HESSIAN MEASURES I

NEIL S. TRUDINGER¹ — XU-JIA WANG

Dedicated to Olga Ladyzhenskaya

1. Introduction

Let Ω be a domain in Euclidean *n*-space \mathbb{R}^n . For $k = 1, \ldots, n$ and $u \in C^2(\Omega)$ the *k*-Hessian operator F_k is defined by

$$(1.1) F_k[u] = S_k(\lambda(D^2u)),$$

where $\lambda = (\lambda_1, \dots, \lambda_n)$ denotes the eigenvalues of the Hessian matrix of second derivatives D^2u , and S_k is the k-th elementary symmetric function on \mathbb{R}^n , given by

(1.2)
$$S_k(\lambda) = \sum_{i_1 < \dots < \lambda_k} \lambda_{i_1} \dots \lambda_{i_k}.$$

Alternatively we may write

(1.3)
$$F_k[u] = [D^2 u]_k,$$

where $[\mathcal{A}]_k$ denotes the sum of the $k \times k$ principal minors of an $n \times n$ matrix \mathcal{A} . Our purpose in this paper is to extend the definition of the F_k to corresponding classes of continuous functions so that $F_k[u]$ is a Borel measure and to consider the Dirichlet problem in this setting. A function $u \in C^2(\Omega)$ is called k-convex (uniformly k-convex) in Ω if $F_j[u] \geq 0$ (> 0) for $j = 1, \ldots, k$. The operator F_k

 $^{1991\} Mathematics\ Subject\ Classification.\ 35{\rm J}60,\ 58{\rm C}20,\ 28{\rm A}33.$

 $Key\ words\ and\ phrases.$ Hessian operators, Borel measures, Hessian equations, Dirichlet problem, Hessian integrals.

¹Research supported by Australian Research Council Grant.

is degenerate elliptic (elliptic) with respect to k-convex (uniformly k-convex) functions. When k=1, we have $F_1[u]=\Delta u$ and 1-convex functions are subharmonic. When k=n, $F_k[u]=\det D^2u$, the Monge-Ampère operator, and n-convex functions are convex. To extend these notions to continuous functions, we call a function $u\in C^0(\Omega)$, k-convex, if there exists a sequence $\{u_m\}\subset C^2(\Omega)$ such that in any subdomain $\Omega'\in\Omega$, u_m is k-convex for sufficiently large m and converges uniformly to u. It is easily seen that $u\in C^0(\Omega)$ is k-convex if and only if $F_k[u]\geq 0$ in the viscosity sense ([11], [16]), that is, whenever there exists a point $y\in\Omega$ and function $v\in C^2(\Omega)$ satisfying u(y)=v(y), $u\leq v$ in Ω , we must have $F_k[v](y)\geq 0$. As above a function $u\in C^0(\Omega)$ is 1-convex if and only if it is subharmonic and n-convex if and only if it is convex. In each of these cases, it is well known that the operator F_k can be defined as a Borel measure μ_k . For k=1, μ_1 is the positive distribution given by

(1.4)
$$\mu_1(\varphi) = \int_{\Omega} u \Delta \varphi$$

for $\varphi \in C_0^{\infty}(\Omega)$, while for k = n,

for any Borel set $e \subset \Omega$, where χ_u is the normal (subgradient) mapping of the convex function u ([1], [4]). Let $\Phi^k(\Omega)$ denote the class of k-convex functions in $C^0(\Omega)$. In this paper we shall prove that $F_k[u]$ may be extended to $\Phi^k(\Omega)$ as a Borel measure μ_k , for all $k = 1, \ldots, n$, and that the corresponding mapping $u \to \mu_k[u]$ is weakly continuous on $C^0(\Omega)$. The resultant measure $\mu_k[u]$ will be called the k-Hessian measure generated by u.

THEOREM 1.1. For any $u \in \Phi^k(\Omega)$, there exists a Borel measure $\mu_k[u]$ such that

(i)
$$\mu_k[u](e) = \int_e F_k[u]$$

for any Borel set $e \subset \Omega$, if $u \in C^2(\Omega)$, and

(ii) if $u_m \to u$ locally uniformly in Ω , then the corresponding measures $\mu_k[u_m] \to \mu_k[u]$ weakly, that is,

(1.6)
$$\int_{\Omega} g \, d\mu_k[u_m] \to \int_{\Omega} g \, d\mu_k[u],$$

for all $g \in C^0(\Omega)$ with compact support.

Theorem 1.1 is proved in Section 2 of this paper as a consequence of various integral inequalities for the operators F_k .

In Section 3 we consider the corresponding Dirichlet problem,

(1.7)
$$\begin{cases} \mu_k[u] = \mu & \text{in } \Omega, \\ u = \varphi & \text{on } \partial\Omega, \end{cases}$$

in the class of k-convex functions. Under the hypotheses that the domain Ω is uniformly (k-1)-convex, that is, $\partial\Omega\in C^2$ and $H_j[\partial\Omega]>0,\ j=1,\ldots,k-1$, where $H_j[\partial\Omega]$ denotes the j-mean curvature of the boundary $\partial\Omega$ (see [17], [18]), and that the Borel measure μ can be decomposed as a sum

$$\mu = \mu_1 + \mu_2,$$

where $\mu_1 \in L^1(\Omega)$ and μ_2 has compact support in Ω , we prove the following existence and uniqueness theorem.

THEOREM 1.2. For any $\varphi \in C^0(\overline{\Omega})$, there exists a unique $u \in \Phi^k(\Omega) \cap C^0(\overline{\Omega})$ satisfying (1.7), provided k > n/2.

Theorem 1.2 extends the case, p = 1, in [20], where an equivalent formulation of the Dirichlet problem (1.7) is treated for inhomogeneous terms in L^p spaces.

In Section 4, we consider the extension of the measures μ_k as signed measures on more general classes of functions including semi-convex functions (as in [10]) and admissible functions, for which the operators F_k are degenerate elliptic. Finally, in Section 5, we apply Theorem 1.1 to extend Hessian integrals, (as defined in [7], [19], [24]), to continuous k-convex functions. In particular we derive a convergence theorem, Theorem 5.1, monotonicity results, Lemma 5.2, Corollary 5.3, and a variational formula, Theorem 5.4.

In an ensuing paper [23], we consider the extension of Theorem 1.1 to convergence in measure, with applications to the cases $k \le n/2$ in Theorem 1.2.

2. Integral inequalities

In this section we develop some basic integral properties for the operators F_k which lead to Theorem 1.1. First we establish a monotonicity property.

Lemma 2.1. Let $u,v\in\Phi^k(\Omega)\cap C^2(\overline{\Omega})$ satisfy u=v on $\partial\Omega,\ u\geq v$ in $\Omega.$ Then

(2.1)
$$\int_{\Omega} F_k[u] \le \int_{\Omega} F_k[v].$$

PROOF. By approximation of the functions u and v and use of Sard's theorem, we may assume $\partial \Omega \in C^2$. Setting, for a symmetric matrix r with eigenvalues $\lambda = (\lambda_1, \dots, \lambda_n)$,

(2.2)
$$S_k^{ij}(r) = \frac{\partial}{\partial r_{ij}} S_k(\lambda(r)),$$

and, using the identity [15],

$$(2.3) D_i S_i^{ij}(D^2 u) = 0,$$

we then obtain, by the divergence theorem,

(2.4)
$$\int_{\Omega} \left(F_k[v] - F_k[u] \right) = \int_0^1 \int_{\Omega} S_k^{ij} (sD^2 u + (1-s)D^2 v) D_{ij}(v-u)$$
$$= \int_0^1 \int_{\partial \Omega} S_k^{ij} (sD^2 u + (1-s)D^2 v) \gamma_i D_j(v-u)$$

where γ denotes the unit outer normal to $\partial\Omega$. Letting ∂ denote the tangential gradient in $\partial\Omega$, given by

(2.5)
$$\partial = D - \gamma(\gamma \cdot D),$$

we can write the integrand in (2.4) as

(2.6)
$$S_k^{ij}(sD^2u + (1-s)D^2v)\gamma_i D_j(v-u)$$

= $S_k^{ij}(sD^2u + (1-s)D^2v)\gamma \cdot D(v-u)\gamma_i \gamma_j \ge 0$

since $\partial u = \partial v$ on $\partial \Omega$, $\gamma \cdot Dv \ge \gamma \cdot Du$ on $\partial \Omega$, and the function su + (1-s)v will be k-convex for all $s \in [0,1]$ (see Lemma 2.3 below).

Next we note that a global control on F_k is provided, for example, by Reilly's formula, [15] (see also [17]),

(2.7)
$$\int_{\Omega} F_k[u] = \frac{1}{k} \int_{\Omega} (\gamma \cdot Du)^k H_{k-1}[\partial \Omega],$$

when u vanishes on $\partial\Omega$. Our next estimate shows that we can control the integral of F_k locally in terms of the oscillation of u.

LEMMA 2.2. Let $u \in \Phi^k(\Omega) \cap C^2(\Omega)$. Then for any subdomain $\Omega' \subseteq \Omega$, we have

(2.8)
$$\int_{\Omega} F_k[u] \le C(\operatorname{osc}_{\Omega} u)^k,$$

where C is a constant depending on Ω and Ω' .

To prove Lemma 2.2, we need a further property of k-convex functions.

LEMMA 2.3. Let $u_1, \ldots, u_m \in \Phi^k(\Omega)$ and f be a convex, non-decreasing function in \mathbb{R}^m . Then the composite function $w = f(u_1, \ldots, u_m)$ is also k-convex.

PROOF. As a special case of Lemma 2.3, we see that linear combinations of k-convex functions with non-negative coefficients are also k-convex. This follows immediately from the convexity of the cones

(2.9)
$$\Gamma_k = \{ r \in \$^n \mid S_j(\lambda(r)) > 0, \ j = 1, \dots, k \}, \\ \overline{\Gamma}_k = \{ r \in \$^n \mid S_j(\lambda(r)) > 0, \ j = 1, \dots, k \}$$

in $\n , the space of real, $n \times n$, symmetric matrices. For the general case, it suffices to assume $u_1, \ldots, u_m \in \Phi^k(\Omega) \cap C^2(\Omega)$ with $f \in C^2(\mathbb{R}^m)$. Then we have by calculation,

$$D_{ij}w = \frac{\partial f}{\partial u_p}D_{ij}u_p + \frac{\partial^2 f}{\partial u_p\partial u_q}D_iu_pD_ju_q,$$

so that $D^2w \in \overline{\Gamma}_k$, since

$$\frac{\partial f}{\partial u_p} \ge 0, \quad p = 1, \dots, m, \quad \left[\frac{\partial^2 f}{\partial u_p \partial u_q}\right] \ge 0$$

and $\overline{\Gamma}_k$ is convex.

PROOF OF LEMMA 2.2. Let $B=B_R(y)$ be a ball of radius R and centre y, lying in Ω and for $0<\sigma<1$, let $B_{\sigma R}$ denote the concentric ball of radius σR . Without loss of generality we may assume y=0 and, by subtraction of a suitable constant, $u<-\varepsilon$ in B for some given positive constant ε . Setting

(2.10)
$$\psi(x) = \frac{m_0}{1 - \sigma^2} \left(1 - \frac{|x|^2}{R^2} \right), \quad m_0 = \inf_B u,$$
$$w(x) = \max\{u, \psi\}$$

it follows from Lemma 2.3, that w is k-convex in B and $w \le u$ in $B_{\sigma R}$, $w = \psi$ on ∂B . Our desired result follows by applying Lemma 2.1 to the function w and ψ . To overcome the lack of smoothness of w, we replace it by

$$w_h = f_h(u, \psi),$$

where f_h , for h > 0, is the mollification,

(2.11)
$$f_h(x) = \int_{\mathbb{R}^2} \rho\left(\frac{x-y}{h}\right) \max(y_1, y_2) \, dy$$

and $\rho \geq 0$, in $C_0^{\infty}(\mathbb{R}^2)$, with $\int \rho = 1$, is the usual mollifier. With h sufficiently small, we obtain from Lemma 2.1,

(2.12)
$$\int_{B_{\sigma R}} F_k[u] \le \int_B F_k[\psi] = \binom{n}{k} \omega_n \left(\frac{2m_0}{1 - \sigma^2}\right)^k R^{n - 2k}$$
$$= \binom{n}{k} \omega_n \left(\frac{2}{1 - \sigma^2}\right)^k R^{n - 2k} \left(\operatorname{osc}_B u\right)^k$$

as $\varepsilon \to 0$. By covering Ω' with balls we conclude (2.8).

We are now ready to prove Theorem 1.1. Let $u \in \Phi^k(\Omega)$ and suppose $\{u_m\} \subset \Phi^k(\Omega) \cap C^2(\Omega)$ converges to u in $C^0(\Omega)$. By Lemma 2.2, the integrals

$$\int_{\Omega'} F_k[u_m]$$

are uniformly bounded, for any subdomain $\Omega' \in \Omega$ and hence a subsequence $\{F_k[u_{m_p}]\}$ converges weakly [2] (in the sense of measures) to a Borel measure

 $\mu_k[u]$ on Ω . It remains to show that the measure $\mu_k[u]$ is determined uniquely by the function u. Accordingly suppose that $\{u_m\}$, $\{v_m\} \subset \Phi^k(\Omega) \cap C^2(\Omega)$ are two sequences converging in $C^0(\Omega)$ to u and that the corresponding sequence of functions $\{F_k[u_m]\}$, $\{F_k[v_m]\}$ converge weakly to Borel measures ν_1 and ν_2 respectively. Let $B = B_R(y) \subseteq \Omega$ and fix some $\sigma \in (0,1)$. Let $\eta \in C^2(\overline{B})$ be a convex function satisfying $\eta = 0$ in $B_{\sigma R}$, $\eta = 1$ on $\partial\Omega$. For fixed $\varepsilon > 0$, it then follows from the uniform convergence of $\{u_m\}$, $\{v_m\}$, that

$$(2.13) u_m \le v_m + \varepsilon \eta$$

on ∂B , for sufficiently large m. Let

$$(2.14) G_m = \{x \in B \mid u_m > v_m + \varepsilon \eta\}.$$

Without loss of generality we may assume that ∂G_m is sufficiently smooth so that from Lemma 2.1 we have

(2.15)
$$\int_{G_m} F_k[u_m] \le \int_{G_m} F_k[v_m + \varepsilon \eta].$$

By adding $\varepsilon/2$ to u_m , we may also assume that $G_m \supset B_{\sigma R}$, so that from (2.15), we have

(2.16)
$$\int_{B_{\sigma R}} F_k[u_m] \leq \int_B F_k[v_m + \varepsilon \eta] \leq \int_B [D^2 v_m + C \varepsilon I]_k$$
$$\leq \int_B F_k[v_m] + C \sum_{j=0}^{k-1} \varepsilon^{k-j} \int_B F_j[v_m],$$

where C is a constant depending on η . Using the estimate (2.11) and sending $m \to \infty$, $\varepsilon \to 0$, $\sigma \to 1$, we then obtain

$$(2.17) \nu_1(B) \le \nu_2(\overline{B}).$$

By replacing B by a sequence of balls $B_{\sigma_m R}$, with $\sigma_m \to 1$, satisfying

$$\nu_2(B_{\sigma_m R}) = \nu_2(\overline{B}_{\sigma_m R}),$$

we deduce $\nu_1(B) \leq \nu_2(B)$ and subsequently by interchanging $\{u_m\}$ and $\{v_m\}$, we have $\nu_1(B) = \nu_2(B)$, whence $\nu_1 = \nu_2$. This completes the proof of Theorem 1.1, as the above argument shows that $\mu_k[u]$ is well defined as the weak limit of $F_k[u_m]$ for any sequence $\{u_m\}$ converging to u in $C^0(\Omega)$ and the mapping, $\mu_k : C^0(\Omega) \to M(\Omega)$, the space of locally finite Borel measures in Ω is weakly continuous. \square

Using Theorem 1.1, our previous inequalities may be extended to functions in $\Phi^k(\Omega)$. In particular we have the following extensions of Lemmas 2.1 and 2.2.

COROLLARY 2.4. Let $u, v \in \Phi^k(\Omega) \cap C^0(\overline{\Omega})$ satisfying u = v on $\partial\Omega$, $u \geq v$ in Ω . Then the corresponding measures μ_k satisfy

(2.18)
$$\mu_k[u](\Omega) \le \mu_k[v](\Omega).$$

COROLLARY 2.5. Let $u \in \Phi^k(\Omega)$. Then for any solution $\Omega' \subseteq \Omega$, we have

(2.19)
$$\mu_k[u](\Omega') \le C(\operatorname{osc}_{\Omega} u)^k,$$

where C is a constant depending on Ω and Ω' .

3. The Dirichlet problem

In the paper [20], existence and uniqueness results are obtained for the Dirichlet problem for weak solutions of the equation

$$(3.1) F_k[u] = \psi$$

for inhomogeneous term $\psi \in L^p(\Omega)$ for $p \geq 1$. The classical case had been previously treated in [5] (see also [18]). A function u was called a weak solution of equation (3.1) in Ω if there existed a sequence $\{u_m\} \subset \Phi^k(\Omega) \cap C^2(\Omega)$ converging in $C^0(\Omega)$ to u with the corresponding sequence $\{F_k[u_m]\}$ converging in $L^1_{loc}(\Omega)$ to ψ . From Theorem 1.1, we have immediately, $\mu_k[u] = \psi$, so that the notion in (1.7) is more general. (Note that when a Borel measure μ is absolutely continuous and representable by a locally integrable function ψ we identify μ with ψ .) A comparison principle for weak solutions is proved in [20] using estimates from [19]. From Corollary 2.4 we obtain a more general result as follows.

Theorem 3.1. Let $u, v \in C^0(\overline{\Omega}) \cap \Phi^k(\Omega)$ satisfy

(3.2)
$$\begin{cases} \mu_k[u] \ge \mu_k[v] & \text{in } \Omega, \\ u \le v & \text{on } \partial\Omega. \end{cases}$$

Then $u \leq v$ in Ω .

PROOF. Assume $\{o\} \in \Omega$ and set

$$\overline{u}(x) = u(x) + \varepsilon(|x|^2 - d^2)$$

for some $\varepsilon > 0$, where $d = \operatorname{diam} \Omega$. Clearly, we have

$$\mu_k[\overline{u}] \ge \mu_k[u] + \binom{n}{k} (2\varepsilon)^k,$$

and $\overline{u} \leq u \leq v$ on $\partial\Omega$. Accordingly, setting

$$\Omega_{\varepsilon} = \{ x \in \Omega \mid \overline{u}(x) > v(x) \},$$

and assuming Ω_{ε} is non-empty, we have, by Corollary 2.4,

$$\mu_k[u](\Omega_{\varepsilon}) < \mu_k[\overline{u}](\Omega_{\varepsilon}) \le \mu_k[v](\Omega_{\varepsilon}),$$

which contradicts our hypothesis. Consequently, letting $\varepsilon \to 0$, we infer $u \le v$ in Ω .

Note that Corollary 2.4 and Theorem 3.1, were proved by completely different methods, (using the normal mapping), in the case k = n ([1], [4], [6]). The uniqueness assertion in Theorem 1.2 follows immediately from Theorem 3.1. We may obtain the existence part by approximation from the case $\nu_2 = 0$, ([20, Theorem 1.1]), using the Hölder estimate there to guarantee the local equicontinuity of the approximating solutions. However, this estimate may be bypassed as k-convex functions are automatically Hölder continuous if k > n/2. To see this we fix a ball $B = B_R(y) \subset \Omega$ and observe that the function w given by

(3.3)
$$w(x) = C|x - y|^{2-n/k},$$

where C is a positive constant, satisfies

$$(3.4) F_k[w] = 0, \text{for } x \neq y.$$

Consequently, if $u \in \Phi^k(\Omega) \cap C^2(\Omega)$, we obtain, from the classical comparison principle in the punctured ball, $B_R(y) - \{y\}$,

(3.5)
$$u(x) - u(y) \le \operatorname{osc}_{B_R(y)} u\left(\frac{|x-y|}{R}\right)^{2-n/k},$$

provided k > n/2. It follows then that $\Phi^k(\Omega) \subset C^{0,\alpha}(\Omega)$ for $\alpha = 2 - n/k > 0$ and moreover, for any $x, y \in \Omega$, $x \neq y$.

$$(3.6) \qquad \frac{|u(x) - u(y)|}{|x - y|^{\alpha}} \le \frac{\operatorname{osc} u}{d_{x,y}^{\alpha}},$$

where $d_{x,y} = \min\{\operatorname{dist}(x,\partial\Omega),\operatorname{dist}(y,\partial\Omega)\}$. For k > n/2, the function w will be k-convex in any domain and from [19], (see, in particular, (3.15), (3.16) in [19]), we have

(3.7)
$$F_k[w] = \left[C\left(2 - \frac{n}{k}\right)\right]^k \binom{n}{k} \omega_n \delta_y,$$

where δ_y denotes the Dirac delta measure at y.

To complete the proof of Theorem 1.2, we let $\{\psi_m\}$ be a sequence of non-negative functions in $C_0^\infty(\Omega)$, converging weakly as measures to ν_2 , with support lying in some subdomain $\Omega' \subseteq \Omega$. By virtue of the case p=1, ([20, Theorem 1.1]), there exists a sequence $\{u_m\} \subset C^0(\overline{\Omega}) \cap \Phi^k(\Omega)$ of weak solutions of the Dirichlet problems

(3.8)
$$\begin{cases} \mu_k[u_m] = \nu_1 + \psi_m & \text{in } \Omega, \\ u = \varphi & \text{on } \partial\Omega. \end{cases}$$

From the L^{∞} estimates in [19], [20], the sequence $\{u_m\}$ is uniformly bounded in $L^{\infty}(\Omega)$ and hence, from (3.6), (see also [20, Theorem 4.1]), equicontinuous in Ω' ,

so that a subsequence converges uniformly in Ω' . Relabelling the subsequence as $\{u_m\}$, we fix $\varepsilon > 0$, so that for sufficiently large m, l, we have,

$$(3.9) |u_m - u_l| \le \varepsilon on \Omega'.$$

Using the comparison principle, Theorem 3.1 (or [20, Theorem 2.2]), in the domain $\Omega - \overline{\Omega'}$, we then obtain (3.9) on the whole domain Ω and Theorem 1.2 follows from Theorem 1.1.

We remark that the necessary L^{∞} estimates for the above proof (and also that of Theorem 1.1 in [20]), also follow readily from the Sobolev inequality in [19], [24], and moreover, (in the case k > n/2), can be derived simply from comparison with the functions (3.3), [21].

As an example of Theorem 1.2, we see that for any uniformly (k-1)-convex domain Ω , and point $y \in \Omega$, there exists a bounded Greens function G_y , given by the solution of the Dirichlet problem,

(3.10)
$$\begin{cases} \mu_k[G_y] = \delta_y & \text{in } \Omega, \\ G_y = 0 & \text{on } \partial\Omega. \end{cases}$$

Furthermore, it is readily shown that $G_y \in C^{0,\alpha}(\overline{\Omega}) \cap C^{0,1}(\overline{\Omega} - \{y\})$, where $\alpha = 2 - n/k$, and, in accordance with (3.7) (see also [19]), for $\Omega = B_R(y)$, we have

(3.11)
$$G_y(x) = \left[\frac{1}{\binom{n}{k}\omega_n}\right]^{1/k} \frac{1}{2 - n/k} (|x - y|^{2 - n/k} - R^{2 - n/k}).$$

The Greens function is used to sharpen maximum principles in [21].

When $k \leq n/2$, we cannot expect to obtain a continuous k-convex solution of the Dirichlet problem (1.7) without further restrictions on ν , for example, $\nu \in L^p(\Omega)$ for p > n/2k, as in [20]. In order to embrace this case, we extend our notion of k-convexity to upper semi-continuous functions analogously to the general notion of subharmonic functions in the case k=1. Accordingly, an upper semi-continuous function $u:\Omega \to [-\infty,\infty)$ is called k-convex if $F_k[u] \geq 0$ in the viscosity sense, that is, whenever there exists a point $y \in \Omega$ and function $v \in C^2(\Omega)$ satisfying u(y) = v(y), $u \leq v$ in Ω , we must have $F_k[v](y) \geq 0$. Because our comparison argument above automatically extends to upper semi-continuous k-convex functions, we infer again the estimate (3.5) and (3.6) when k > n/2 so that there is no gain in generality in this case. However, the functions (3.3) will be k-convex for all $k=1,\ldots,n$ and corresponding Greens functions arise by solving (3.10) in an appropriate sense. The general case is treated in our ensuing paper [23], together with further local properties of k-convex functions.

Finally, we note that Theorem 1.2 extends to embrace more general boundary data in the presence of barriers and that the Perron process [12] is also applicable.

In particular the condition $\nu_1 \in L^1(\Omega)$ may be replaced by

(3.12)
$$\nu_1 \le \nu[\operatorname{dist}(x, \partial\Omega)]^{\beta - k - 1}$$

for positive constants ν and β , as in the case k = n, (see [4], [20]).

4. Semi-convex and admissible functions

The theory in Section 2 extends to larger classes of functions. Analogously to the notion of semi-convexity, we may call a function $u \in C^0(\Omega)$, k-semi-convex if the function v given by

$$(4.1) v(x) = u(x) + A|x|^2/2,$$

is k-convex for some fixed positive constant A. From the expansion

(4.2)
$$F_k[u] = \sum_{j=0}^k c(j,k,n)(-A)^j F_{k-j}[v],$$

where $c(j, k, n) = \binom{n}{k} \binom{k}{j} / \binom{n}{k-j}$, we can then define μ_k as a *signed* Borel measure in Ω , by

(4.3)
$$\mu_k[u] = \sum_{j=0}^k c(j,k,n)(-A)^j \mu_{k-j}[v].$$

If $\{u_m\}$ is a sequence of k-semi-convex functions, with the same constant A, converging in $C^0(\Omega)$ to a k-semi-convex function u, the corresponding sequence of measures $\mu_k[u_m]$ will converge weakly to $\mu_k[u]$. It follows that the definition (4.3) is independent of the expansion (4.2).

Following usual terminology ([16], [18]), we call a function $u \in C^2(\Omega)$, admissible with respect to the operator F_k (or simply k-admissible) if

$$(4.4) S_k(D^2u + \eta) \ge S_k(D^2u)$$

for all non-negative matrices $\eta \in \mathbb{R}^n$. Condition (4.4) implies that the operator F_k is degenerate elliptic with respect to u, that is,

$$[S_k^{ij}(D^2u)] \ge 0,$$

and is weaker that k-convexity, although the two conditions coincide in the convex case k = n. A function $u \in C^0(\Omega)$ is called k-admissible if there exists a sequence $\{u_m\} \subset C^2$ of k-admissible functions converging to u in $C^0(\Omega)$. If additionally the sequence $\{u_m\}$ satisfies

for a positive constant A, then the function u will be k-semi-convex, (with the same constant A). To see this, we set

$$v_m = u_m + A|x|^2/2$$

and expand

$$F_k[v_m] = \sum_{j=0}^k c(j, k, n) A^j F_{k-j}[u_m] \ge F_k[u_m] + \binom{n}{k} A^k,$$

since $F_j[u_m] \geq 0$, j = 1, ..., k-1. Equivalently, if $u \in C^0(\Omega)$ satisfies the inequality

$$(4.7) F_k[u] \ge -\binom{n}{k} A^k$$

in the viscosity sense ([11], [16]), then u is k-semi-convex with constant A. Consequently, we can define signed Borel measures μ_k for such functions, which extend the smooth case and are weakly continuous with respect to convergence in $C^0(\Omega)$.

Alternatively, the existence of the signed measure μ_k can be approached directly since Lemma 2.1 holds, more generally, for k-admissible functions $u, v \in C^2(\overline{\Omega})$. In Lemma 2.2, we obtain, in place of (2.11), for k-admissible $u \in C^2(\Omega)$,

$$(4.8) \qquad \int_{\Omega'} F_k[u] \le C \left\{ \int_{\Omega} (F_k[u])^- + (\operatorname{osc}_{\Omega} u)^k \right\}.$$

Consequently, by following the proof of Theorem 1.1, we see that Theorem 1.1 can be extended to the class $\Phi^k(\Omega; g)$ of k-admissible functions u which are limits in $C^0(\Omega)$ of sequences $\{u_m\} \subset C^2(\Omega)$ of k-admissible functions u_m satisfying

$$(4.9) F_k[u_m] \ge -g,$$

where g is a fixed, non-negative, locally integrable function in Ω . Corollaries 2.4 and 2.5 then extend also to $\Phi^k(\Omega;g)$ with (2.19) replaced by

(4.10)
$$\mu_k[u](\Omega') \le C \left\{ \int_{\Omega} g + (\operatorname{osc}_{\Omega} u)^k \right\}.$$

5. Hessian integrals

For $u \in C^2(\overline{\Omega})$, we define the Hessian integral $I_k[u]$ by

(5.1)
$$I_k[u] = I_k[u;\Omega] = -\int_{\Omega} u F_k[u].$$

If u = 0 on $\partial\Omega$, we have by integration by parts,

$$I_k[u] = k \int_{\Omega} S_k^{ij} D_i u D_j u,$$

so that $I_k[u] \geq 0$ if, also, u is k-admissible. Imbedding properties of Hessian integrals are treated in the papers [7], [19], [20], [24]. Using Theorem 1, we define an extension of I_k to $\Phi^k(\Omega) \cap C^0(\overline{\Omega})$ by

$$I_k[u] = -\int_{\Omega} u \, d\mu_k[u].$$

Clearly, $I_k[u]$ is finite if $\mu_k[u](\Omega) < \infty$. Letting $\Phi_0^k(\Omega)$ denote the subset of $\Phi^k(\Omega) \cap C^0(\overline{\Omega})$ of functions vanishing on $\partial\Omega$, we then obtain from the weak continuity of μ_k , the approximation result.

THEOREM 5.1. Let $\{u_m\} \subset \Phi_0^k(\Omega)$ converge uniformly to u and suppose $\{\mu_k[u_m](\Omega)\}$ is bounded. Then $I_k[u_m] \to I_k[u]$.

PROOF. For $\Omega' \subseteq \Omega$, we have

$$\mu_k[u](\Omega') \leq \liminf_{m \to \infty} \mu_k[u_m](\Omega')$$

so that $\mu_k[u](\Omega) < \infty$. From (5.3) we have, for any $\eta \in C_0^0(\Omega)$, $0 \le \eta \le 1$,

$$I_{k}[u_{m}] - I_{k}[u] = \int_{\Omega} (u - u_{m}) d\mu_{k}[u_{m}] + \int_{\Omega} u (d\mu_{k}[u] - d\mu_{k}[u_{m}])$$

$$\leq \sup_{\Omega} |u - u_{m}| \mu_{k}[u_{m}](\Omega) + \sup_{\Omega} (1 - \eta) |u| (\mu_{k}[u_{m}](\Omega) + \mu_{k}[u](\Omega))$$

$$+ \int_{\Omega} \eta u (d\mu_{k}[u] - d\mu_{k}[u_{m}]) \to 0,$$

as $\eta \to 1$, $m \to \infty$. Interchanging u and u_m we obtain $I_k[u_m] \to I_k[u]$ as required.

REMARK. If we only assume $\{u_m\} \subset \Phi^k(\Omega)$ converges to u in $C^0(\Omega)$, we obtain $I_k[u_m;\Omega'] \to I_k[u;\Omega']$ for any subdomain $\Omega' \in \Omega$ satisfying $\mu_k[u_m](\partial \Omega') = 0$, $m \in \mathbb{N}$. If additionally, $\mu_k[u_m] \to \mu_k[u]$ strongly in $\Omega - \Omega'$ for some $\Omega' \in \Omega$, then we obtain $I_k[u_m;\Omega] \to I_k[u;\Omega]$ as above.

Monotonicity. Hessian integrals enjoy corresponding monotonicity properties to the Hessian measures. Assuming $u,v\in C^2(\overline{\Omega}),\ u=v$ on $\partial\Omega,\ \partial\Omega\in C^2,$ and writing

$$(5.4) w_t = (1-t)u + tv, 0 \le t \le 1, f(t) = I_k[w_t],$$

we calculate

(5.5)
$$I_{k}[u] - I_{k}[v] = f(0) - f(1)$$

$$= \int_{0}^{1} \int_{\Omega} (v - u) F_{k}[w_{t}] dt + \int_{0}^{1} \int_{\Omega} w_{t} S_{k}^{ij} D_{ij}(v - u) dt$$

$$= (k + 1) \int_{0}^{1} \int_{\Omega} (v - u) F_{k}[w_{t}] dt$$

$$+ \int_{0}^{1} \int_{\partial \Omega} u S_{k}^{ij} \gamma_{i} \gamma_{j} D_{\gamma}(v - u) dt,$$

where, as in Section 2, γ denotes the unit outer normal to $\partial\Omega$. Accordingly, if $u \geq v$ in Ω , $u = v \leq 0$ on $\partial\Omega$, with u and v both k-convex in Ω , we infer $I_k[u] \leq I_k[v]$. More generally, if $M = \max_{\partial\Omega} u > 0$, we replace u, v by u - M, v - M respectively, to obtain

$$I_k[u] = I_k[u - M] + M\mu_k[u](\Omega) \le I_k[v - M] + M\mu_k[v](\Omega) = I_k[v].$$

We therefore have the following analogue of Lemma 2.1.

LEMMA 5.2. Let $u,v\in\Phi^k(\Omega)\cap C^2(\overline{\Omega})$ satisfy u=v on $\partial\Omega,\ u\geq v$ in $\Omega.$ Then

$$(5.6) I_k[u] \le I_k[v].$$

By approximation, using Theorem 5.1, we then infer the analogue of Corollary 2.4.

COROLLARY 5.3. Let $u, v \in \Phi_0^k(\Omega)$ satisfy $u \geq v$ in Ω . Then

$$(5.7) I_k[u] \le I_k[v].$$

REMARK. More generally, if $u, v \in \Phi^k(\Omega) \cap C^0(\overline{\Omega})$, $u \geq v$ in Ω , we obtain, using our previous remark after Theorem 5.1,

(5.8)
$$\liminf_{\delta \to 0} I_k[u; \Omega_{\delta}] \le \limsup_{\delta \to 0} I_k[v; \Omega_{\delta}],$$

where $\Omega_{\delta} = \{x \in \Omega \mid \operatorname{dist}(x, \partial\Omega) > \delta\}$. Also if only $u, v \in \Phi^k(\Omega)$, then $I_k[u; \Omega'] \leq I_k[v; \Omega']$ for any subdomain $\Omega' \subseteq \Omega$, where $u \geq v$ and u = v on $\partial\Omega'$.

Variational derivatives. From (5.5) we have

(5.9)
$$f'(0) = (k+1) \int_{\Omega} (u-v) F_k[u] - \int_{\partial \Omega} u S_k^{ij}(D^2 u) \gamma_i \gamma_j D_{\gamma}(v-u).$$

Furthermore, if $D_{\gamma}u = D_{\gamma}v$ (or u = 0) on $\partial\Omega$, we have

(5.10)
$$f'(0) = (k+1) \int_{\Omega} (u-v) F_k[u],$$
$$f''(t) = (k+1) \int_{\Omega} S_k^{ij}(D^2 w_t) D_i(u-v) D_j(u-v) \ge 0,$$

if u, v are k-admissible in Ω . Moreover, if $\varphi = u - v$ has compact support in Ω_{δ} for some $\delta > 0$, we have an upper bound,

(5.11)
$$f''(t) \leq (k+1)(n-k+1) \int_{\Omega_{\delta}} F_{k-1}[w_t] \max |D\varphi|^2$$
$$\leq C(\operatorname{osc}_{\Omega} u + \operatorname{osc}_{\Omega} \varphi)^{k-1} \max |D\varphi|^2$$

by Lemma 2.2. By approximation we then obtain the following variational formula.

THEOREM 5.4. Let $u, v \in \Phi^k(\Omega) \cap C^0(\overline{\Omega})$ with $\varphi = u - v \in C_0^2(\Omega)$ and let $f(t) = I_k[w_t], \ 0 \le t \le 1$. Then

(5.12)
$$f'(0) = (k+1) \int_{\Omega} (u-v) \, d\mu_k[u].$$

Further Remarks. Taking account of the preceding section, certain of the above results extend to semi-convex or admissible functions. In particular Theorem 5.1 extends to sequences $\{u_m\}$ of k-semi-convex functions (with same constant A) or sequences $\{u_m\} \subset \Phi^k(\Omega, g)$ for some $g \in L^1(\Omega)$, vanishing continuously on $\partial\Omega$. The variational formula (5.12) remains valid for u, v being k-semi-convex or k-admissible with $u \in \Phi^k(\Omega, g)$. Furthermore, if $u, v \in C^0(\overline{\Omega}) \cap \Phi^k(\Omega, g)$ with u = v = 0 on $\partial\Omega$, $u \geq v$ in Ω , we obtain from (5.10), the inequality

(5.13)
$$I_k[u] - I_k[v] \le (k+1) \int_{\Omega} (v-u) \, d\mu_k[u],$$

which complements Lemma 5.2. In the case k=n, inequalities (5.7) and (5.13) were proved by Krylov [14]. Accordingly, if we define the functional $J_{k;\mu}$ on $\Phi_0^k(\Omega)$ by

(5.14)
$$J_{k;\mu}[u] = \frac{1}{k+1} I_k[u] + \int_{\Omega} u \, d\mu$$

for $u \in \Phi_0^k(\Omega)$, where μ is a finite Borel measure on Ω , we obtain

(5.15)
$$J_{k,\mu}[u] = \min_{u \ge v} J_{k;\mu}[v],$$

provided $\mu_k[u] = \mu$. Consequently, the solution of the Dirichlet problem (1.7) for $\varphi \equiv 0$ solves the variational problem (5.15). Related variational problems are treated in [3], [8], [9] and [13].

References

- [1] A. D. ALEKSANDROV, Dirichlet problem for the equation $det(z_{ij}) = \varphi$, Vestnik Leningrad Univ. 13 (1958), 5–24.
- [2] R. B. Ash, Measure, Integration and Functional Analysis, Academic Press, 1972.
- [3] I. J. Bakelman, Variational problems and elliptic Monge-Ampère equations, J. Differential Geom. 18 (1983), 669–999.
- [4] I. J. Bakelman, Convex Analysis and Nonlinear Geometric Elliptic Equations, Springer-Verlag, 1994.
- [5] L. CAFFARELLI, L. NIRENBERG AND J. SPRUCK, Dirichlet problem for nonlinear second order elliptic equations III, Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985), 261–301.
- [6] S. Y. CHENG AND S. T. YAU, On the regularity of the Monge-Ampère equation $det(u_{ij}) = F(x, u)$, Comm. Pure Appl. Math. **30** (1977), 41-68.

- [7] K. S. Chou (Tso), On symmetrization and Hessian equations, J. Anal. Math. 52 (1989), 94–106.
- [8] _____, On a real Monge-Ampère functional, Invent. Math. 101 (1990), 425–448.
- [9] K. S. Chou and X. J. Wang, Variational solutions to Hessian equations, Australian National University, Mathematics Research Report (ANU MRR) 045-96.
- [10] A. COLESANTI AND P. SALANI, Alternative generalized solutions of Hessian equations, Bull. Austral. Math. Soc. (to appear).
- [11] M. G. CRANDALL, H. ISHII AND P. L. LIONS, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 (1992), 1–67.
- [12] D. GILBARG AND N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Second edition, Springer-Verlag, 1983.
- [13] N. M. IVOCHKINA, The variational principle and completely nonlinear second order equations, Trudy S.-Peterburg. Mat. Obshch. 2 (1993), 212–238.
- [14] N. V. KRYLOV, Sequences of convex functions, and estimates of the maximum of the solution of a parabolic equation, Sibirsk. Mat. Zh. 17 (1996), 290–303.
- [15] R. C. REILLY, On the Hessian of a function and the curvatures of its graph, Michigan Math. J. 20 (1973-74), 373-383.
- [16] N. S. Trudinger, The Dirichlet problem for the prescribed curvature equations, Arch. Rational Mech. Anal. 111 (1990), 153–179.
- [17] _____, Isoperimetric inequalities for quermassintegrals, Ann. Inst. H. Poincaré Non Linéaire 11 (1994), 411–425.
- [18] _____, On the Dirichlet problem for Hessian equations, Acta Math. 175 (1995), 151–164.
- [19] _____, On new isoperimetric inequalities and symmetrization, J. Reine Angew. Math. 488 (1997), 202–220.
- [20] _____, Weak solutions of Hessian equations, Comm. Partial Differential Equations 22 (1997), 1251–1261.
- [21] _____, On new maximum principles for linear elliptic equations, in preparation.
- [22] N. S. TRUDINGER AND X. J. WANG, Poincaré type inequalities for Hessian integrals, Calc. Var. Partial Differential Equations (1998) (to appear).
- [23] ______, Hessian measures II, Australian National University, Mathematics Research Report (ANUMRR), 035–97.
- [24] X. J. WANG, A class of fully nonlinear elliptic equations and related functionals, Indiana Univ. Math. J. 43 (1994), 25–54.

Manuscript received June 27, 1997

NEIL S. TRUDINGER AND XU-JIA WANG Centre for Mathematics and its Applications Australian National University Canberra, ACT 0200, AUSTRALIA

E-mail address: neil.trudinger@anu.edu.au, x.j.wang@maths.anu.edu.au

TMNA: Volume $10-1997-N^{\circ}2$