1)k

∫
I

v(k)(t)h(t) dt.

In view of the above, from assumption (2.1) we have

v(t)h(k−1)(t)|t=T
t=0 − v′(t)h(k−2)(t)|t=T

t=0

+ . . .+ (−1)k−1v(k−1)(t)h(t)|t=T
t=0 =

k−1∑
i=0

(−1)k−1−iαk−1−ih
(i)(T ),
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for any h ∈ Hk,1
A , i.e.

(v(T )− α0)h(k−1)(T )− v(0)h(k−1)(0)(2.3)

− [(v′(T )− α1)h(k−2)(T )− v′(0)h(k−2)(0)]

+ . . .+ (−1)k−1[(v(k−1)(T )− αk−1)h(T )− v(k−1)(0)h(0)] = 0,

for any h ∈ Hk,1
A .

Now, let us fix i ∈ {0, . . . , k − 1} and define

hi : [0, T ] 3 t 7→
∫ t

0

∫ t1

0

. . .

∫ tk−1

0

l(s) ds dtk−1 . . . dt1 +
1
i!
ti

where l ∈ L2(I,R) is such that∫
I

1 · l(t) dt = ai,k−1,∫
I

(T − t)l(t) dt = ai,k−2,

...∫
I

(T − t)k−2−il(t) dt = ai,i+1(k − 2− i)!,∫
I

(T − t)k−1−il(t) dt = (ai,i − 1)(k − 1− i)!,∫
I

(T − t)k−il(t) dt =
(
ai,i−1 −

T

1

)
(k − i)!,

...∫
I

(T − t)k−2l(t) dt =
(
ai,1 −

T i−1

(i− 1)!

)
(k − 2)!,∫

I

(T − t)k−1l(t) dt =
(
ai,0 −

T i

i!

)
(k − 1)! .

It is easy to see that

hi(t) =
∫ t

0

(T − s)k−1

(k − 1)!
l(s) ds+

1
i!
ti,

h′i(t) =
∫ t

0

(T − s)k−2

(k − 2)!
l(s) ds+ i

1
i!
ti−1,

...

h
(i−1)
i (t) =

∫ t

0

(T − s)k−i

(k − i)!
l(s) ds+ i(i− 1) · . . . · 2 1

i!
t,
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h
(i)
i (t) =

∫ t

0

(T − s)k−1−i

(k − 1− i)!
l(s) ds+ i!

1
i!
,

h
(i+1)
i (t) =

∫ t

0

(T − s)k−2−i

(k − 2− i)!
l(s) ds,

...

h
(k−2)
i (t) =

∫ t

0

(T − s)l(s) ds,

h
(k−1)
i (t) =

∫ t

0

l(s) ds.

Consequently, h(j)
i (0) = 0 for j ∈ {0, . . . , k− 1}, j 6= i, h(i)

i (0) = 1 and h(j)
i (T ) =

ai,j for j ∈ {0, . . . , k − 1}.
This implies, in view of I = A ◦A′, that hi ∈ Hk,1

A .
Now, let us observe that from (2.3) we have

(−1)i(h(i)(T )(v(k−1−i)(T )− αk−1−i)− h(i)(0)v(k−1−i)(0))

=
k−1∑
l=0
l 6=i

(−1)l+1(h(l)(T )(v(k−1−l)(T )− αk−1−l)− h(l)(0)v(k−1−l)(0)),

for any h ∈ Hk,1
A , i.e.

h(i)(0)v(k−i−1)(0) =
k−1∑
l=0

(−1)l+ih(l)(T )(v(k−1−l)(T )− αk−1−l)

−
k−1∑
l=0
l 6=i

(−1)l+i(h(l)(0)v(k−1−l)(0),

for any h ∈ Hk,1
A . Substituting hi in the above equality, we have

v(k−i−1)(0) =
k−1∑
l=0

(−1)l+iai,l(v(k−1−l)(T )− αk−1−l).

Finally, from the arbitrariness of i ∈ {0, 1, . . . , k − 1} we get

v(i)(0) =
k−1∑
l=0

(−1)l+k−1−iak−1−i,l(vk−1−l(T )− αk−1−l)

=
k−1∑
l=0

(−1)k−1−l+k−1−iak−1−i,k−1−l(v(k−1−k+1+l)(T )− αk−1−k+1+l)

=
k−1∑
l=0

(−1)l+iak−1−i,k−1−l(v(l)(T )− αl) =
k−1∑
l=0

bi,l(v(l)(T )− αl),

for i = 0, 1, . . . , k − 1. The proof is completed. �
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From the above theorem we immediately obtain the following

Corollary 2.1. If v = (v1, . . . , vn) ∈ L2(I,Rn), w = (w1, . . . , wn) ∈
L1(I,Rn), α0 = (α1

0, . . . , α
n
0 ), . . . , αk−1 = (α1

k−1, . . . , α
n
k−1) ∈ Rn and equality

(2.1) holds for any h ∈ Hk,n
A , then there exist constants c0, c1, . . . , ck−1 ∈ Rn

such that formula (2.2) holds for t ∈ I a.e. and (after identifying v with the
right-hand side of (2.2))

v1(0) v2(0) . . . vn(0)
v′1(0) v′2(0) . . . v′n(0)

...
...

. . .
...

v
(k−1)
1 (0) v

(k−1)
2 (0) . . . v

(k−1)
n (0)



= B ◦


v1(T )− α1

0 v2(T )− α2
0 . . . vn(T )− αn

0

v′1(T )− α1
1 v′2(T )− α2

1 . . . v′n(T )− αn
1

...
...

. . .
...

v
(k−1)
1 (T )− α1

k−1 v
(k−1)
2 (T )− α2

k−1 . . . v
(k−1)
n (T )− αn

k−1

 ,
where the matrix B is as in theorem (2.1).

Proof. It suffices to consider the functions h ∈ Hk,n
A of the form h =

(0, . . . , 0, hi, 0, . . . , 0) with hi ∈ Hk,1
A and use the previous theorem. �

3. Some properties of the space Hk,n
A

Let us define the following inner product in the space Hk,n
A

(g, h) =
∫

I

g(t)h(t) dt+
∫

I

g′(t)h′(t) dt+ . . .+
∫

I

g(k)(t)h(k)(t) dt.

The norm generated by this product is as follows:

(3.1) ‖h‖ =
( ∫

I

|h(t)|2 dt+
∫

I

|h′(t)|2 dt+ . . .+
∫

I

|h(k)(t)|2 dt
)1/2

.

In the same way as in [2, Proposition 1.1] one can obtain

Lemma 3.1. For any i ∈ {0, . . . , k− 1}, there exists a constant ei such that

(a) if h ∈ Hk,n
A , then

max
t∈[0,T ]

|h(i)(t)| ≤ ei‖h‖,

(b) if h ∈ Hk,n
A and

∫
I
h(i)(t) dt = 0, then

max
t∈[0,T ]

|h(i)(t)| ≤ ei‖h(i+1)‖L2(I,Rn).

From (b) of the above lemma we immediately get
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Lemma 3.2. For any i ∈ {0, . . . , k − 1}, there exists a constant di such that
if h ∈ Hk,n

A and
∫

I
h(i)(t) dt = 0, then∫

I

|h(i)(t)|2 dt ≤ di

∫
I

|h(i+1)(t)|2 dt.

This lemma implies

Lemma 3.3. There exists a constant d such that if h ∈ Hk,n
A and

∫
I
h(i)(t) dt

= 0 for i = 0, . . . , k − 1, then, for any i = 0, . . . , k − 1∫
I

|h(i)(t)|2 dt ≤ d

∫
I

|h(k)(t)|2 dt.

Moreover, we have

Lemma 3.4. The space Hk,n
A with norm (3.1) is complete.

Proof. Let (hn)n∈N be a Cauchy sequence in Hk,n
A . From the completeness

of L2(I,Rn) it follows that, for any i ∈ {0, . . . , k}, there exists a function li ∈
L2(I,Rn) such that

h(i)
n −−−→

n→∞
li ∈ L2(I,Rn).

Moreover, for any i ∈ {0, . . . , k − 1} and 0 ≤ s ≤ t ≤ T , n ∈ N, we have

|h(i)
n (t)− h(i)

n (s)| ≤
∫ t

s

|h(i+1)
n (τ)| dτ(3.2)

≤ (t− s)1/2

( ∫ t

s

|h(i+1)
n (τ)|2 dτ

)1/2

≤ (t− s)1/2‖h(i+1)
n ‖L2(I,Rn) ≤Mi(t− s)1/2,

where Mi is such that ‖h(i+1)
n ‖L2(I,Rn) ≤ Mi for n ∈ N. This means that the

sequence (h(i)
n )n∈N is equi-uniformly continuous.

From Lemma 3.1(a) we get

max
t∈[0,T ]

|h(i)
n (t)| ≤ ei‖hn‖.

This means, in view of the boundedness of the sequence (hn)n∈N in Hk,n
A , that

the sequence (h(i)
n )n∈N is equi-bounded.

So, from the Arzela–Ascoli theorem it follows that s subsequence of (h(i)
n )n∈N

is uniformly convergent to a continuous function. The uniqueness of the limit in
L2(I,Rn) implies that this continuous limit is li. It is easy to see that the se-
quence (h(i)

n )n∈N converges uniformly to li (it suffices to contradict this assertion
and repeat the above reasoning).
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Thus, for any i ∈ {0, . . . , k − 1}, h(i)
n
−−−→−−−→
n→∞

li uniformly on I and li is con-

tinuous on I. From this fact it follows that

(3.3)


l0(0)
l1(0)

...
lk−1(0)

 = A ◦


l0(T )
l1(T )

...
lk−1(T )

 .
Now, let us observe that, for any t ∈ I,

h(k−1)
n (t) =

∫ t

0

h(k)
n (s) ds+ h(k−1)

n (0), n = 1, 2, . . . ,

and

h(k−1)
n (t) −−−→

n→∞
lk−1(t), h(k−1)

n (0) −−−→
n→∞

lk−1(0),∫ t

0

h(k)
n (s) ds =

∫ t

0

(h(k)
n (s)− lk(s)) ds+

∫ t

0

lk(s) ds −−−→
n→∞

∫ t

0

lk(s)) ds

(the last convergence follows from the estimates∣∣∣∣ ∫ t

0

(h(k)
n (s)− lk(s)) ds

∣∣∣∣ ≤ ∫ T

0

|h(k)
n (s)− lk(s)| ds ≤ ‖h(k)

n − lk‖L2(I,Rn)T
1
2

)
.

So, for t ∈ I,

lk−1(t) = lim
n→∞

h(k−1)
n (t) = lim

n→∞

( ∫ t

0

(h(k)
n (s) ds+ h(k−1)

n (0)
)

=
∫ t

0

lk(s) ds+ lk−1(0).

In an analogous way, for any i = 0, . . . , k − 2,

li(t) =
∫ t

0

li+1(s) ds+ li(0) for t ∈ I.

This means that function l0 is such that l(i)0 is absolutely continuous on I for
i = 0, . . . , k − 1, and l

(i)
0 = li for i = 0, . . . , k. Consequently, l(k)

0 ∈ L2(I,Rn)
and, in view of equality (3.3),

l0(0)
l′0(0)

...
l
(k−1)
0 (0)

 = A ◦


l0(T )
l′0(T )

...
l
(k−1)
0 (T )

 .
So, l0 ∈ Hk,n

A and, of course, hn −−−→
n→∞

l0 in Hk,n
A . The proof is completed. �
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Lemma 3.5. If hn −−−→
n→∞

h0 weakly in Hk,n
A , then h

(i)
n
−−−→−−−→
n→∞

h
(i)
0 uniformly

on I for any i ∈ {0, . . . , k − 1}.

Proof. Let a sequence (hn)n∈N be weakly convergent to h0 in Hk,n
A . So, it is

bounded in Hk,n
A . Let us fix any number i ∈ {0, . . . , k− 1}. From Lemma 3.1(a)

it follows that (h(i)
n )n∈N is equi-bounded on I. In an analogous way as in the

proof of Lemma 3.4 (see inequality (3.2)) one can show that this sequence is equi-
uniformly continuous on I. Then, from the Arzela–Ascoli theorem it follows that
a subsequence (h(i)

nk)k∈N of (h(i)
n )n∈N is uniformly convergent on I to some con-

tinuous function hi
0. Of course, h(i)

nk −−−⇀
k→∞

hi
0 weakly in the space of continuous

functions on I. On the other hand, since hnk
−−−⇀
k→∞

h0 weakly in Hk,n
A , Lemma

3.1(a) holds and the linear continuous operator preserves a weak convergence,
therefore h(i)

nk −−−⇀
k→∞

h
(i)
0 weakly in the space of continuous functions on I.

Thus h(i)
0 = hi

0 on I and, consequently, h(i)
nk
−−−→−−−→
k→∞

h
(i)
0 uniformly on I. To

assert that h(i)
n
−−−→−−−→
n→∞

h
(i)
0 uniformly on I, it suffices to contradict this assertion

and repeat the above reasoning. The proof is completed. �

4. Existence of a solution to M-periodic problem of order 2k

Let us consider the following functional

(4.1) ϕ : Hk,n
A 3 u 7→

∫
I

f(t, u(t), u′(t), . . . , u(k)(t)) dt.

Using the same method as in [2, Theorem 1.4], one can prove

Theorem 4.1. Let f : I × (Rn)k+1 3 (t, u0, . . . , uk) 7→ f(t, u0, . . . , uk) ∈
R be measurable in t for each u = (u0, . . . , uk) ∈ (Rn)k+1 and continuously
differentiable in u = (u0, . . . , uk) for t ∈ I a.e. If there exist a ∈ C(R+

0 ,R
+
0 ),

b ∈ L1(I,R+
0 ) and c ∈ L2(I,R+

0 ), such that, for t ∈ I a.e., u = (u0, . . . , uk) ∈
(Rn)k+1, one has

|f(t, u0, . . . , uk)| ≤ a(|(u0, . . . , uk−1)|)(b(t) + |uk|2),
|fui(t, u0, . . . , uk)| ≤ a(|(u0, . . . , uk−1)|)(b(t) + |uk|2), i = 0, . . . , k − 1,

|fuk
(t, u0, . . . , uk)| ≤ a(|(u0, . . . , uk−1)|)(c(t) + |uk|),

then the functional ϕ given by (4.1) is continuously differentiable on Hk,n
A , and

〈ϕ′(u), h〉 =
∫

I

k∑
i=0

fui(t, u(t), u
′(t), . . . , u(k)(t))h(i)(t) dt for u, h ∈ Hk,n

A .

Now, let f : I × (Rn)k+1 → R be defined by

(4.2) f(t, u0, u1, . . . , uk) =
1
2
|uk|2 + F (t, u0, u1, . . . , uk−1),
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and let the following assumption be satisfied

(A) F : I × (Rn)k → R is measurable in t for (u0, . . . , uk−1) ∈ (Rn)k,
continuously differentiable in (u0, . . . , uk−1) for t ∈ I a.e. and satisfies
the conditions

|F (t, u0, . . . , uk−1)| ≤ a(|(u0, . . . , uk−1)|)b(t),
|Fui

(t, u0, . . . , uk−1)| ≤ a(|(u0, . . . , uk−1)|)b(t), i = 0, . . . , k − 1,

for t ∈ I a.e., (u0, . . . , uk−1) ∈ (Rn)k and an a ∈ C(R+
0 ,R

+
0 ), b ∈

L1(I,R+
0 ).

It is easy to see that function (4.2) satisfies the assumptions of Theorem 4.1.
Consequently, the functional

(4.3) ϕ : Hk,n
A 3 u 7→

∫
I

(
1
2
|u(k)(t)|2 + F (t, u(t), u′(t), . . . , u(k−1)(t))

)
dt ∈ R,

is continuously differentiable on Hk,n
A , and, for u, h ∈ Hk,n

A ,

〈ϕ′(u), h〉 =
∫

I

( k∑
i=0

Fui(t, u(t), u
′(t), . . . , u(k−1)(t))h(i)(t) + u(k)(t)h(k)(t)

)
dt,

Moreover, since the functional

Hk,n
A 3 u 7→

∫
I

1
2
|u(k)(t)|2 dt ∈ R,

being convex and continuous, is weakly l.s.c. and the functional

Hk,n
A 3 u 7→

∫
I

F (t, u(t), u′(t), . . . , u(k−1)(t)) dt ∈ R,

being weakly continuous (see Lemma 3.5), is weakly l.s.c., therefore the func-
tional ϕ given by (4.3) is weakly l.s.c.

Theorem 4.2. If F satisfies (A) and

(B) there exists g ∈ L1(I,R+
0 ) such that

|Fui
(t, u0, . . . , uk−1)| ≤ g(t),

for t ∈ I a.e., u ∈ Rn, i = 0, . . . , k − 1,
(C)

∫
I
F (t,W (t),W ′(t), . . . ,W (k−1)(t)) dt → ∞ as

∑k−1
i=0 |c1| → ∞ with

W (t) = c0 + c1t+ . . .+ ck−1t
k−1,

then the functional ϕ given by (4.3) is coercive, i.e.

ϕ(u) →∞ as ‖u‖ → ∞.

Proof. It is easy to check that any function u ∈ Hk,n
A can be represented

in the form

u(t) = ũ(t) + u(t) = ũ(t) + ck−1t
k−1 + ck−2t

k−2 + . . .+ c1t+ c0, t ∈ I,
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with c0, . . . , ck−1 ∈ Rn and

∫
I

ũ(t) dt = 0,
∫

I

ũ′(t) dt = 0, . . . ,

∫
I

ũ(k−1)(t) dt = 0.

Indeed, it suffices to choose the vectors c0, . . . , ck−1 ∈ Rn for which

∫
I

(ck−1t
k−1 + . . .+ c1t+ c0) dt =

∫
I

u(t) dt,∫
I

((k − 1)ck−1t
k−2 + . . .+ c1) dt =

∫
I

u′(t) dt,

...∫
I

((k − 1) . . . 2ck−1t+ (k − 2)!ck−2) dt =
∫

I

u(k−2)(t) dt,∫
I

(k − 1)!ck−1 dt =
∫

I

u(k−1)(t) dt.

Now, let us notice that

(4.4) ‖u‖ → ∞⇒
k−1∑
i=0

|ci|+
∫

I

|u(k)(t)|2 dt→∞.

Indeed, if we denote u(t) = ck−1t
k−1 + . . .+ c1t+ c0, we have

‖u‖2 =
k−1∑
i=0

∫
I

|u(i)(t)|2 dt+
∫

I

|u(k)(t)|2 dt

=
k−1∑
i=0

∫
I

|ũ(i)(t) + u(i)(t)|2 dt+
∫

I

|u(k)(t)|2 dt

=
k−1∑
i=0

∫
I

|ũ(i)(t)|2 dt+ 2
k−1∑
i=0

∫
I

ũ(i)(t)u(i)(t) dt

+
k−1∑
i=0

∫
I

|u(i)(t)|2 dt+
∫

I

|u(k)(t)|2 dt.

From Lemma 3.3 we have

k−1∑
i=0

∫
I

|ũ(i)(t)|2 dt ≤ k · d
∫

I

|ũ(k)(t)|2 dt = k · d
∫

I

|u(k)(t)|2 dt,
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k−1∑
i=0

∫
I

ũ(i)(t)u(i)(t) dt ≤
k−1∑
i=0

∫
I

|ũ(i)(t)| · |u(i)(t)| dt

≤
k−1∑
i=0

max
t∈I

|u(i)(t)|T 1/2

( ∫
I

|ũ(i)(t)|2 dt
)1/2

≤T 1/2 ·
k−1∑
i=0

max
t∈I

|u(i)(t)|d1/2

( ∫
I

|ũ(k)(t)|2 dt
)1/2

=T 1/2 · d1/2

( ∫
I

|u(k)(t)|2 dt
)1/2

·
k−1∑
i=0

max
t∈I

|u(i)(t)|

≤T 1/2 · d1/2

( ∫
I

|u(k)(t)|2 dt
)1/2

·
k−1∑
i=0

[
(k − 1)!max{T 0, . . . , T k−1}

k−1∑
j=0

|cj |
]

=T 1/2 · d1/2 · k!max{T 0, . . . , T k−1}
k−1∑
i=0

|ci|
( ∫

I

|u(k)(t)|2 dt
)1/2

,

k−1∑
i=0

∫
I

|u(i)(t)|2 dt ≤ T
k−1∑
i=0

(max
t∈I

|u(i)(t)|)2 ≤ T

( k−1∑
i=0

max
t∈I

|u(i)(t)|
)2

≤T
( k−1∑

i=0

[
(k − 1)!max{T 0, . . . , T k−1}

k−1∑
j=0

|cj |
])2

=T

(
k!max{T 0, . . . , T k−1}

k−1∑
i=0

|cj |
)2

=T (k!)2(max{T 0, . . . , T k−1})2
( k−1∑

i=0

|ci|
)2

.

So,

‖u‖2 ≤ k · d
∫

I

|u(k)(t)|2 dt

+ 2 · T 1/2 · d1/2k!max{T 0, . . . , T k−1}
k−1∑
i=0

|ci|
( ∫

I

|u(k)(t)|2 dt
)1/2

+ T (k!)2(max{T 0, . . . , T k−1})2
( k−1∑

i=0

|ci|
)2

.

The above means that (4.4) is true. Now, we have

ϕ(u) =
∫

I

1
2
|u(k)(t)|2 dt+

∫
I

F (t, u(t), . . . , u(k−1)(t)) dt
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=
∫

I

1
2
|u(k)(t)|2 dt+

∫
I

F (t, u(t), . . . , u(k−1)(t) dt

+
∫

I

[F (t, u(t), . . . , u(k−1)(t))− F (t, u(t), . . . , u(k−1)(t))] dt

=
∫

I

1
2
|u(k)(t)|2 dt+

∫
I

F (t, u(t), . . . , u(k−1)(t)) dt

+
∫

I

∫ 1

0

k−1∑
i=0

Fui(t, u(t) + sũ(t), . . . , u(k−1)(t) + sũ(k−1)(t))ũ(i)(t) ds dt

=
∫

I

1
2
|u(k)(t)|2 dt+

∫
I

F (t, u(t), . . . , u(k−1)(t))

+
k−1∑
i=0

∫
I

ũ(i)(t)
∫ 1

0

Fui(t, u(t) + sũ(t)), . . . , u(k−1)(t) + sũ(k−1)(t)) ds)dt

≥
∫

I

1
2
|u(k)(t)|2 dt+

∫
I

F (t, u(t), . . . , u(k−1)(t)) dt

−
k−1∑
i=0

max{|ũ(i)(t)|; t ∈ I}
∫

I

g(t) dt

≥
∫

I

1
2
|u(k)(t)|2 dt+

∫
I

F (t, u(t), . . . , u(k−1)(t)) dt

−
( k−1∑

i=0

ei

)
‖ũ‖

∫
I

g(t) dt

≥
∫

I

1
2
|u(k)(t)|2 dt+

∫
I

F (t, u(t), . . . , u(k−1)(t)) dt

−
( k−1∑

i=0

ei

)(
k d

∫
I

|u(k)(t)|2 dt
)1/2 ∫

I

g(t) dt,

where e0 is the constant from Lemma 3.1(a), d is the constant from Lemma 3.3
and c0, . . . , ck−1 are such that

u(t) = ũ(t) + ck−1t
k−1 + . . .+ c1t+ c0,

with ∫
I

ũ(t) dt = 0,
∫

I

ũ′(t) dt = 0, . . . ,

∫
I

ũ(k−1)(t) dt = 0.

Consequently, using (4.4) we assert that

ϕ(u) →∞ as ‖u‖ → ∞.

The proof is concluded. �

From the above theorem it follows that any minimizing sequence of ϕ is
bounded. This means, in view of the reflexivity of Hk,n

A and the weak lower
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semicontinuity of ϕ, that ϕ has its minimum on Hk,n
A . Let us denote the min-

imum point of ϕ on Hk,n
A as u∗. The differentiability of ϕ on Hk,n

A implies, for
Hk,n

A , 〈ϕ′(u∗), h〉 = 0, i.e.

∫
I

u
(k)
∗ (t)h(k)(t) dt+

∫
I

k−1∑
i=0

Fui
(t, u∗(t), u′∗(t), . . . , u

(k−1)
∗ (t))h(i)(t) dt = 0,

for h ∈ Hk,n
A . Integrating by parts we obtain∫

I

Fuk−1(t, u∗(t), u
′
∗(t), . . . , u

(k−1)
∗ (t))h(k−1)(t) dt

=
∫

I

( ∫ t

0

Fuk−1(s, u∗(s), u
′
∗(s), . . . , u

(k−1)
∗ (s)) ds

)′
h(k−1)(t) dt

=
∫ t

0

Fuk−1(s, u∗(s), u
′
∗(s), . . . , u

(k−1)
∗ (s)) ds h(k−1)(t)

∣∣∣∣t=T

t=0

−
∫

I

( ∫ t

0

Fuk−1(s, u∗(s), u
′
∗(s), . . . , u

(k−1)
∗ (s)) ds

)
h(k)(t) dt

=
∫

I

Fuk−1(t, u∗(t), u
′
∗(t), . . . , u

(k−1)
∗ (t)) dt h(k−1)(T )

−
∫

I

( ∫ t

0

Fuk−1(s, u∗(s), u
′
∗(s), . . . , u

(k−1)
∗ (s)) ds

)
h(k)(t) dt,

and analogously,∫
I

Fuk−2h
(k−2) =

∫
I

Fuk−2h
(k−2)(T )−

∫
I

( ∫ t

0

Fuk−2

)
h(k−1)(T )

+
∫

I

( ∫ t

0

∫ t1

0

Fuk−2

)
h(k)(t) dt,

...∫
I

Fu0h =
∫

I

Fu0h(T )−
( ∫ t

0

Fu0

)
h′(T )

+ . . .+ (−1)k−1

∫
I

( ∫ t

0

∫ t1

0

. . .

∫ tk−2

Fu0

)
h(k−1)(T )

+ (−1)k

∫
I

( ∫ t

0

∫ t1

0

. . .

∫ tk−1

Fu0

)
h(k)(t) dt.

So, using Corollary (2.1), we assert that there exist constants c0, . . . , ck−1 ∈ Rn

such that

(4.5) u
(k)
∗ (t)−

∫ t

0

Fuk−1 +
∫ t

0

∫ t1

0

Fuk−2 + . . .+ (−1)k

∫ t

0

∫ t1

0

. . .

∫ tk−1

0

Fu0

= c0 + c1t+ . . .+ ck−1t
k−1,
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for t ∈ I a.e. and (after identifying ψ(t) = u
(k)
∗ (t) −

∫ t

0
Fuk−1 +

∫ t

0

∫ t1
0
Fuk−2 +

. . .+ (−1)k
∫ t

0

∫ t1
0
. . .

∫ tk−1

0
Fu0 with the above right-hand side)

(4.6)


ψ(0)
ψ′(0)

...
ψ(k−2)(0)
ψ(k−1)(0)



= B



ψ(T )− (−1)k
[ ∫

I

( ∫ t

0

∫ t1
0
. . .

∫ tk−2

0
Fu0

)
−

∫
I

( ∫ t

0

∫ t1
0
. . .

∫ tk−3

0
Fu1

)
+ . . .+ (−1)k−1

∫
I
Fuk−1

]
ψ′(T )− (−1)k

[ ∫
I

( ∫ t

0

∫ t1
0
. . .

∫ tk−3

0
Fu0

)
+ . . .+ (−1)k−2

∫
I
Fuk−2

]
...

ψ(k−2)(T )− (−1)k
[ ∫

I

( ∫ t

0
Fu0

)
−

∫
I
Fu1

]
ψ(k−1)(T )− (−1)k

∫
I
Fu0


,

where B is as in Theorem (2.1).
As usual, we say that an integrable function l : [0, T ] → Rn has a weak de-

rivative if l possesses an absolutely continuous representant (in the sense of the
measure theory) that is differentiable a.e. on [0, T ] with the derivative integrable
on [0, T ]. This derivative is called a weak derivative of l and denoted as d

dt l.
In the case when an integrable function l : [0, T ] → Rn has a continuous

representant, we write l|t=0, l|t=T for the values of this representant at 0, T ,
respectively.

So, from formula (4.5) it follows that the function u∗ satisfies equation (1.1)
a.e. on [0, T ] and from (4.6) it follows that u∗ satisfies the boundary condi-
tions (1.2).

On the account of the above identifying of an integrable function with their
absolutely continuous representant we say that u∗ is a weak solution of problem
(1.1)–(1.2). We have thus proved,

Theorem 4.3. If a function F : I×(Rn)k → R satisfies conditions (A)–(C),
then there exists a function u ∈ Hk,n

A being a weak solution of equation (1.1) and
satisfying boundary conditions (1.2).
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