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MOVING BY MEAN CURVATURE, II

Vladimir I. Oliker — Nina N. Ural’tseva

Dedicated to Olga A. Ladyzhenskaya

In our papers [7]–[9] we studied the evolution of a nonparametric surface
whose boundary is fixed and interior points move with normal speed equal to
the mean curvature. In the classical setting the problem is to find a smooth
function u = u(x, t), (x, t) ∈ Ω× [0, ∞), satisfying the following conditions:

ut√
1 + |Du|2

= H[u] in Ω× [0,∞),(1)

u = ϕ on ∂Ω× [0,∞),(2)

u = u0 in Ω× {0}.(3)

Here Ω is a bounded domain in Rn with a smooth boundary ∂Ω, Du = (D1u, . . .

. . . , Dnu) is the gradient of u, Diu = ∂u/∂xi, ut = ∂u/∂t, H[u] =
div(Du/

√
1 + |Du|2) is the mean curvature of the graph of u, ϕ = ϕ(x) and

u0 = u0(x) are given smooth functions. It is well known that, in general, the
classical solvability of (1)–(3) fails if Ω is not mean convex. The latter means
that the mean curvature H∂Ω(x) of ∂Ω with respect to the inward normal at
x ∈ ∂Ω is nonnegative. Similarly, if Ω is not mean convex then the classical
solution may not exist for the corresponding stationary problem

H[Φ] = 0 in Ω,(4)

Φ = ϕ on ∂Ω.(5)
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It is also well known that if the domain Ω is mean convex then, under suitable
compatibility conditions, there exists a global in t classical solution of (1)–(3)
which is unique and tends to the solution Φ of (4), (5) as t→∞; see [2].

In this paper, as in [7]–[9], we continue to study the problem (1)–(3) in
domains which are not assumed to be mean convex. More specifically, let

∂−Ω = {x ∈ ∂Ω : H∂Ω(x) < 0},
∂+Ω = {x ∈ ∂Ω : H∂Ω(x) > 0},
∂ 0 Ω = {x ∈ ∂Ω : H∂Ω(x) = 0},

and assume that ∂−Ω 6= ∅. Note that ∂+Ω 6= ∅ because Ω is bounded. It
was shown in [7]–[9] that while the problem (1)–(3) may not have a classical
solution, it always has a generalized solution (under some hypotheses and in a
sense to be explained shortly). The behavior of this generalized solution was
studied in [7]–[9] under the assumption that the stationary problem (4), (5)
has a classical solution. This assumption allowed us, in particular, to establish
that the constructed generalized solution to (1)–(3) becomes smooth in Ω for
sufficiently large t.

The purpose of this paper is to investigate the behavior of solutions to (1)–(3)
without assuming that the stationary problem (4), (5) has a classical solution.

It will be useful to review briefly here some of the relevant results from [7]–
[9]. In [7] the problem (1)–(3) was studied under the assumption that ϕ ≡ 0.
Then Φ ≡ 0 is a classical solution of the stationary problem (4), (5). In [8] and
[9] it was assumed that there exists a solution Φ ∈ C2(Ω) to the problem (4),
(5) and u0 − Φ ∈ C∞0 (Ω). The generalized solution of (1)–(3) was defined as a
limit

(6) u(x, t) = lim
ε↘0

uε(x, t)

of solutions to regularized problems

uε
t√

1 + |Duε|2
= H[uε] + ε∆uε in Ω× [0,∞),(7)

uε = ϕ on ∂Ω× [0,∞),(8)

uε = u0 in Ω× {0},(9)

where ∆ =
∑n

i=1DiDi is the Laplace operator.
For the regularized problems we proved estimates for uε uniform with respect

to ε and this allowed us to pass to the limit for some sequence εk → 0 and to prove
that the limit function u satisfies conditions (1) and (3). However, the boundary
condition (2) is guaranteed to be satisfied for all t only on the “good” part of
the boundary, namely, on ∂+Ω. On the rest of ∂Ω the boundary condition is
satisfied only in some weak sense (to be described later). Simple examples show
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that the solutions to (1)–(3) may actually “detach” from the boundary data on
the “bad” part of the boundary.

The proof of existence of a generalized solution does not depend on the
existence of a classical solution Φ to (4), (5). The only place where we essentially
used the existence of Φ ∈ C2(Ω) was the proof of the following amazing fact:
for t ≥ T , where T depends on u0, the solution u becomes “classical”, that is,
u ∈ C∞(Ω× [T,∞)) and

(10) u = ϕ on ∂Ω× [T,∞).

Furthermore, the availability of Φ enabled us to investigate the asymptotic be-
havior of u for large t. In particular, we proved that

u(·, t) → Φ as t→∞

uniformly in Ω.
However, if the problem (4), (5) has no classical solutions, the question re-

garding the behavior of generalized solutions to the problem (1)–(3) as t → ∞
remained open.

In this paper we answer this question and prove that the solution u con-
structed in [7], [8] has a limit as t→∞ and the limiting function coincides with
the generalized solution Φ of (4), (5). The latter means that Φ is a minimizer of
the area functional

(11) A(v) =
∫

Ω

√
1 + |Dv|2 dx+

∫
∂Ω

|v − ϕ| dHn−1

in W 1,1(Ω); here Hn−1 denotes the Hausdorff measure of dimension n−1 on ∂Ω.
Such a solution of (4), (5) always exists and is unique [1]. The function Φ

is analytic and satisfies the minimal surface equation (4) in Ω. But it may not
satisfy the condition Φ = ϕ on a part of ∂−Ω. Geometrically, in this case, the
surface S ⊂ Rn+1 minimizing the area functional (11) is the union of graph(u)
and a part of the vertical cylinder ∂Ω × R bounded by {(x, ϕ(x)) : x ∈ ∂Ω}
and {(x, Φ(x)) : x ∈ ∂Ω}. Thus, the boundary of S coincides with the pre-
scribed graph {(x, ϕ(x)) : x ∈ ∂Ω}. The properties of the function Φ near points
x ∈ ∂−Ω where Φ(x) 6= ϕ(x) were studied by L. Simon [10] and F. H. Lin
[5]. It was proved that near such points the restriction of Φ to ∂−Ω is smooth
and Φ is Hölder continuous with exponent 1/2 in Ω ∪ ∂−Ω, provided the data
are sufficiently smooth. The derivatives of Φ(y) in tangential directions are
bounded while the normal derivative becomes unbounded as y → x ∈ ∂−Ω if
ϕ(x) 6= Φ(x).

Analogous results were obtained by one of the authors of this paper for
solutions of (1)–(3); see [11], [12]. In general, the behavior of solutions, in
both elliptic and parabolic cases, in the neighborhood of ∂0Ω can be rather
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pathological [1]. Because we are not imposing here any special conditions on
H∂Ω we cannot use the results of [10], [5], [11], [12]. We only note that for
the case where ∂0Ω = ∅ one of the present authors [13] studied the behavior of
solutions near the so-called contact set

{x ∈ ∂−Ω : Φ(x) = ϕ(x); in any neighborhood of x on ∂−Ω there exist

both types of points, that is, points where Φ 6= ϕ and points where Φ = ϕ}

and proved that the trace of Φ on ∂−Ω is C1 in a neighborhood of the contact
set. This result is optimal near the contact set. Furthermore, this result enables
us to prove uniqueness of generalized solutions to the problem (1)–(3). However,
since the uniqueness does not imply the convergence of u(·, t) as t → ∞, we do
not use it here.

As pointed out earlier, we impose no conditions on the mean curvature of ∂Ω.
We assume only that all data are C∞ smooth and the compatibility condition
of order zero,

(12) u0 = ϕ on ∂Ω,

holds.
Below, unless stated otherwise, we denote by M0,M1, . . . and c various con-

stants depending on initial and boundary data.

Theorem 1. For any ε ∈ (0, 1] there exists a unique solution uε ∈ C∞(Ω×
[0,∞))∩C(Ω× [0,∞))∩C∞(Ω× (0,∞)) to the problem (7)–(9). The following
estimates hold uniformly with respect to ε:

sup
Ω×(0,∞)

|uε| ≤M0,(13)

sup
Ω×(0,∞)

|uε
t | ≤M1,(14)

sup
(0,∞)

∫
Ω

[
√

1 + |Duε|2 + ε|Duε|2] dx ≤M2,(15)

sup
Ω′×(0,∞)

|Dαuε| ≤ c(Ω′, α) ∀Ω′ b Ω, ∀α.(16)

Proof. As already mentioned Theorem 1 can be proved in the same way
as the corresponding results in [7], [8]. We use this opportunity to make some
remarks concerning the proof of (14). Note first that one cannot apply the
maximum principle to uε

t because the compatibility condition (12) by itself does
not guarantee the continuity of uε

t at ∂Ω×{0}. The same remark applies as well to
the situation considered in [8]. Though we assumed there one more compatibility
condition, namely, H[u0] = 0 in the vicinity of ∂Ω, it is not sufficient to deduce
continuity of uε

t from the ε-problem (7)–(9).
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To overcome this noncompatibility let us “improve” the boundary condition
(8) by replacing ϕ(x) by

ϕδ(x, t) = ϕ(x) + δψ(t/δ)Lε[u0](x), δ ∈ (0, 1),

where Lε[u0] =
√

1 + |Du0|2
(
H[u0] + ε∆u0

)
and ψ is a smooth nonnegative

function defined for nonnegative arguments so that

ψ(0) = 0, ψ′(0) = 1 = sup |ψ′|, suppψ = [0, 2].

Let vε,δ be a solution to the problem (7)–(9) with ϕ replaced by ϕδ. For the cor-
responding uε,δ the compatibility conditions of orders zero and one are fulfilled.
The derivative w = uε,δ

t belongs to C(Ω× [0,∞))∩C∞(Ω× (0,∞)) and satisfies
the parabolic equation

(17) wt = aij(x, t)DiDjw + bi(x, t)Diw in Ω× [0,∞)

with coefficients aij , bi smooth in Ω × [0,∞). Then, by the maximum principle
we have

(18) sup
Ω×(0,∞)

|uε,δ
t | ≤ max{ sup

∂Ω×(0,∞)

|uε,δ
t |; sup

Ω
|Lεu0|} = sup

Ω
|Lεu0| ≤M1.

Now we have the desired estimate for uε,δ
t . On the other hand, we can apply the

maximum principle to the function w = uε − uε,δ, which satisfies an equation of
the form (17) and it is continuous in Ω× [0,∞). This gives us the estimate

sup
Ω×(0,∞)

|uε − uε,δ| ≤ δ sup
Ω
|Lεu0| ≤ δM1 → 0 as δ → 0.

This and (18) imply the estimate (14).

Remark 1. The inequalities (16) actually hold for any Ω′ b Ω ∪ ∂+Ω. To
prove this one can use local barrier functions, for example, as in [4], and obtain
gradient estimates in the interior of ∂+Ω.

We introduce the following notation: for p ∈ Rn put

(19)
F (p) =

√
1 + |p|2, F ε(p) = F (p) +

ε

2
|p|2,

Fi(p) =
∂F (p)
∂pi

=
pi

F (p)
, F ε

i (p) = Fi(p) + εpi.

By ‖ · ‖q,Ω (resp. (‖ · ‖q,∂Ω) we denote the Lq(Ω) (resp. Lq(∂Ω)) norm.
Below we will use some known properies of the equation

(20) H[v] = f in Ω

with the mean curvature operator H. In order to make the presentation reason-
ably self-contained, we recall here some of these properties; for more details see
[6], [1], [10].
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Let f ∈ L∞(Ω) and let v ∈W 1,1(Ω) be a weak solution of (20), that is,∫
Ω

[Fi(Dv)ηxi
+ fη] dx = 0 ∀η ∈ C∞0 (Ω).

The conormal derivative Tv on ∂Ω of a solution v is defined as

(21) 〈Tv, η〉 :=
∫

∂Ω

Tvη dHn−1 =
∫

Ω

[Fi(Dv)ηxi
+ fη] dx ∀η ∈ L1(∂Ω).

Here, on the right hand side a W 1,1(Ω) extension of η to Ω (denoted again by η)
is taken. Clearly,

(22) |〈Tv, η〉| ≤ ‖Dη‖1,Ω + ‖f‖∞,Ω‖η‖1,Ω ≤ c‖η‖1,∂Ω.

The L∞(∂Ω) norm of Tv is the infimum of constants c in (22) corresponding to
various extensions. It is known [1] that for any δ > 0 there exists an extension
for which

‖Dη‖1,Ω ≤ (1 + δ)‖η‖1,∂Ω, ‖η‖1,Ω ≤ δ‖η‖1,∂Ω.

Hence Tv ∈ L∞(∂Ω) and

‖Tv‖∞,∂Ω ≤ inf
δ>0

(1 + ε+ δ‖f‖∞,Ω) = 1.

Definition 1. A function v is a generalized solution to the Dirichlet problem

(23) H[v] = f in Ω; v = ϕ in ∂Ω

if v ∈W 1,1(Ω) is a weak solution of equation (20) and

(24) −Tv ∈ supp(v − ϕ) a.e. on ∂Ω.

Proposition 1. For a function v ∈W 1,1(Ω) to be a generalized solution of
the problem (23) is equivalent to the fact that v is a minimizer of the functional

(25) E(w) =
∫

Ω

[F (Dw) + fw] dx+
∫

∂Ω

|ϕ− w| dHn−1

on W 1,1(Ω).

Proof. 1◦. Suppose v is a generalized solution to (23). Denote by I(w) and
g(w), respectively, the volume and boundary integrals in (25).

It follows from (21) and the convexity of F that for any w ∈W 1,1(Ω),

(26) I(w) ≥ I(v) +
∫

Ω

[Fi(Dv)(wxi
− vxi

) + f(w − v)] = I(v) + 〈Tv,w − v〉.
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We also have the following identity:

g(w)− g(v) =
∫

∂Ω∩{v=ϕ}
|w − ϕ| dHn−1(27)

+
∫

∂Ω∩{v>ϕ}
[|w − ϕ| − v + ϕ] dHn−1

+
∫

∂Ω∩{v<ϕ}
[|w − ϕ|+ v − ϕ] dHn−1.

Furthermore, by Definition 1 we have

〈Tv,w − v〉 =
∫

∂Ω∩{v=ϕ}
Tv(w − ϕ) dHn−1 +

∫
∂Ω∩{v>ϕ}

(v − w) dHn−1

+
∫

∂Ω∩{v<ϕ}
(w − v) dHn−1.

From (26) and (27) we get the inequality

E(w) ≥ E(v) +
∫

∂Ω∩{v=ϕ}
[|w − ϕ|+ Tv(w − ϕ)] dHn−1(28)

+
∫

∂Ω∩{v>ϕ}
[|w − ϕ|+ ϕ− w] dHn−1

+
∫

∂Ω∩{v<ϕ}
[|w − ϕ|+ w − ϕ] dHn−1.

Because each boundary integral in (28) is nonnegative we conclude that

E(w) ≥ E(v) for any w ∈W 1,1(Ω).

2◦. Assume now that v is a minimizer of E on the space W 1,1(Ω). Because
v is a weak solution of the equation (20) (see [1]), we only have to check (24).
This step is standard; see A. Lichnewsky and R. Temam [3]. In the inequality
E(w) ≥ E(v) take w = v + λη, with λ > 0 (λ < 0) and η ∈W 1,1(Ω). Passing to
the limit as λ↘ 0 (λ↗ 0) we obtain∫

Ω

[Fi(Dv)ηxi
+ fη] dx+ lim

λ↘0

∫
∂Ω

|v + λη − ϕ| − |v − ϕ|
λ

dHn−1 = 0.

The first integral here is 〈Tv, η〉, while the second one is equal to
∫

∂Ω
ση dHn−1

with σ ∈ supp(v−ϕ). Thus we arrive at the equation Tv+σ = 0 which coincides
with (24). �

We will not discuss here the solvability of (23). Various aspects of this
problem have been studied in detail by M. Miranda, E. Giusti, N. Trudinger,
and others.
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Proposition 2. A generalized solution to (23) is unique, possibly, up to an
additive constant.

Proof. If v and w are two solutions then it follows from (21) and (24) that

(29)
∫

Ω

[Fi(Dv)−Fi(Dw)](vxi
−wxi

) dx =
∫

∂Ω

[(Tv−Tw)(v−w)] dHn−1 ≤ 0.

On the other hand, by convexity of F the inequality [Fi(p)− Fi(q)](pi − qi) ≥ 0
holds for any p, q ∈ Rn with equality for p = q only.

This and (29) imply that

[Fi(Dv)− Fi(Dw)](vxi
− wxi

) = 0 a.e. in Ω

and therefore Dv = Dw a.e. in Ω.

Remark 2. Later on we will be considering only solutions to (23) for which
v = ϕ on ∂+Ω. By Proposition 2 such a solution is unique.

We now return to solutions uε of (7)–(9). It follows from Theorem 1 and
Remark 1 that there exists a function

u ∈ C∞((Ω ∪ ∂+Ω)× (0,∞)) ∩ L∞([0,∞);W 1,1(Ω))

such that for some sequence εk ↘ 0 the functions uεk and all their derivatives
converge uniformly to u and to its respective derivatives on compact subsets of
(Ω∪∂+Ω)× (0,∞). Also, uεk → u in Lq(Ω× (0, T )) for all T > 0 and q <∞. In
addition, u satisfies inequalities analogous to (13)–(16) with the same constants.
Moreover, it satisfies (1), (3),

(30) u = ϕ on ∂+Ω× (0,∞),

and for any t ∈ (0,∞),

(31) −Tu ∈ supp(u− ϕ) a.e. on ∂Ω.

For the proof of the last statement see [12]. In other words, for each t ∈
(0,∞), u is a generalized solution of (23) with

f = f (t) =
ut(·, t)√

1 + |Du(·, t)|2
.

Proposition 3. The following estimate holds:

(32)
∫ ∞

0

∫
Ω

|ut|2√
1 + |Du|2

dx dt ≤M3.
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Proof. Multiply the equation (7) by uε
t and integrate the result over Ω ×

[t1, t2], 0 < t1 < t2 <∞. Then integrate by parts taking into account vanishing
of uε

t on ∂Ω× (0,∞). Finally, using the relation

dF ε(Duε)
dt

= F ε
i Diu

ε
t ,

we arrive at ∫ t2

t1

dt

∫
Ω

|uε
t |2√

1 + |Duε|2
dx+

∫
Ω

F ε(Duε) dx
∣∣∣∣t2
t1

= 0.

In the first term here write the integral
∫
Ω

as the sum of integrals over Ωδ and
Ω \ Ωδ, where Ωδ = {x ∈ Ω : dist(x, ∂Ω) > δ} for some small positive δ. Then,
using (14), (15), we obtain∫ t2

t1

dt

∫
Ωδ

|uε
t |2√

1 + |Duε|2
dx ≤M3 +O(δ) · (t2 − t1).

Passing to the limit, first as ε→ 0 and then as δ → 0, we get the estimate∫ t2

t1

dt

∫
Ω

|ut|2√
1 + |Du|2

dx ≤M3.

Since 0 < t1 < t2 <∞ are arbitrary, this estimate gives (32). �

Corollary 1. There exists a sequence tk →∞ such that

(33) u(·, tk) → u as k →∞,

where the convergence is in Lq(Ω), q <∞. In addition, the derivatives of u in x
of any order tend uniformly on compact subsets of Ω∪∂+Ω to the corresponding
derivatives of u and

(34) H[u] = 0 in Ω, u = ϕ on ∂+Ω.

Theorem 2. u is the unique generalized solution of (25) with f = 0. The
convergence in (33) holds for any sequence tk →∞.

Proof. To prove the first statement it is sufficient to show that u is a
minimizer of the area functional (11). We begin with the observation that uk :=
u(·, tk) is a minimizer of Ek, that is,

(35) Ek(w) ≥ Ek(uk) ∀w ∈W 1,1(Ω).

Here Ek is the functional (25) with f = f (tk) defined just before the Proposi-
tion 3. Because of (32) we can choose tk in such a way that
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(36) r(tk) :=
∫

Ω

|ut|2√
1 + |Du|2

dx

∣∣∣∣t=tk

→ 0 as k →∞.

Then

(37) ‖f (tk)‖1,Ω ≤ (r(tk)|Ω|)1/2 → 0 as k →∞

and, consequently, by the estimate (13) (applied to u) we obtain

(38)
∫

Ω

f (tk)uk dx→ 0 as k →∞.

The functional (11) is lower semicontinuous with respect to convergence in
L1(Ω). This fact and (33), (38), (35), and (37) imply

A(u) ≤ lim inf
k→∞

A(uk) = lim inf
k→∞

[
Ek(uk)−

∫
Ω

f (tk)uk dx

]
(39)

= lim inf
k→∞

Ek(uk) ≤ lim inf
k→∞

Ek(w) = A(w)

for any w ∈W 1,1(Ω) ∩ L∞(Ω).
Let now w ∈W 1,1(Ω) and M = sup∂Ω ϕ. Put

v =


w if |w| < M,

M if w ≥M,

−M if w ≤ −M.

It is easy to see that A(u) ≤ A(v) ≤ A(w). Thus u is a minimizer of A.
To prove the second statement in Theorem 2, consider an arbitrary sequence

tk′ → ∞. Let {k′′} be a subsequence of {k′} such that uk′′ → v where the
convergence is the same as described in Corollary 1. We want to prove that
A(v) ≤ A(w) for all w ∈ W 1,1(Ω). Then the desired result will follow from the
uniqueness of the minimizer v = u (see Remark 2). It is tempting to try to get
(36) for k′. Fix some small δ > 0 and consider

rδ(t) =
∫

Ωδ

|ut|2√
1 + |Du|2

dx

∣∣∣∣t = r(t) +O(δ)

with Ωδ defined in the proof of Proposition 3.
Because of uniform boundedness of |Du| and |Dut| on Ωδ the estimate

|drδ(t)/dt| ≤ c(δ) holds uniformly in t. From this and (32) one immediately
concludes that rδ(t) → 0 as t → ∞. Indeed, if rδ(tk′) ≥ α > 0 for some
tk′ → ∞, then rδ(t) ≥ α/2 in the α/(2cδ)-neighborhood of each tk′ . But this
contradicts (32).
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Finally, we note that we also have the inequality

A(v) ≤ A(w) +O(δ) ∀w ∈W 1,1(Ω) ∩ L∞(Ω).

Arguing as above and using the fact that δ is an arbitrary small positive num-
ber, we conclude that A(v) ≤ A(w) for all w ∈ W 1,1(Ω) and, consequently,
v = u. �
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