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ON ASYMPTOTICALLY AUTONOMOUS
DIFFERENTIAL EQUATIONS IN THE PLANE

Boris S. Klebanov

1. Introduction

In this paper, we study qualitative behaviour of trajectories of solutions of
perturbed autonomous differential equations in the plane. We work in the frame-
work of an axiomatic theory of solution spaces of ordinary differential equations
suggested by V. V. Filippov (see the survey [7] and the references therein). This
theory provides a unified approach to the study of solutions of ordinary differ-
ential equations, including equations with singularities, as well as of differential
inclusions. The theory sets a series of axioms which reflect fundamental pro-
perties of solution sets of ordinary differential equations and deals with sets of
functions satisfying one or another set of these axioms. Topological structures
introduced make it possible to deal with sets of solutions as with elements of a
topological space.

It is well known that many results in the classical qualitative theory of ordi-
nary differential equations extend to dynamical systems. The theory suggested
by Filippov allows one to develop such results in another direction and to ex-
tend them, in particular, to differential equations with singularities of various
types. There are also many situations where the methods developed lead to new
results in the classical realms, even for equations y′ = f(t, y) (y′ = dy/dt) with
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continuous functions f . The scope of the axiomatic theory naturally embraces
differential inclusions, and many results concerning them can be generalized in
the framework of the theory.

The present paper is based on previous studies by Filippov on autonomous
and perturbed autonomous differential equations, in particular, on planar ones,
in the framework of the axiomatic theory. Our results and proofs are formulated
in the terminology of the axiomatic theory. In the next section we present
the notions from the axiomatic theory that are used in the sequel and briefly
comment on them (we refer the unfamiliar reader to [7] for a broad account).

2. Notions from the axiomatic theory and notation

2.1. For a function z, we denote by π(z) its domain of definition, and by
Im(z) the set of its values, also called the trajectory of z.

2.2. Let U be an open subset of R× Rn. Consider the set of all continuous
mappings of all finite closed intervals [a, b], a ≤ b, of R into Rn whose graphs lie
in U . This set equipped with the Hausdorff distance between their graphs is a
metric space denoted by Cs(U).

Denote by R(U) the set of all subspaces Z of Cs(U) satisfying the following
two conditions (axioms).

(1) If z ∈ Z and the closed interval I (possibly degenerate) lies in π(z),
then the restriction z|I belongs to Z.

(2) If the domains of definition of z1, z2 ∈ Z intersect and these functions
coincide on π(z1) ∩ π(z2), then the function z defined on π(z1) ∪ π(z2)
by the formula z(t) = zi(t) if t ∈ π(zi) (i = 1, 2) also belongs to Z.

Denote by Rce(U) the set of all Z ∈ R(U) satisfying the following conditions
(c) and (e).

(c) For any compact set K ⊆ U the set of all elements of Z whose graphs
lie in K is compact.

(e) For any point (t0, y0) ∈ U there exists a function z ∈ Z defined on an
interval containing t0 in its interior such that z(t0) = y0.

2.3. Given a differential equation y′ = f(t, y) (or a differential inclusion
y′ ∈ F (t, y)) in the set U , we define its solutions to be generalized absolutely
continuous functions [12] defined on arbitrary finite closed intervals [a, b], a ≤ b,
that satisfy it almost everywhere. These functions form a subspace of Cs(U)
called the space of solutions of this equation (respectively, inclusion) and de-
noted by D(f) (respectively, D(F )). We remark that under the hypotheses of
the classical Peano and Carathéodory theorems the above definition of solution
agrees with the standard definitions [8, Chapter VII].
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The spaces of solutions defined above belong to R(U). The space D(f)
belongs to Rce(U) if f satisfies the hypotheses of the Peano and Carathéodo-
ry theorems. Moreover, Rce(U) contains D(F ) if the multivalued function F

satisfies the hypotheses of Davy’s theorem [4].
If f is continuous in U everywhere except at points of a closed, at most

denumerable set, then D(f) ∈ Rce(U) [5], [7]. This is an example of a space of
solutions D(f) which belongs to Rce(U), under non-classical assumptions on f .

2.4. Let V be an open subset of Rn. A space Z ⊆ Cs(R × V ) is said to
be autonomous if it is closed with respect to translations along R (that is, for
any z ∈ Z with π(z) = [a, b] and any real number τ , the function w defined on
[a− τ, b− τ ] by the formula w(t) = z(t+ τ) also belongs to Z). Denote by A(V )
the set of all autonomous spaces Z ⊆ Cs(R× V ), and let

Ace(V ) = A(V ) ∩Rce(R× V ).

If Z ∈ Ace(V ) satisfies a condition (k) defined in [7, §2] that corresponds to the
connectedness property described by Kneser’s theorem [9, Theorem II.4.1], we
write Z ∈ Acek(V ).

Clearly the spaces of solutions of autonomous differential equations (inclu-
sions) defined in R×V belong to A(V ). If a multivalued function F : V → Rn is
upper semicontinuous and for every y ∈ V the set F (y) is nonempty, compact,
and convex, then D(F ) ∈ Acek(V ) (this can be derived, e.g., from results in
[6, §7]; see also [7, §2]).

2.5. The concept presented below follows a similar one given in [7, §11].
Let Z ⊆ Cs(R × V ) and Z∞ ∈ A(V ). We will write 〈Z,Z∞〉 ∈ β(V ) if for

any compact set K ⊆ V and any positive number c the following condition is
satisfied: if a sequence {zn : n ∈ N} ⊆ Z with π(zn) = [an, bn] is such that
Im(zn) ⊆ K, bn − an ≤ c for any n ∈ N and an → ∞ as n → ∞, and if z∗n is a
function with π(z∗n) = [0, bn − an] defined by the formula

z∗n(t) = zn(t+ an),

then the sequence {z∗n : n ∈ N} has a subsequence converging to a function
from Z∞.

If 〈Z,Z∞〉 ∈ β(V ), the space Z will be called asymptotically autonomous
(as t→∞).

Let an autonomous equation y′ = f(y) be defined for y ∈ V , and a perturbed
autonomous equation

y′ = f(y) + g(t, y)

be defined for y ∈ V and t ∈ (a,∞), a ∈ R ∪ {−∞}. It can be shown that if the
second equation is asymptotically autonomous in the sense of Artstein [1], [2]
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and the first equation is its limiting equation (see the definition in [1]–[3]), then

〈D(f + g), D(f)〉 ∈ β(V ).

This means that in order to verify that D(f + g) is asymptotically autonomous,
one can use the corresponding convergence conditions in [1]–[3]. An example of
an asymptotically autonomous space D(f + g) with continuous functions f and
g, not covered by the conditions in [1]–[3], is given in [7, Example 11.2].

The space D(f + g) is asymptotically autonomous (and the equation y′ =
f(y)+g(t, y) has y′ = f(y) as its limiting equation) if, for instance, the following
hypotheses hold: f is continuous, g satisfies the Carathéodory conditions locally,
and for any compact set B ⊆ V there exists a real-valued function ϕ(t) locally
Lebesgue integrable on (a,∞) such that

‖g(t, y)‖ ≤ ϕ(t) for all t ∈ (a,∞) and y ∈ B,

and

lim
s→∞

∫ s+c

s

ϕ(t) dt = 0 for any c > 0.

2.6. For Z ∈ R(U), we denote by Z+ (respectively, by Z−) the set of
all continuous functions z : [a, b) → Rn, −∞ < a < b ≤ ∞ (respectively,
z : (a, b] → Rn, −∞ ≤ a < b < ∞) such that z|I ∈ Z for any finite closed
interval I ⊆ π(z) and no function in Z extends z. Denote by Z−+ the set of
all continuous functions z : (a, b) → Rn, −∞ ≤ a < b ≤ ∞, such that for some
t ∈ (a, b) we have z|(a,t] ∈ Z− and z|[t,b) ∈ Z+.

It is clear that the sets Z+, Z−, and Z−+ consist of analogues of maximally
forward extended, backward extended, and both forward and backward extended
solutions, respectively. For Z being the space of solutions of a differential equa-
tion or inclusion, the elements of Z−+ will be called its full solutions. A full
solution z with π(z) = R is called periodic if z(t) = z(t + p) for all t ∈ R and
some p > 0.

2.7. A point y ∈ V is called a stationary point of a space Z ∈ R(R × V ) if
there exists z ∈ Z−+ such that Im(z) = {y}.

2.8. For any function z ∈ Z+ ∪ Z−+, its ω-limit set Ω(z) is defined by the
formula

Ω(z) =
⋂
{Im(z|[t,∞)∩π(z)) : t ∈ π(z)}

(the bar signifies closure), and the α-limit set A(z) of a function z ∈ Z− ∪ Z−+

is defined by the formula

A(z) =
⋂
{Im(z|(−∞,t]∩π(z)) : t ∈ π(z)}.

We now proceed to the presentation of our results.
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3. Two theorems on ω-limit sets

Consider the following hypotheses:

V is an open set in the plane, a ∈ R ∪ {−∞}, U = (a,∞)× V ;(3.1)

Z ∈ Rce(U);(3.2)

Z∞ ∈ Acek(V ) and 〈Z,Z∞〉 ∈ β(V ).(3.4)

The next theorems are generalizations of Theorems VII.4.3 and VII.4.4 of [9].

Theorem 1. Suppose that (3.1)–(3.3) hold. Let z ∈ Z+, and let Ω(z) be a
nonempty compact subset of V . Then either Ω(z) contains a stationary point of
the space Z∞ or there exists a function z0 ∈ Z∞ with π(z0) = [α, β] such that
the curve y = z0(t), t ∈ [α, β], is a Jordan curve (i.e., a topological image of a
circle) lying in Ω(z).

Proof. 1. Suppose that Ω(z) does not contain a stationary point of Z∞.
Then by Theorem IX.6.10 of [5] there exists u ∈ Z+

∞ such that Im(u) ⊆ Ω(z).
Since Ω(z) is nonempty and compact, the last inclusion implies that Ω(u) ⊆ Ω(z)
is also nonempty and compact.

We distinguish two cases.
Case 1. u(b) = u(c) for some distinct b, c ∈ π(u),
Case 2. u(b) 6= u(c) for all distinct b, c ∈ π(u).
2. Consider first Case 1. Let b < c. We claim that there is a δ > 0 such that

u(p) 6= u(q) for all distinct points p, q ∈ [b, c] with |p− q| < δ.
Assume the contrary. Then for any n ∈ N there are pn, qn ∈ [b, c], pn < qn,

such that u(pn) = u(qn) and qn−pn < 1/n. By passing to a subsequence, we may
assume without loss of generality that {pn : n ∈ N} and {qn : n ∈ N} converge to
some t0. Since Ω(z) is assumed to contain no stationary points of Z∞, the point
u(t0) ∈ Ω(z) is not a stationary point of Z∞. As noted in [7, p. 129], this implies
that there is a neighbourhood O of u(t0) and a T > 0 such that the trajectory
of any function v ∈ Z∞ cannot lie entirely in O if the length of π(v) exceeds T .

Denote by vn the restriction of u to [pn, qn]. Then vn ∈ Z∞ for any n ∈ N.
The continuity of u implies that Im(vn) ⊆ O for all n large enough, say n ≥ n0.
Since vn0(pn0) = vn0(qn0), we can extend vn0 as a continuous periodic function
over arbitrarily long closed intervals; the functions thus obtained belong to Z∞
because the space Z∞ ∈ R(R × V ) is autonomous. Hence Z∞ must contain
functions with domain of definition longer than T , whose trajectories lie in O.
This contradicts the choice of T . Thus the claim is proved.

3. Since u(b) = u(c), the above claim implies that there is a closed interval
[α, β] ⊆ [b, c] such that the function z0 ∈ Z∞, defined as the restriction of u to
[α, β], has the required properties: the curve y = z0(t), t ∈ [α, β], is a Jordan
curve and z0(t) = u(t) ∈ Ω(z) for all t ∈ [α, β].
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4. Consider now Case 2. Since the values u(t) are different for distinct
t ∈ π(u), and 〈Z∞, Z∞〉 ∈ β(V ) (this is obvious, since Z∞ ∈ Ace(V )), we can
apply to u an analogue of the Poincaré–Bendixson theorem proved by Filippov
[7, Theorem 11.2]. This gives us a z0 ∈ Z∞ with Im(z0) ⊆ Ω(u) ⊆ Ω(z) such
that the curve y = z0(t), t ∈ π(z0), is a Jordan curve. Thus in both Cases 1
and 2 we have found a function z0 as required. The theorem is proved. �

Theorem 2. Suppose that (3.1)–(3.3) hold. If in addition V is simply con-
nected and does not contain stationary points of Z∞, then no function from Z+

remains in a compact subset of V .

Proof. Suppose the contrary, that is, there exists a z ∈ Z+ whose trajectory
is contained in some compact set K ⊆ V . Then Ω(z) is a nonempty compact
subset of K. By Theorem 1, there is a function in Z+

∞ whose trajectory is a
Jordan curve lying in Ω(z). By [7, Theorem 11.1], the closure of the domain
bounded by this curve contains a stationary point y0 of Z∞. Since V is simply
connected, we have y0 ∈ V . This contradicts the assumption that V contains no
stationary points of Z∞. The proof is complete. �

4. On Markus’ theorem

Our next theorem is concerned with one of the most important properties
of asymptotically autonomous differential equations in the plane, presented by
Markus in [10].

Consider two planar differential equations

y′ = f(y)(4.1)

and

y′ = h(t, y),(4.2)

where the functions f(y) and h(t, y) satisfy a local Lipschitz condition in y and
h(t, y) is continuous in (t, y) for t ∈ (a,∞) and y ∈ V (a ∈ R ∪ {−∞}, V
is an open subset of R2). Suppose that h(t, y) → f(y) as t → ∞, uniformly
in y on compact sets in V . Markus presented in [10] the following remarkable
Poincaré–Bendixson type theorem.

Theorem (Markus). Let z be a maximally forward extended solution of (4.2)
whose ω-limit set Ω(z) is a nonempty compact set in V . If Ω(z) contains no sta-
tionary points of (4.1), then it is the union of periodic trajectories of (4.1).

We remark that Markus’ theorem was proved under more general assump-
tions by Artstein in [1, Theorem 9.1] where the assumptions on the right-hand
sides were relaxed and a weaker type of convergence of h to f was considered
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(we also note that a version of Markus’ theorem was given by Opial in [11]). The
theorem of Markus was extended by Thieme [13, Theorem 1.4] to a case where
Ω(z) may contain stationary points of (4.1). Thieme’s paper [13] also contains
a list of references on the use and impact of Markus’ theorem.

In theorems presented below we extend Markus’ theorem in the same direc-
tion as Thieme did, that is, to a case where the ω-limit set of an asymptotically
autonomous equation may contain stationary points of its limiting autonomous
equation. (We remark that our results and Theorem 1.4 of [13] do not cover each
other.)

The key result of this section is Theorem 3. It is concerned with a pair
〈Z,Z∞〉 ∈ β(V ), where Z∞ has a special type: it is the space of solutions D(F )
of a differential inclusion

(4.3) y′ ∈ F (y)

such that the multivalued mapping F : V → Rn satisfies the following conditions:

F is upper semicontinuous;(4.4)

F (y) is nonempty, compact, and convex for any y ∈ V .(4.5)

If F satisfies (4.4) and (4.5), then D(F ) ∈ Ace(V ) (see Section 2.4).
In the sequel we use the following concepts of one-sided uniqueness of solu-

tions.

Definition. Solutions of an initial value problem y′ ∈ F (y), y(t0) = y0,
(t0, y0) ∈ R × V , are said to be forward (respectively, backward) unique if for
all z1, z2 ∈ D(F ) with t0 ∈ π(z1) ∩ π(z2) and y0 = z1(t0) = z2(t0) we have
z1(t) = z2(t) for any t ∈ π(z1) ∩ π(z2) such that t > t0 (respectively, t < t0).

We remark that inclusions (4.3) for which solutions of the initial value prob-
lems satisfy the above definition form an important class of differential inclusions
considered, for example, in [6].

To present our results we also need the concept of arc.

Definition. A curve u = u(t) such that u(t1) 6= u(t2) for all distinct t1, t2 ∈
π(u) will be called an arc.

Theorem 3. Suppose that the space Z and inclusion (4.3) satisfy (3.1),
(3.2), (4.4) and (4.5). Let 〈Z,D(F )〉 ∈ β(V ). Suppose that solutions of all
initial value problems for (4.3) are forward (respectively, backward) unique. Let
z ∈ Z+ and let Ω(z) be a nonempty compact subset of V . Then any point of
Ω(z) either

(i) is a stationary point of (4.3), or
(ii) lies on the trajectory of a periodic solution of (4.3) contained in Ω(z),

or
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(iii) lies on an arc contained in Ω(z) which is the trajectory of a maximally
forward (respectively, backward) extended solution ϕ of (4.3), and A(ϕ)
(respectively, Ω(ϕ)) consists only of stationary points of (4.3).

Proof. We first consider the case where all initial value problems for (4.3)
are assumed to have forward unique solutions.

1. Let y ∈ Ω(z). By Theorem IX.6.10 of [5] there exists ϕ ∈ D(F )− with
π(ϕ) = (−∞, 0] such that y = ϕ(0) and Im(ϕ) ⊆ Ω(z). As Im(ϕ) lies in the
nonempty compact set Ω(z) ⊆ V , the set A(ϕ) ⊆ Ω(z) is also a nonempty
compact subset of V . Denote by T the trajectory of ϕ.

Assume that T is not an arc. Then there exist distinct points s1, s2 ∈ π(ϕ)
and a point y∗ ∈ V such that ϕ(s1) = ϕ(s2) = y∗. Using the facts that all
solutions of (4.3) are forward unique and D(F ) is invariant with respect to
translations along the t-axis, it is not difficult to verify that either (i) or (ii)
holds, depending on whether y∗ is a stationary point of (4.3) or not (y = y∗ in
the former case).

2. Suppose now that T is an arc. If y is a stationary point of (4.3), we
are clearly done. So we assume henceforth that y is a non-stationary point of
(4.3). Then T contains no stationary points of (4.3) due to the assumption of
forward uniqueness. Our aim is to prove that A(ϕ) contains only stationary
points of (4.3).

Assume, on the contrary, that there exists a point b ∈ A(ϕ) which is not a
stationary point of (4.3). By the results similar to those in [6, §13] (we reformu-
late for the α-limit set the assertions given there for the ω-limit set), there exists
a transversal line segment L through b such that

(a) T intersects L in points bi = ϕ(ti), i ∈ N, with 0 > t1 > t2 > . . . ,

ti → −∞ as i → ∞, such that bi → b along L strictly monotonicly
(that is, bi+1 is between bi and b for all i ∈ N);

(b) L ∩ A(ϕ) = {b};
(c) the trajectories of all solutions of (4.3) intersecting L, traverse it from

one side, common to all of them, to the other.

Note that

(d) T and A(ϕ) are disjoint.

Indeed, their intersection cannot contain a stationary point of (4.3), because T
contains no such points; nor can it contain non-stationary points of (4.3), since
this would contradict Theorem 2 from §13 in [6].

Fix an i ∈ N. Let Ti be the subarc of the trajectory T with endpoints bi and
bi+1, and let Li be the interval of the transversal line segment L with the same
endpoints. Denote Ti ∪ Li by Ji. The curve Ji is a Jordan curve (this follows
from (a) and the fact that T is an arc).
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3. It easily follows from (a), (b) and (d) that Ji and A(ϕ) are disjoint. Since
tn < 0 for all n ∈ N and T is an arc, the point y = ϕ(0) does not belong to Ji.
Thus, both A(ϕ) and y lie in R2 \ Ji. By the Jordan curve theorem, the set
R2 \ Ji consists of two components, Gi and Hi, with Ji being their boundary.
For definiteness, let y ∈ Gi. Then ϕ(t) ∈ Hi for all t < ti+1, since T is an arc
satisfying (c). Therefore A(ϕ) ⊆ Hi, and since b ∈ A(ϕ), it follows that b ∈ Hi.

Thus, y and b lie in different components of R2 \ Ji. Hence, using the fact
that both y and b belong to Ω(z) and lie on different sides of Ji, one can find
sequences {pn : n ∈ N} and {qn : n ∈ N} lying in π(z) such that for all n ∈ N we
have pn < qn < pn+1, z(pn) ∈ Ji, z(qn) → b as n → ∞, and z(t) ∈ Hi for any
t ∈ (pn, qn). Since Ji is compact, one may assume without loss of generality
that {z(pn) : n ∈ N} converges to some point c ∈ Ji.

We distinguish two cases: the sequence {qn − pn : n ∈ N} is either bounded
(Case 1) or unbounded (Case 2).

4. Consider Case 1. Let zn be defined on [0, qn − pn] by the formula

zn(t) = z(t+ pn).

Since the trajectory of z is bounded (this is equivalent to Ω(z) being nonempty
and compact), one can use the hypothesis 〈Z,D(F )〉 ∈ β(V ) to find a subse-
quence of {zn : n ∈ N} converging to a function ψ ∈ D(F ) with domain [0, r]
such that ψ(0) = c, ψ(r) = b and Im(ψ) ⊆ Hi.

The point c cannot belong to Li (the contrary would contradict (c)). Neither
can it belong to Ti, since otherwise the forward uniqueness of solutions of (4.3)
would imply that Im(ψ) ⊆ T . This is impossible because b ∈ Im(ψ) ∩ A(ϕ),
but T ∩ A(ϕ) = ∅ (see (d)). Since c ∈ Ji = Ti ∪ Li, we obtain a contradiction.

Thus, Case 1 cannot occur.

5. Let us now consider Case 2. In this case we can apply Lemma IX.6.8 of [5]
to the sequence {zn : n ∈ N} to find ψ ∈ D(F )+ with π(ψ) = [0,∞) such that
ψ(0) = c and the trajectory of ψ lies entirely in the compact set Hi ∩ Ω(z).

The point c cannot belong to Li for the same reason as in Case 1. It cannot
belong to Ti either. For otherwise, if there were some τ ∈ (ti, ti+1) with ϕ(τ) =
c = ψ(0), the forward uniqueness of solutions of (4.3) would imply that ψ(t−τ) =
ϕ(t) for all t ∈ [τ, 0]. Then ψ(−τ) = ϕ(0) = y ∈ Gi. Since Im(ψ) ⊆ Hi and
Gi ∩ Hi = ∅, this is impossible. So again we have a contradiction to the fact
that c ∈ Ji. Hence Case 2 is also impossible.

Since both Cases 1 and 2 have appeared to be impossible, the assumption
that A(ϕ) contains a non-stationary point of (4.3) is false.

Thus, the theorem is proved under the assumption of forward uniqueness.
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6. The proof under the assumption of backward uniqueness is similar. We
just indicate the key changes.

(I) In part 1, we now find ϕ ∈ D(F )+ with π(ϕ) = [0,∞) satisfying
the other properties, and deal throughout the proof with Ω(ϕ) instead
of A(ϕ).

(II) In part 2, the points ti ∈ (0,∞) tend monotonicly to ∞, and not to
−∞ as previously.

(III) In part 3, the sequences {pn : n ∈ N} and {qn : n ∈ N} are chosen to
satisfy qn < pn < qn+1.

(IV) In part 4, the domain of ψ ∈ D(F ) will be [r, 0], r < 0.
(V) In part 5, the domain of ψ ∈ D(F )− will be (−∞, 0].

The proof is complete. �

Before stating our next result we recall the notion of a totally disconnected
space.

Definition. A topological space is totally disconnected if the connected
component of each of its points reduces to this point.

Theorem 4. Suppose that the space Z and inclusion (4.3) satisfy (3.1),
(3.2), (4.4) and (4.5). Let 〈Z,D(F )〉 ∈ β(V ). Suppose that solutions of all ini-
tial value problems for (4.3) are forward and backward unique. Let z ∈ Z+ and
let Ω(z) be a nonempty compact subset of V . Assume that the (possibly empty)
set E of stationary points of (4.3) that lie in Ω(z) is totally disconnected. Then
any point of Ω(z) belongs either to E, or to the trajectory of a periodic solution
of (4.3) contained in Ω(z), or to an arc contained in Ω(z) which is the trajectory
of a full solution ϕ of (4.3) such that π(ϕ) = R and the limits limt→∞ ϕ(t) and
limt→−∞ ϕ(t) exist and are in E.

Proof. Let y ∈ Ω(z). Suppose that the first two possibilities stated in the
theorem do not hold for y. By Theorem 3 there exist functions ϕ1 ∈ D(F )− and
ϕ2 ∈ D(F )+ such that

Im(ϕ1) ∪ Im(ϕ2) ⊆ Ω(z) and A(ϕ1) ∪ Ω(ϕ2) ⊆ E.

Since inclusion (4.3) is autonomous, we may assume without loss of generality
that

0 = max{t : t ∈ π(ϕ1)} = min{t : t ∈ π(ϕ2)} and ϕ1(0) = ϕ2(0) = y.

As the trajectories of ϕ1 and ϕ2 lie in the compact set Ω(z), π(ϕ1) and π(ϕ2) are
unbounded (see, e.g., [7, Theorem 2.8]), so that π(ϕ1) = (−∞, 0] and π(ϕ2) =
[0,∞). Define ϕ ∈ D(F )−+ on R by ϕ(t) = ϕ1(t) if t ≤ 0, and ϕ(t) = ϕ2(t)
if t > 0.



Asymptotically Autonomous Equations 337

Clearly A(ϕ) = A(ϕ1) and Ω(ϕ) = Ω(ϕ2). Since Im(ϕ) ⊆ Ω(z), the sets
A(ϕ) and Ω(ϕ) are nonempty compact subsets of the totally disconnected set E.
These sets are connected [6, §12, Section 4], so they are singletons. Therefore
(see [6, §12, Section 4]) ϕ(t) tends to Ω(z) (respectively, to A(z)) as t → ∞
(respectively, as t→ −∞). The theorem is proved. �

Let (3.1) hold. Consider the differential equations

y′ = f(y),(4.6)

y′ = f(y) + g(t, y),(4.7)

where f : V → R2 is locally Lipschitz continuous and g : U → R2 is continuous
(or, more generally, g locally satisfies the Carathéodory conditions). Suppose
that ‖g(t, y)‖ → 0 as t → ∞, uniformly in y on compact sets in V . More
generally, one may assume that g(t, y) converges to zero as t→∞ in the sense of
the definition introduced by Artstein (see [1, Sections 4 and 5], [2, Section 9]), i.e.,
equation (4.7) is asymptotically autonomous in the sense of Artstein with (4.6)
being its limiting equation.

A representation of ω-limit sets of forward extended solutions of (4.7) as
unions of trajectories of solutions of (4.6) is described in Theorem 5 below. This
theorem, which is an immediate corollary to Theorem 4, gives a positive answer
to a problem of Thieme [13].

Theorem 5. Let z be a maximally forward extended solution of (4.7) such
that Ω(z) is a nonempty compact subset of V . Assume that the set of stationary
points of (4.6) that lie in Ω(z) is totally disconnected (in particular, empty or
finite). Then any point of Ω(z) either is a stationary point of (4.6), or lies on
the trajectory of a periodic solution of (4.6) contained in Ω(z), or lies on an arc
contained in Ω(z) which is the trajectory of a full solution of (4.6) whose α- and
ω-limit sets are stationary points of (4.6).
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