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1. Introduction

In a recent paper [7] the problem of non-continuation was studied for abstract
evolution equations of the type

(1.1) Putt + Q(t)ut + A(t, u) = F (t, u), t ∈ J = [0,∞),

where P and Q(t) are linear self-adjoint operators, and A(t, u) and F (t, u) are
typically a divergence operator in u and a nonlinear driving force.

Other versions of (1.1) were considered earlier by Levine [3]–[6], for which he
introduced the important technique of “concavity” analysis of auxiliary second
order differential inequalities. In all these papers the principal mechanism of
blow-up was the assumption of negative initial energy.

In an interesting paper [10], which has just appeared, Ono has also used
concavity analysis to study blow-up, but in the more general case when the
initial energy is allowed to take appropriately small positive values. His analysis
primarily considers linear wave operators, and moreover is restricted to bounded
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domains in Rn. (It should, however, be added that Ono also allows Kirchhoff type
operators, an added generalization but without serious affect on the principal
ideas.)

Here we discuss some extentions of Ono’s analysis to the abstract equation
(1.1), see Theorem 1. Moreover, in concrete cases, we introduce appropriate
methods to treat divergence structure operators in unbounded domains (includ-
ing but not necessarily restricted to Rn). Our conclusions also yield a larger
class of initial data than in [10] for which blow-up must occur; see Remark 1 in
Section 3.

In the next section we give a precise meaning to equation (1.1), and give
our main abstract theorem. Section 3 discusses a divergence structure equation
in Rn for which blow-up occurs for positive initial energy, even for unbounded
domains. Here the primary new idea, in comparison with [7] and [10], is to
introduce an appropriate coercive operator associated with the equation.

Proofs of the results described here will appear in the forthcoming paper [13].

2. The main theorem

Let X be a Banach space, and X ′ its dual space. If x ∈ X and x′ ∈ X ′, we
shall write 〈x′, x〉X to denote the natural pairing of x and x′, that is 〈x′, x〉X =
x′(x).

Let V be a Hilbert space. An operator P : V → V ′ will be called symmetric if

〈Pv, w〉V = 〈Pw, v〉V for all v, w ∈ V,

and non-negative definite if

〈Pv, v〉V ≥ 0 for all v ∈ V.

It is easy to check that a symmetric operator must be linear and, moreover,
continuous by the uniform boundedness theorem.

We consider the evolution equation (1.1), where P is symmetric and non-
negative definite from V into V ′. We suppose that the dissipation operator Q(t)
is, for each t ∈ J , symmetric and non-negative definite from an appropriate
Hilbert space Y into its dual Y ′. In addition, assume Q ∈ C(J → B(Y, Y ′)),
that is 〈Q( · )v, w〉Y : J → R is continuous for each v, w ∈ Y . Note that P ≡ 0
and Q ≡ 0 are specifically allowed.

Finally, the operators A and F are such that1

A : J ×W → W ′, F : J ×X → X ′,

1Specific examples are given in [4], [7], [8], [11], and also in Section 3 below. For further

clarity and definiteness we refer the reader to these papers.
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with W , X Banach spaces and W ′, X ′ their duals. In order to define the energy
Eu of a solution of (1.1), see below, it is necessary that there exist C1 potentials

A : J ×W → R, F : J ×X → R,

such that for each fixed t the operators A and F are the Fréchet derivatives with
respect to u of A and F , respectively; by normalization we can take A(t, 0) ≡ 0,
F(t, 0) ≡ 0.

Now suppose that there is given a nontrivial subspace G of V , W , X and Y

— not necessarily closed. Let

K = {ϕ : J → G | ϕ ∈ C(J → W )∩C(J → X)∩C1(J → V )∩AC(J → Y )}.

We say that u is a (strong) solution of (1.1) if

(a) u ∈ K,
(b) Distribution Identity:

〈Put(τ), ϕ(τ)〉V |t0 =
∫ t

0

{〈Put(τ), ϕt(τ)〉V − 〈Q(τ)ut(τ), ϕ(τ)〉Y

− 〈A(τ, u(τ)), ϕ(τ)〉W + 〈F (τ, u(τ)), ϕ(τ)〉X} dτ

for all t ∈ J and ϕ ∈ K;
(c) Energy Conservation:

(2.1) Eu(t)−Eu(0) ≤ −
∫ t

0

{〈Q(τ)ut(τ), ut(τ)〉Y −At(τ, u(τ))+Ft(τ, u(τ))} dτ,

where

(2.2) Eu(t) = 〈Put(t), ut(t)〉V /2 +A(t, u(t))−F(t, u(t)), t ∈ J,

is the total energy of u.
Assume even more that Q ∈ C1(J → B(Y, Y ′)), with Qt(t) : Y → Y ′ being

non-positive definite and (necessarily) symmetric for all t ∈ J .

Theorem 1. Suppose there are constants p ≥ q such that, for all (t, u) ∈
J ×G,

(2.3) 〈A(t, u), u〉W − 〈F (t, u), u〉X ≤ qA(t, u)− pF(t, u)

and

(2.4) At(t, u)−Ft(t, u) ≤ 0.

Let p > 2. Then there is no solution u = u(t) of (1.1) on J with

(2.5) A(t, u(t)) ≥ λ0 > 0, t ∈ J,

and

Eu(0) <

(
1− q

p

)
λ0 = D0.
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Remarks. 1. If p = q in (2.3), then Theorem 1 remains valid with D0 = 0,
but without requiring (2.5). In other words, non-continuation holds under the
single condition Eu(0) < 0, namely, negative initial energy; this is exactly the
main result of [7].

2. In the usual applications A is independent of t, in which case (2.4) reduces
simply to Ft(t, u) ≥ 0 on J ×G.

3. Examples

Now let Ω be an open domain in Rn and consider the model problem

(3.1) utt − div(|Du|q−2Du) + µ|u|q−2u = f(t, x, u), x ∈ Ω, t ∈ J,

where

(3.2) f(t, x, u) = g(t, x)|u|σ−2u + c|u|p−2u,

and

(3.3) µ ≥ 0, 1 < q < p; c > 0, 1 < σ < p.

For the function g we assume

(3.4) −g,
∂g

∂t
≥ 0 on J × Ω, g(t, · ) ∈ Lp/(p−σ)(Ω) for all t ∈ J.

Here the appropriate spaces are V = L2(Ω), W = W 1,q
0 (Ω), X = Lp(Ω) and

G = L2(Ω) ∩ Lp(Ω) ∩ W 1,q
0 (Ω). For definiteness the space W will be endowed

with the norm
‖u‖W = (‖u‖q

Lq(Ω) + ‖Du‖q
Lq(Ω))

1/q.

(Note that the remaining space Y is unneeded, since for simplicity we have
omitted damping terms from the equation. In fact, adding a term a(t, x)ut,
a ≥ 0, ∂a/∂t ≤ 0 on J×Ω, to the left hand side of (3.1) leaves Theorems 2 and 3
below unchanged.)

The operator P corresponding to (3.1) is given by 〈Pv,w〉V = (v, w)L2 ;
clearly P is symmetric and positive definite. We take A(u) = −div(|Du|q−2Du)+
µ|u|q−2u, so that2

〈A(u), u〉W = ‖Du‖q
Lq + µ‖u‖q

Lq = qA(u).

On the other hand, as is easy to see, one must then have

(3.5) F(t, u) =
1
σ

∫
Ω

g(t, x)|u|σdx +
c

p
‖u‖p

Lp .

By a solution of (3.1) we now mean a (strong) solution of the abstract evo-
lution equation (1.1) corresponding to the operators P , A and F just defined.

2The choice A(u) = −div(|Du|q−2Du) is inconvenient when Ω = Rn, or indeed when Ω

has infinite measure, due to the lack of coercivity.
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Clearly, (2.4) is satisfied on J ×G by (3.4)1 — we assume suitable regularity
of g = g(t, x) so that Ft(t, u) can be calculated on J×G by differentiation under
the integral sign in (3.5). Finally,

〈F (t, u), u〉X =
∫

Ω

g(t, x)|u|σdx + c‖u‖p
Lp ,

so pF(t, u) ≥ 〈F (t, u), u〉X because σ < p and g ≤ 0. Therefore (2.3) is verified
on J ×G.

Theorem 2. Assume the conditions (3.3), (3.4), and the further restrictions
µ > 0, 2 < p ≤ r hold, where r = nq/(n−q) is the Sobolev exponent for W 1,q

0 (Ω)
when q < n, or otherwise q < p < ∞ if q ≥ n. Then the problem (3.1), (3.2)
cannot have any global solution u corresponding to initial data

(3.6) Eu(0) < E0, ‖u(0)‖Lp > Λ0,

where E0, Λ0 are given by

Λp−q
0 =

qB

c
, E0 = BΛq

0

(
1− q

p

)
,

and B is the best constant for the coercive estimate

(3.7) A(u) ≥ B‖u‖q
Lp , u ∈ W 1,q

0 (Ω).

The existence of B > 0 for which (3.7) holds is a consequence of the Sobolev
embedding theorem (Adams [1, Theorem 5.4, Part III, pp. 97–98]). The corre-
sponding result for bounded domains Ω is slightly different.

Theorem 3. Let the measure of Ω be finite. Then Theorem 2 remains valid
even when µ = 0.

Remarks. 1. K. Ono in [10] essentially treats the semilinear case q = 2,
µ = 0 of Theorem 3, but with the initial data satisfying the somewhat stronger
conditions

Eu(0) < E0, ‖Du(0)‖2
L2 < c‖u(0)‖p

Lp .

Other work involving positive initial energies appears earlier in [2] and [9], the
first however restricted to the wave operator itself (with nonlinear boundary
conditions), and the second with less precise bounds for the initial energy.

2. The results above make clear the distinction between the case when Eu(0)
is taken to be negative, and when it is allowed to be positive, as in (3.6). In
particular, in the latter case it is necessary that the potential A(u) be coercive
so that in turn one must assume that p ≤ r, a condition which was not needed
in the corresponding examples in Section 4 of [7].

3. In the example concerning the degenerate s-Laplacian on page 262 of [7]
the condition s > 2 was required for the application of their Theorem 1. Here we
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assume only that s = q > 1. This significant improvement is made possible by the
more general form of condition (2.3) here in comparison with the corresponding
assumption of [7].

4. The results of Theorems 2 and 3 arise directly from the algebraic be-
havior of the function E(λ) representing the potential well for (3.1). For initial
data which lies deep enough in the “well” itself, the corresponding solutions are
asymptotically stable. This dichotomy is discussed in detail in [12].

A number of concrete examples relative to linear operators A were given
in Section III of [4], to which we refer the reader. Example VI of [4, p.16] in
particular deserves special mention. Here the operator −Q is the Laplacian, so
for precision the space Y as well as W must be chosen as H1

0 (Ω).
Other concrete operators A(u) are given in Section 6 of [11], notably the

polyharmonic operator (−∆)L, where L ≥ 1 is an integer, and still further
examples are given in Section 4 of [8].

All of these examples allow extensions to the time dependent case and to
positive initial energies, for both bounded and unbounded domains, as discussed
above.
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