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SOME QUALITATIVE PROPERTIES OF THE SOLUTIONS
OF AN ELLIPTIC EQUATION VIA MORSE THEORY

Giuseppina Vannella

1. Introduction

We consider the following problem:

(P )


u ∈ C2(Ω),

−∆u +
1
ε2

F ′(u(x)) = 0 in Ω,

∂u

∂n
= 0 in ∂Ω,

where Ω ⊂ Rn is an open bounded domain with sufficiently regular boundary
(n ≥ 3), ε > 0 is a real number and F ∈ C2(R) is a real function which satisfies
the following assumptions:

(i) F is even,
(ii) 0 is a local maximum for F , with F (0) = 1 and F ′′(0) < 0,
(iii) F (R) ⊂ R+ and F vanishes at (and only at) 1 and −1,
(iv) ∃a > 0 ∀t ≥ 1, F ′′(t) ≥ a,
(v) ∃p ∈ ]2, 2∗[ ∃b, c ≥ 0 ∀t ∈ R, |F ′′(t)| ≤ b|t|p−2+c (here 2∗ = 2n/(n− 2)).

Let us remark that from (iii) it follows that F ′(1) = F ′(−1) = 0. Moreover,
since F ′′ is even and continuous, we see from (ii) and (iii) that

∃β ∈ ]0, 1[ ∀t ∈ ]−β, β[, F ′′(t) < 0 and F ′′(−β) = F ′′(β) = 0.

1991 Mathematics Subject Classification. Primary 35J65; Secondary 58E05.

c©1997 Juliusz Schauder Center for Nonlinear Studies

297



298 G. Vannella

An example of a function F satisfying (i)–(v) is

F (t) =
2
α
|t|2+α −

(
1 +

2
α

)
t2 + 1

where 0 < α < 2∗ − 2 = 4/(n− 2).
Problems like (P ), with small ε, are used to model some phase transition

problems.
We shall prove (see Property 2.5) that the solutions of (P ) correspond to

critical points of the functional defined on the Sobolev space H1(Ω) by

Eε(u) =
ε

2

∫
Ω

|∇u|2 +
1
ε

∫
Ω

F (u(x)) dx.

Some related results are due to Modica and Mortola ([11], [12]) who studied the
asymptotic behaviour of minimum points of functionals of type Eε as ε → 0.

Let us also mention the work of Passaseo ([14]) who first considered the
existence of critical points of such functionals which are not minimum points.

In this paper we shall prove the existence of critical points of Eε using Morse
theory. Since they may a priori be degenerate, standard Morse theory cannot be
applied directly and we shall use its generalization recently developed by Benci
and Giannoni in [2]. Apart from giving multiplicity results, the use of Morse
theory allows us to find estimates on the size of the “phase transition zone”.
More precisely, if u is a critical point of Eε and α ∈ ]0, β[, the “phase transition
zone” of u is defined by

Γα(u) = {x ∈ Ω | −α < u(x) < α},

i.e. the part of Ω on which u assumes values near zero.
Roughly speaking, we prove that for any fixed α < β and j ∈ N, as ε → 0, all

critical points u of Eε whose restricted Morse index is less than j (see Definition
2.1) tend to concentrate their values outside ]−α, α[. More precisely, we have the
following result:

Theorem 1.1. For fixed α ∈ ]0, β[, let ε, l be positive numbers, u a critical
point of Eε having restricted Morse index m(u), and N(u, l) the greatest number
of disjoint open n-dimensional hypercubes of side l which can be contained in
Γα(u). There exists a nonincreasing infinitesimal sequence (kj)j≥1 such that, if
ε < lkj, then N(u, l) ≤ m(u)/j. Moreover, for fixed j ∈ N and l > 0, there exists
an ε0 > 0 such that for all ε < ε0 and any critical point u of Eε satisfying
m(u) ≤ j, we have N(u, l) = 0.

Theorem 1.1 is a restatement of Theorem 4.3 and Corollary 4.6. Its proof is
given at the end of the last section.
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The article is organized as follows. In Section 2 we derive some properties of
the functional Eε. In Section 3 we give a short presentation of the generalized
Morse theory and we show how our functional relates to it. In Section 4 we state
our main results. Finally, we give the proof of these results in Section 5.

2. Preliminaries

Since F satisfies assumption (v), standard computations show that Eε is C2

on H1(Ω). Moreover, for each u, v, w ∈ H1(Ω),

dEε(u)(v) = ε

∫
Ω

(∇u | ∇v) +
1
ε

∫
Ω

F ′(u(x))v(x) dx

and

(1) d2Eε(u)(v, w) = ε

∫
Ω

(∇v | ∇w) +
1
ε

∫
Ω

F ′′(u(x))v(x)w(x) dx.

Definition 2.1. We recall that u ∈ H1(Ω) is a critical point for Eε if
dEε(u) = 0. We denote by KEε the set of these points.

Moreover, we say that Eε satisfies the Palais–Smale condition (or briefly,
that Eε satisfies P.S.) if any sequence (un)n∈N such that

Eε(un)→
n

c ∈ R and dEε(un)→
n

0

has a subsequence which converges in H1(Ω).
If u ∈ KEε , the restricted Morse index of u is the maximal dimension of a

subspace of H1(Ω) on which d2Eε(u) is negative definite; it is denoted by m(u).
The nullity of u is the dimension of the kernel of d2Eε(u) (i.e. the subspace

consisting of all v such that d2Eε(u)(v, w) = 0 for all w ∈ H1(Ω)).
The large Morse index is the sum of the restricted Morse index and the

nullity; it is denoted by m∗(u).
A critical point u is called nondegenerate if its nullity is 0, while in the other

case it is called degenerate.

Example 2.2. Let u0 be the function constantly equal to 0. Since ∇u0 = 0
and F ′(0) = 0 we have

dEε(u0)(v) = ε

∫
Ω

(∇u0 | ∇v) +
1
ε

∫
Ω

F ′(0)v(x) dx = 0 for all v ∈ H1(Ω)

and so u0 is a critical point of Eε. Two other examples of critical points are given
by u1 and u−1, the functions constantly equal to 1 and to −1 respectively, since
dEε(u1) = dEε(u−1) = 0. Concerning the Morse index of these critical points,
as by (iv) F ′′(±1) > 0, we see that

m∗(u1) = m∗(u−1) = 0.

Thus u1 and u−1 are nondegenerate critical points.
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In Lemma 4.1 we will compute the large and restricted Morse index of u0.

Remark 2.3. Since Eε is an even functional, dEε is odd and d2Eε is even.
Thus if u ∈ H1(Ω) is a critical point of Eε different from u0, then also −u is a
critical point and moreover d2Eε(u) = d2Eε(−u). So u and −u have the same
restricted and large Morse index.

Next we shall derive some properties of the critical points of Eε.

The first one follows from the maximum principle. The proof we give is
closely related to the one given in [5].

Property 2.4. If u is a critical point of Eε then |u| ≤ 1 a.e. in Ω.

Proof. Let G ∈ C1(R, R) be a function such that

∀t ≤ 0, G(t) = 0 and ∀t > 0, 0 < G′(t) ≤ M,

where M > 0 is a real number.
Let u ∈ H1(Ω) be a critical point of Eε. Then v(x) = G(u(x)− 1) ∈ H1(Ω)

and setting
Ω1 = {x ∈ Ω | u(x) > 1}

we see that

∀x ∈ Ω \ Ω1, G(u(x)− 1) = 0 and G′(u(x)− 1) = 0.

Moreover, by assumption (iv) and since F ′(1) = 0,

∀x ∈ Ω1, F ′(u(x)) ≥ a(u(x)− 1),

so

0 = dEε(u)(v) = ε

∫
Ω

G′(u− 1)|∇u|2 +
1
ε

∫
Ω

F ′(u(x))G(u(x)− 1) dx

= ε

∫
Ω1

G′(u− 1)|∇u|2 +
1
ε

∫
Ω1

F ′(u(x))G(u(x)− 1) dx

≥ ε

∫
Ω1

G′(u− 1)|∇u|2 +
1
ε

∫
Ω1

a(u(x)− 1)G(u(x)− 1) dx

= ε

∫
Ω

G′(u− 1)|∇u|2 +
1
ε

∫
Ω

a(u(x)− 1)G(u(x)− 1) dx.

Therefore
ε2

a

∫
Ω

G′(u− 1)|∇u|2 ≤ −
∫

Ω

(u(x)− 1)G(u(x)− 1) dx.

In this inequality the left term is positive and the right one negative, so both
terms have to vanish and in particular∫

Ω

(u(x)− 1)G(u(x)− 1) dx = 0.

This shows that u ≤ 1 a.e. in Ω, since tG(t) ≥ 0 for all t ∈ R and tG(t) = 0 ⇔
t ≤ 0.
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On the other hand, by Remark 2.3, −u is also a critical point, so we have
−u ≤ 1 a.e. in Ω and we finally get |u| ≤ 1 a.e. in Ω. �

The second property insures the regularity of the critical points of Eε.

Property 2.5. If u ∈ H1(Ω) is a critical point of Eε, then
u ∈ C2(Ω),

−∆u +
1
ε2

F ′(u(x)) = 0 in Ω,

∂u

∂n
= 0 in ∂Ω.

Proof. First note that by standard regularity theory we find, using the
previous property, that u ∈ H2(Ω). Then taking v ∈ C∞0 (Ω) ⊂ H1(Ω) we have

0 = dEε(u)(v) = ε

∫
Ω

(∇u | ∇v) +
1
ε

∫
Ω

F ′(u(x))v(x) dx

=
∫

Ω

(
−ε∆u +

1
ε
F ′(u(x))

)
v(x) dx

and so
−ε∆u +

1
ε
F ′(u(x)) = 0 a.e. in Ω.

Next we know that

• F ′ is a C1 function,
• |u| ≤ 1 a.e. in Ω,
• ∆u = 1

ε2 F ′(u(x)) a.e. in Ω,
• ∂Ω is sufficiently regular.

So using regularity results as in [4, 1.5B], we deduce that u ∈ C2(Ω). Finally,
for all v ∈ C1(Ω) ∩H1(Ω) ⊃ C2(Ω),∫

∂Ω

∂u

∂n
v dσ =

∫
Ω

(∇u | ∇v) +
∫

Ω

∆uv

=
∫

Ω

(∇u | ∇v) +
1
ε2

∫
Ω

F ′(u(x))v(x) dx

− 1
ε2

∫
Ω

F ′(u(x))v(x) dx +
∫

Ω

∆uv

=
1
ε
dEε(u)(v)−

∫
Ω

(
−∆u +

1
ε2

F ′(u(x))
)

v(x) dx = 0

and so ∂u/∂n = 0 in ∂Ω. �

Property 2.6. Eε satisfies P.S.

Proof. Let (un) ⊂ H1(Ω) be a sequence such that Eε(un) → c and dEε(un)
→ 0. We need to find a subsequence of (un) which converges in H1(Ω).

Clearly Eε is coercive. Thus (un) is bounded and there exists a subsequence
(ukn

) of (un) which weakly converges to an element u ∈ H1(Ω).
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Now considering the function g ∈ C1(R, R) given by

g(t) =
1
ε
F ′(t)− εt,

we know by assumption (v) that

(2) ∃b1, c1 ≥ 0, |g(t)| ≤ b1|t|p−1 + c1

where p < 2∗ = 2n/(n− 2).
Denoting by H−1(Ω) the dual space of H1(Ω), by Φ : H1(Ω) → H−1(Ω) the

Nemytskĭı operator relative to g, i.e.

Φ(u)(v) =
∫

Ω

g(u(x))v(x) dx,

and by L : H1(Ω) → H−1(Ω) the Riesz isomorphism, i.e.

L(u)(v) = (u, v)H1(Ω) =
∫

Ω

(∇u | ∇v) +
∫

Ω

u(x)v(x) dx,

we have dEε = εL+ Φ and so

lim
n→∞

[εL(un) + Φ(un)] = lim
n→∞

dEε(un) = 0.

Moreover, as (2) holds, by Carathéodory’s theorem Φ is completely continuous,
i.e. if (vn) weakly converges to v0, then Φ(vn) strongly converges to Φ(v0), thus
limn→∞Φ(ukn

) = Φ(u). Therefore L(ukn
) converges in H−1(Ω) and, as L is an

isomorphism, (ukn) strongly converges in H1(Ω). �

Property 2.7. KEε
is a compact set.

Proof. Let us first show that KEε is a bounded subset of H1(Ω). If u is a
critical point of Eε we have

ε

∫
Ω

|∇u|2 +
1
ε

∫
Ω

F ′(u(x))u(x) dx = dEε(u)(u) = 0.

The second term is uniformly bounded with respect to u by Property 2.4 and con-
sequently so is the first one. Still using Property 2.4, we see that also

∫
Ω
|u(x)|2 dx

is uniformly bounded and so

∃M > 0 ∀u ∈ KEε , ‖u‖H1(Ω) ≤ M.

Now since Eε satisfies P.S., this shows that KEε
is compact. �

3. Classical and generalized Morse theory

We recall that classical Morse theory deals with functionals

(a) of class C1 and twice differentiable in a neighbourhood of their critical
points,

(b) whose critical points are not degenerate,
(c) which satisfy P.S.
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In the whole section let V be a Hilbert manifold and A an open subset of V . We
will denote by M(A) the set of functionals on A which satisfy (a)–(c) and can
be extended to a function of class C1 in a neighbourhood of A.

Now let f belong to M(A) and Kf be the set of critical points of f . The
Morse polynomial of a subset K of Kf is defined by

mλ(K, f) =
∑
x∈K

λm(x)

with the convention that λ∞ = 0. Thus m(λ) is a polynomial
∑

k akλk whose
coefficients ak are integers representing the number of critical points in K having
Morse index k.

If f ∈ M(A) is bounded from below, then from classical Morse theory we
have the Morse relation

mλ(Kf ) = Pλ(A) + (1 + λ)Qλ

where Qλ is a formal series in λ with coefficients in N ∪ {+∞}, while Pλ(A) is
the Poincaré polynomial of A:

Pλ(A) =
∑
q∈N

dim Hq(A, Z2)λq

and Hq(A, Z2) are the absolute homology groups of A with Z2 as field of coeffi-
cients.

In our case Eε is a C2(H1(Ω)) functional which satisfies P.S., but it could
have degenerate critical points and thus could not belong to M(H1(Ω)), so it
is not possible to apply the classical Morse theory to this functional. Recently,
however, Benci and Giannoni [2] have introduced a generalized Morse theory.
In the larger class it deals with, the Morse relation still holds if we replace the
Morse polynomial with the Morse index (see Definition 3.2). We will see that
Eε belongs to this class.

The family S. We denote by S the family of formal series in one variable
λ with coefficients in N ∪ {+∞}.

For each k ∈ N and P ∈ S we denote by ck : S → N ∪ {+∞} the function
which sends every polynomial P into its kth coefficient, so that

P =
∑
k∈N

ck(P )λk.

On S a relation of total order and a notion of limit are defined in the following
way:

(o) P < Q ⇔ ∃k0 ∈ N ∀k < k0, ck(P ) = ck(Q) and ck0(P ) < ck0(Q);
(l) Q = limn→∞ Pn ⇔ ∀k ∈ N, limn→∞ ck(Pn) = ck(Q).
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Under the topology induced by (l), S is a compact set.
If A is a subset of S, let A denote the closure of A. We have

P ∈ A ⇔ ∃(Pn)n∈N ⊂ A, lim
n→∞

Pn = P.

Finally, we put inf A = minA and supA = maxA. It can be proved that for any
set A ⊂ S, inf A and sup A exist and are unique.

The class F(A) and the Morse index. Now we will describe a class F(A)
of C1 functionals where the generalized Morse index will be defined.

For any ε > 0 and B ⊂ V we put

Nε(B) = {x ∈ V | d(x, B) < ε}

where d is the distance on the Hilbert space V . For an open subset A of V and
f ∈ C1(A) we set

Mε
f (A) = {g ∈M(A) | g(x) = f(x) ∀x 6∈ Nε(Kf ) ∩A}.

The set F(A) is defined by

F(A) = {f ∈ C1(A) | Mε
f (A) 6= ∅ ∀ε > 0}.

Definition 3.1. Let f ∈ C1(A). A compact set K ⊂ Kf is called isolated
if there exists an open set ω such that K = Kf ∩ ω. The set ω is called an
isolating set for K.

Finally, we introduce the definition of Morse index for an isolated critical set.

Definition 3.2. Let K be an isolated critical set of f , and let ω be an
isolating set for K. The Morse index of K is the formal series

iλ(K, f) = iλ(K, f, ω) = sup
ε>0

( inf
g∈Mε

f (ω)
mλ(Kg, g)).

It is easy to see that the index of an isolated critical set does not depend on
the isolating set ω.

Definition 3.3. Let x ∈ Kf ∩ A be an isolated critical point. The multi-
plicity of x is the integer i1({x}, f). Analogously one can define the multiplicity
of an isolated critical set K, denoted by i1(K, f).

It is easy to see that any nondegenerate critical point is isolated and its
multiplicity is one.

We will use the following results about the Morse index.

Proposition 3.4. Let f be a functional belonging to F(A):

(i) if x0 is a nondegenerate critical point of f , then

iλ({x0}, f) = λm(x0),
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(ii) if K1,K2 ⊂ Kf are isolated compact sets and K1 ∩K2 = ∅, then

iλ(K1 ∪K2, f) = iλ(K1, f) + iλ(K2, f),

(iii) if f is bounded from below, then

(3) iλ(Kf , f) = Pλ(A) + (1 + λ)Qλ

where Qλ ∈ S.

A proof of this proposition is given in [2] (Theorems 5.8–5.9).
Let us show that Eε ∈ F(H1(Ω)). First we note that in [2] (see Ex. 5.2)

it is established that if ( , )V denotes the inner product of a Hilbert space V ,
Ψ ∈ C1(V ) is a function whose gradient is completely continuous, and f(x) =
(x, x)V + Ψ(x) satisfies P.S. and is bounded in A, then f ∈ F(A).

Slightly modifying the proof we can replace the hypothesis that f is bounded
by the assumption that Kf is compact.

Now Eε can be written as

Eε(u) =
ε

2
(u, u)H1(Ω) + Ψ(u)

where Ψ′ is completely continuous (see proof of Property 2.6). Moreover, Eε

satisfies P.S. and KEε
is compact by Property 2.6, respectively 2.7. Consequently,

Eε belongs to F(H1(Ω)) and by (3), as Eε is bounded from below, we have

(4) iλ(KEε
, Eε) = Pλ(H1(Ω)) + (1 + λ)Qλ

where Qλ ∈ S.

Finally, we note for future reference that with the same hypotheses on f , we
have

Proposition 3.5. If K is an isolated critical set of f with

iλ(K, f) =
∑
k∈N

akλk

and if ak0 6= 0 then
∃x ∈ K, m(x) ≤ k0 ≤ m∗(x).

This result is also obtained by slightly modifying a result of [2] (see Theorem
5.10).

4. Statements of the results

In this section we state the main results of this paper. The proofs will be
given in the next section.

Let 0 = λ1 ≤ λ2 ≤ . . . denote the eigenvalues of −∆ on Ω with Neumann
boundary conditions, and for k ≥ 2 let µk =

√
−F ′′(0)/λk.
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Lemma 4.1. u0 is a nondegenerate critical point of Eε if and only if ε 6= µk

for all k ≥ 2. Furthermore, if ε ∈ ]µk+1, µk[, then the restricted Morse index of
u0 is equal to k. This shows in particular that m(u0) ≥ 1 for all ε > 0.

Now we will state an existence result which differs from [14] since it gives
information on the Morse index of solutions.

Theorem 4.2. If ε ∈ ]µk+1, µk[, then there are at least 2k critical points
of Eε (counted with multiplicities) different from u0 whose Morse index is less
than k. Moreover, if the number of these critical points is finite, then for each
h < k there is a couple of critical points u and −u such that m(±u) ≤ h ≤
m∗(±u).

Let α ∈ ]0, β[, l > 0, and let Ql be an open n-dimensional hypercube of
side l. Finally, let 0 < a1(l) < a2(l) ≤ a3(l) ≤ . . . be the eigenvalues of −∆ on
Ql with Dirichlet boundary conditions, namely:

a1(l) = nπ2/l2,

a2(l) = a3(l) = . . . = an+1(l) = (n + 3)π2/l2,

an+2(l) = an+3(l) = . . . = an+1+n(n−1)/2(l) = (n + 6)π2/l2,

. . .

Let u ∈ KEε
. We recall that the phase transition zone of u is the set

Γα(u) = {x ∈ Ω | −α < u(x) < α}.

We denote by N(u, l) the greatest number of disjoint open hypercubes of side
l which can be contained in Γα(u).

Setting
δ(α) = min

t∈[−α,α]
|F ′′(t)|,

we have

(5) ∀t ∈ ]−α, α[, F ′′(t) ≤ −δ(α).

Our next theorem shows how the Morse index of a solution u of (P ) can be
used to estimate from above the size of its phase transition zone. From now on
we assume that α ∈ ]0, β[ is arbitrary but fixed.

Theorem 4.3. Let l > 0 be fixed and u a critical point of Eε having Morse
index m(u). Then for all j ∈ N such that

ε <
√

δ(α)/aj(l)

we have
N(u, l) ≤ m(u)/j.

In particular, if ε <
√

δ(α)/a1(l), then N(u, l) ≤ m(u).
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Corollary 4.4. If ε < µ2, then there exists a couple of critical points u1,ε

and −u1,ε such that

m(±u1,ε) ≤ 1 ≤ m∗(±u1,ε).

Moreover, there are no hypercubes of side l > επ
√

(n + 3)/δ(α) contained in
Γα(u1,ε).

Corollary 4.5. There exist two positive constants ã and c̃ depending only
on F but independent of ε and u such that

∀ε > 0 ∀u ∈ KEε , N(u, c̃ε) ≤ A(ã/ε2),

where A(ã/ε2) denotes the number of eigenvalues of −∆ on Ω (with Neumann
boundary conditions) which are less than ã/ε2.

Corollary 4.6. For every j ∈ N and l > 0 there exists an ε0 > 0 such
that for all ε < ε0 and any critical point u of Eε satisfying m(u) ≤ j, we have
N(u, l) = 0.

5. Proofs of the results

Proof of Lemma 4.1. Let (en)n∈N be the hilbertian basis of L2(Ω) made
by the eigenfunctions relative to (λn)n∈N, i.e.

en ∈ H1(Ω) ∩ C∞(Ω),

−∆en = λnen in Ω,

∂en/∂n = 0 in ∂Ω,

where 0 = λ1 < λ2 ≤ λ3 ≤ . . . and limn→∞ λn = +∞. If u0 is degenerate, then

∃v ∈ H1(Ω), v 6= 0 ∀w ∈ H1(Ω), d2Eε(u0)(v, w) = 0.

This means that

∀w ∈ H1(Ω), ε

∫
Ω

(∇v | ∇w) +
F ′′(0)

ε

∫
Ω

v(x)w(x) dx = 0,

and thus clearly v solves the problem

−ε∆v +
F ′′(0)

ε
v = 0 in Ω,

∂v

∂n
= 0 in ∂Ω.

In other words, −F ′′(0)/ε2 is an eigenvalue of −∆ on Ω with Neumann
conditions, thus u0 is nondegenerate if these eigenvalues are avoided. Since

−F ′′(0)/ε2 = λk ⇔ F ′′(0) = 0 or ε =
√
−F ′′(0)/λk

and F ′′(0) 6= 0, setting µk =
√
−F ′′(0)/λk (with k ≥ 2), u0 is nondegenerate if

and only if ε 6= µk.
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Now let ej be one of the previous eigenfunctions. Then

d2Eε(u0)(ej , ej) = ε

∫
Ω

|∇ej |2 +
F ′′(0)

ε

∫
Ω

e2
j (x) dx

= ελj +
F ′′(0)

ε
=

1
ε
(ε2λj + F ′′(0)).

If j = 1, then λ1 = 0 and d2Eε(u0)(e1, e1) = F ′′(0)/ε < 0, thus surely
m(u0) ≥ 1.

If j ≥ 2, then λj > 0 and

ε2λj + F ′′(0) < 0 ⇔ ε <
√
−F ′′(0)/λj = µj

so ε < µj ≤ µj−1 ≤ . . . ≤ µ2 implies that d2Eε(u0) is negative definite on
span{e1, . . . , ej}, and thus m(u0) ≥ j.

Moreover, if ε > µj+1, then

∀k > j, d2Eε(u0)(ek, ek) > 0,

i.e. d2Eε(u0) is positive definite on span{ej+1, ej+2, . . .}, and thus m(u0) = j.�

Proof of Theorem 4.2. We recall that

(6) iλ(KEε
, Eε) = Pλ(H1(Ω)) + (1 + λ)Qλ

where Qλ ∈ S.
From Lemma 4.1, we know that if ε 6= µk (k ≥ 2), then u0 is nondegenerate

and thus if we set K0 = KEε
\ {u0}, then K0 and {u0} are isolated critical sets.

So by (i) and (ii) of Proposition 3.4,

(7) iλ(KEε
, Eε) = λm(u0) + iλ(K0, Eε).

Moreover, as seen in Remark 2.3, the set K0 is symmetric with respect to
u0, in the sense that if u ∈ K0 then −u ∈ K0 and they have the same restricted
and large Morse index.

In particular, −u has the same degeneracy as u. This means that the coeffi-
cients of iλ(K0, Eε) are even integers (unless they are +∞). Thus for all k ≥ 2,
if ε ∈ ]µk+1, µk[, then (7) becomes

(8) iλ(KEε
, Eε) = λk +

∑
h∈N

ahλh

with ah ∈ 2N ∪ {+∞}.
Since H1(Ω) is contractible we have

(9) Pλ(H1(Ω)) = 1.

From (8), (9), on setting Qλ =
∑

h∈N bhλh, (6) becomes

(10) λk +
∑
h∈N

ahλh = 1 + (1 + λ)
∑
h∈N

bhλh.
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Now let k̃ be defined by

k̃ = min({h : bh = +∞} ∪ {k}).

We shall prove by induction that ah ≥ 2 for all h < k̃, or more precisely that for
each h = 1, . . . , k̃ − 1 there is nh ∈ N such that

bh = 1 + 2nh and ah = 2 + 2nh−1 + 2nh.

For h = 0, by (10), a0 = 1 + b0 and, as a0 is an even number, b0 must be
odd. Thus there is n0 ∈ N such that b0 = 1 + 2n0 and a0 = 2 + 2n0 ≥ 2.

For h = 1, by (10), a1 = b0 + b1 = 1 + 2n0 + b1. Analogously there is n1 ∈ N
such that b1 = 1 + 2n1 and a1 = 2 + 2n0 + 2n1 ≥ 2.

For h < k̃ − 1 assume that ah = 2 + 2nh−1 + 2nh and bh = 1 + 2nh, where
nh, nh−1 ∈ N. By (10),

ah+1 = bh + bh+1 = 1 + 2nh + bh+1

and thus ah+1 is even. So there is nh+1 ∈ N such that

bh+1 = 1 + 2nh+1 and ah+1 = 2 + 2nh + 2nh+1 ≥ 2.

Therefore
i1(K0, Eε) =

∑
h∈N

ah ≥
∑

h≤ek−1

ah ≥ 2k̃.

Let us distinguish two cases. If k̃ = k, then there are at least 2k critical
points for Eε (counted with multiplicities). Moreover, as ah 6= 0 for all h < k,
by Proposition 3.5, there exists uh ∈ K0 such that

m(uh) ≤ h ≤ m∗(uh).

By Remark 2.3, −uh is critical and

m(−uh) ≤ h ≤ m∗(−uh),

thus the conclusion of Theorem 4.2 holds.
On the contrary, if we have k̃ < k, then a0 ≥ 2, . . . , a

ek−1 ≥ 2 and since
b
ek = +∞, still by (10), we see that

a
ek = b

ek−1 + b
ek = +∞, a

ek+1 = b
ek + b

ek+1 = +∞.

In this case there are infinitely many critical points having Morse index less than
k (if counted with multiplicities). �

Proof of Theorem 4.3. Let Ql be a hypercube of side l > 0 contained in
Γα(u).

For all i ∈ N we denote by vi the eigenfunction of −∆ corresponding to the
eigenvalue ai(l).
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Let j be such that ε <
√

δ(α)/aj(l). We shall prove that d2Eε(u) is negative
definite on vi for all i ≤ j. Indeed, from (5),

∀x ∈ Γα(u), F ′′(u(x)) ≤ −δ(α).

Thus

d2Eε(u)(vi, vi) = ε

∫
Ω

|∇vi|2 +
1
ε

∫
Ω

F ′′(u(x))v2
i (x) dx

= ε

∫
Ql

|∇vi|2 +
1
ε

∫
Ql

F ′′(u(x))v2
i (x) dx

≤ ε

∫
Ql

|∇vi|2 −
δ(α)

ε

∫
Ql

v2
i (x) dx

= ε

(
ai(l)−

δ(α)
ε2

) ∫
Ql

v2
i (x) dx < 0.

If we set k = N(u, l), there are k disjoint hypercubes Q1
l , . . . , Q

k
l contained

in Γα(u).
For each h = 1, . . . , k let vh

1 , . . . , vh
j be the eigenfunctions of −∆ on Qh

l rela-
tive to a1(l), . . . , aj(l) respectively. The functions v1

1 , v1
2 , . . . , v1

j , v2
1 , . . . , v2

j , . . . , vk
j

are linearly independent. Indeed, for each h = 1, . . . , k, vh
1 , . . . , vh

j are linearly
independent both in L2(Qh

l ) and in H1
0 (Qh

l ), so also in H1(Ω). On the other
hand, if h1 6= h2 ∈ {1, . . . , k}, then vh1

i1
and vh2

i2
are linearly independent as

they have disjoint supports. So d2Eε(u) is negative definite on span{v1
1 , . . . , vk

j },
whose dimension is jk = jN(u, l). By the definition of (restricted) Morse index,

m(u) ≥ jN(u, l)

and therefore N(u, l) ≤ m(u)/j. �

Proof of Corollary 4.4. Looking into the proof of Theorem 4.2, we see
that two cases may occur:

1) if a0 is finite then a1 ≥ 2 (possibly +∞),
2) if a0 = +∞ then again a1 = +∞.

In any case a1 6= 0, and from Proposition 3.5 we deduce that there exists
u1,ε such that m(u1,ε) ≤ 1 ≤ m∗(u1,ε). Obviously by Remark 2.3 we have the
same property for −u1,ε. This proves the first assertion. For the second one, if
we assume that l > επ

√
(n + 3)/δ(α), recalling that a2(l) = (n+3)π2/l2, we see

that ε <
√

δ(α)/a2(l). Thus by Theorem 4.3 it follows that

N(±u1,ε, l) ≤ m(±u1,ε)/2 ≤ 1/2.

That is, N(±u1,ε, l) = 0. �
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Proof of Corollary 4.5. From assumption (iv) on F and continuity of
F ′′,

∃ã > 0 ∀t ∈ R, F ′′(t) ≥ −ã.

Let u ∈ KEε
and v be an eigenfunction of −∆ on Ω (with Neumann boundary

condition) relative to an eigenvalue λ. If d2Eε(u) is negative definite on v, then

0 > d2Eε(u)(v, v) ≥ ε

(
λ− ã

ε2

) ∫
Ω

v2(x) dx.

Thus λ < ã/ε2, i.e. v belongs to the eigenspace relative to the eigenvalues of −∆
less than ã/ε2. Therefore

(11) ∀u ∈ KEε , m(u) ≤ A(ã/ε2).

Moreover, since a1(l) = nπ2/l2, we have

ε <
√

δ(α)/a1(l) ⇔ l > πε
√

n/δ(α).

In particular, if l = c̃ε, where c̃ > π
√

n/δ(α), then by Theorem 4.3 we have

∀u ∈ KEε , N(u, c̃ε) ≤ m(u) ≤ A(ã/ε2). �

Proof of Corollary 4.6. Let ε0 =
√

δ(α)/aj+1(l). If ε < ε0 and u is a
critical point such that m(u) ≤ j, then from Theorem 4.3,

N(u, l) ≤ m(u)
j + 1

≤ j

j + 1
.

Therefore N(u, l) = 0. �

Proof of Theorem 1.1. As already shown, the eigenvalues aj(l) of −∆
on Ql with Dirichlet boundary conditions are of the type aj(l) = hjπ

2/l2, where
(hj)j≥1 is a nondecreasing divergent sequence of integers. So the first part of
the theorem directly follows from Theorem 4.3 by putting kj = (1/π)

√
δ(α)/hj ,

while the second part is exactly the statement of Corollary 4.6. �
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