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GENERALIZED TOPOLOGICAL TRANSITION MATRIX

Robert Franzosa — Ketty A. de Rezende — Ewerton R. Vieira

Abstract. This article represents a major step in the unification of the

theory of algebraic, topological and singular transition matrices by intro-

ducing a definition which is a generalization that encompasses all of the
previous three. When this more general transition matrix satisfies the addi-

tional requirement that it covers flow-defined Conley-index isomorphisms,

one proves algebraic and connection-existence properties. These general
transition matrices with this covering property are referred to as gener-

alized topological transition matrices and are used to consider connecting

orbits of Morse–Smale flows without periodic orbits, as well as those in
a continuation associated to a dynamical spectral sequence.

1. Introduction

A challenging question in the study of dynamical systems is that of the

existence of global bifurcations. The difficulty in detecting such bifurcation orbits

is the fact that one must analyze the dynamical system globally. Topological

techniques for global analysis are, therefore, a perfect fit for such an investigation.

In particular, Conley index theory has proven to be quite useful in this role, as
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can be seen by the ample use of connection and transition matrices in bifurcation-

related results. See [3], [4], [7]–[10] and [17].

Connection matrices have been extensively studied and can be computed by

numerical techniques, see [1], [2] and [6]. Their continuation properties have

proven to be useful in detecting global bifurcations. In particular, the continua-

tion theorem [10] states that the connection matrices of an admissible ordering

are invariant under local continuation. Yet, under global continuation, sets of

connection matrices can undergo change. For instance, if there is a continu-

ation between parameters with unique but different connection matrices, then

within the continuation there must be a parameter value with nonunique con-

nection matrices. At such a parameter value the system typically has a global

bifurcation.

In other words, Morse decompositions and connection matrices provide a sup-

porting structure within which global bifurcations can be detected, particularly

via changes in the associated algebraic structures. These differences that occur

in connection matrices under continuation, which can naturally be identified al-

gebraically, were the main motivation for the introduction of transition matrices

as a combinatorial mechanism to keep track of these changes. These transition

matrices have since appeared in the literature under several guises: singular [22],

topological [17], algebraic [11], and directional [15]. These four types of matri-

ces are defined differently (particularly under contrasting conditions) and have

distinct properties. On the other hand, due to underlying similarities in the

definitions and their corresponding properties, a unified theory for transition

matrices has long been called for.

In this paper we briefly introduce the generalization which unifies the theory.

We focus on an initial and important step toward understanding the properties of

this newly defined and more general transition matrix, which has the additional

property that it covers flow-defined Conley-index isomorphisms. We refer to

these matrices as generalized topological transition matrices and prove several

properties they possess.

In contrast to the classical case, in our definition of a (generalized) topological

transition matrix in Section 2, we do not require that there are no connections at

the initial and final parameters of a continuation. As a consequence, this theory

can be applied to a much broader class of dynamical systems than the classical

topological transition matrix. We also establish properties of the generalized

topological transition matrices – including connecting orbit existence results –

corresponding to those of the classical topological transition matrix. In Section 3,

we apply this new theory to Morse–Smale flows without periodic orbits. In this

setting one demonstrates uniqueness and provides a simple way to compute the

generalized topological transition matrix. In the last section, we see how the
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generalized topological transition matrices can be obtained from a continuation

associated to a dynamical spectral sequence.

We assume that the reader is familiar with the basic ideas in Conley Index

Theory, including Morse decompositions, homology index braids, connection ma-

trices, etc. (see [3], [8]–[10], [19] and [24]).

In the next paragraphs we summarize some basic ideas in Conley Index

Theory and connection matrix theory. We highly recommend the reader to see

[3], [8]–[10], [19] and [24] for more detailed background.

Let ϕ be a continuous flow on a locally compact Hausdorff space and let S

be a compact invariant set under ϕ. A Morse decomposition of S is a collection

of mutually disjoint compact invariant subsets of S,

M(S) = {M(π) | π ∈ P}

indexed by a finite set P, where each set M(π) is called a Morse set. A partial

order < on P is called the admissible ordering if for x ∈ S \ ⋃
π∈P

M(π) there

exists p < q such that α(x) ⊆ M(q) and ω(x) ⊆ M(p). The flow defines an

admissible ordering of M , called the flow ordering of M , denoted <F , and such

that M(π) <F M(π′) if and only if there exists a sequence of distinct elements of

P: π = π0, . . . , πn = π′, where C(M(πj),M(πj−1)), the set of connecting orbits

between M(πj) to M(πj−1), is nonempty for each j = 1, . . . , n. Note that every

admissible ordering of M is an extension of <F .

In the Conley theory one begins with the Conley index for isolated invariant

sets, i.e. S ⊆ X is an isolated invariant set if there exists a compact set N ⊆ X
such that S ⊆ intN and

S = Inv(N,ϕ) = {x ∈ N | O(x) ⊆ N}.

The homological Conley index of S, CH∗(S) is the homology of the pointed

space (N/L), where (N,L) is an index pair for S. Setting

M(I) =
⋃

π∈I
M(π) ∪

⋃

π,π′∈I
C(M(π′),M(π)),

the Conley index of M(I), CH∗(M(I)), in short H∗(I), is well defined, since

M(I) is an isolated invariant set for all I ∈ I (<).

Given M(S), a Morse decomposition of S, the existence of an admissible

ordering on M(S) implies that any recurrent dynamics in S must be contained

within the Morse sets, thus the dynamics off the Morse sets must be gradient-

like. For this reason, Conley index theory refers to the dynamics within a Morse

set as local dynamics and off the Morse sets as global dynamics. We briefly

introduce the connection matrix theory, which addresses this latter aspect.
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Definition 1.1. Given G, a graded module braid over <, and a collection

of graded modules C = {C(π)}π∈P, let ∆:
⊕
π∈P

C(π) → ⊕
π∈P

C(π) be a <-upper

triangular boundary map. If H∆, the graded module braid generated by ∆, is

isomorphic to G, and C(p) is isomorphic to G(p) then ∆ is called a connection

matrix of G.

To simplify the notation, for I ∈ I(<) we denote
⊕
π∈I

C(π) by C(I), and the

corresponding homology module in H∆ by H(I). In particular, the homology in-

dex braid of an admissible ordering of a Morse decomposition G = {H∗(I)}I∈I(<)

is an example of a graded module braid. In this setting a <-upper triangular

boundary map

∆:
⊕

π∈P
CH∗(M(π))→

⊕

π∈P
CH∗−1(M(π))

satisfying Definition 1.1 for C∆ = {CH∗(M(π))}π∈P is called a connection ma-

trix for a Morse decomposition. Since in this paper, our aim is to work with

topological transition matrices, we focus on connection matrices for Morse de-

compositions with coefficients in a PID. Thus, let CM(<) denote the set of all

connection matrices for a given (<-ordered) Morse decomposition M(S).

One of the key features in Conley theory is its invariance under continuation.

Since the connection matrices for Morse decompositions are algebraically derived

from the homology Conley index braid, this seems to indicate that connecting

orbits that persist over open sets in parameter space are identified by connection

matrices. We now define Conley index continuation.

Let Γ be a Hausdorff topological space, Λ a compact, locally contractible,

connected metric space and X a locally compact metric space. Assume that

X × Λ ⊆ Γ is a local flow. X × Λ is called parametrized flow if for each λ ∈ Λ,

X × λ is a local flow.

Let φ : Z × Λ → X be a parametrization of a local flow X. Denote the

restriction φ|(Z×{λ}) by φλ and its image by Xλ.

Lemma 1.2 (Salamon). For any compact set N ⊆ X the set Λ(N) = {λ ∈
Λ | N × λ is an isolating neighbourhood in X × λ} is open in Λ.

Definition 1.3. The space of isolated invariant sets is

S = S (φ) = {S × λ | λ ∈ Λ

and S × λ is an isolated invariant compact set in X × λ}.

For all compact sets N ⊆ X×λ define the map %N : Λ(N)→ S by %N (λ) =

Inv(N × λ). Then consider the topology on the space S generated by the sets

{%N (U) | N ⊆ X compact, U ⊆ Λ(N) open}.
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A map γ : Λ→ S is called a section of the space of isolated invariant sets if

ΠΛ ◦ γ = id|Λ.

We are interested in the situation where the homology index braids of admis-

sible orderings of Morse decompositions at parameters λ and µ are isomorphic,

see Theorem 1.7. That is, it is not enough that a Morse decomposition continues

over Λ, it must also continue with a partial order, more specifically:

Definition 1.4. LetM(S) = {M(π) | π ∈ (P, <)} be an ordered Morse de-

composition of the isolated invariant set S ⊆ X×Λ. Let Mλ = {Mλ(π)}π∈(P,<λ),

Mµ = {Mµ(π)}π∈(P,<µ), Sλ and Sµ be the sets obtained by intersection ofM(S)

and S by the fibers X × {λ} and X × {µ}, respectively, where <ν is the order

restricted to the order < in the parameter ν ∈ Λ.

(a) We say that M(S) with its order < continues over Λ if there exist

sections σ and ςπ : Λ → S such that {ςπ(ν) | π ∈ (P, <ν)} is a Morse

decomposition for σ(ν), for all ν ∈ Λ.

(b) If, furthermore, there exist a path ω : [0, 1]→ Λ from λ to µ; σ(λ) = Sλ;

σ(µ) = Sµ; ςπ(λ) = Mλ(π); ςπ(µ) = Mµ(π); and if M(S) continues at

least over ω([0, 1]), then we say that the admissible orderings <λ and

<µ are related by continuation or continue from one to the other. See

Figure 1.

Λ

Λ

id

Mλ

Sλ

Mµ

Sµ

ς

σ

ΠΛ

σ, ς

Figure 1. Sections from Definition 1.4.

The following Lemma 1.5 is a combination of Lemma 6.4 in [24] and of

Proposition 2.9 in [17].

Lemma 1.5 (McCord, Mischaikov, Salamon).

(a) Let γ : Λ→ S be a section, then γ is continuous if and only if

S =
⋃

λ∈Λ

γ(λ)

is an isolated invariant set in X × Λ.
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(b) Let

S =
⋃

λ∈Λ

σ(λ), M(π) =
⋃

λ∈Λ

ςπ(λ) for any π ∈ P.

Then, S is an isolated invariant set in X × Λ under φ and M(S) =

{M(π) | π ∈ (P, <)} is its Morse decomposition if and only if M(S)

with its order continues.

Note that, by Lemma 1.5, Definition 1.4 is equivalent to the definitions of

continuation with order presented in [24], [10], [17] and [11].

By Lemma 1.5, the minimal order <m forM(S) that continues over Λ is the

flow defined order for M(S). Note that ifM(S) with order < continues then <

extends <m.

Proposition 1.6. If p <m q then there exist s1, . . . , sn ∈ [0, 1] and a se-

quence (pi) ⊆ P such that p0 = q, pn = p and the set of connecting orbits

C(Mω(si)(pi−1),Mω(si)(pi)) is nonempty, where ω : [0, 1] → Λ is a path between

λ and µ. We call these connections, unordered chain connections, in short, ucc.

Proof. Since a Morse set of M(S) is

M(π) =
⋃

λ∈Λ

ςπ(λ),

then p <m q implies that there is a sequence (pi) ⊆ P such that p0 = q, pn = p

and the set of connecting orbits C(M(pi−1),M(pi)) is nonempty. Note that

the connecting orbit between M(pi−1) and M(pi) occurs at some parameter in

Λ. Therefore, we have the desired result whenever M(S) continues over a path

ω : [0, 1]→ Λ. �

Now we have the necessary framework to state the following results in [10]

and [11], which we use subsequently.

We have the following continuation theorem for homology index braids of

admissible orderings of Morse decompositions.

Theorem 1.7 (Franzosa). If the admissible orderings <λ and <µ are re-

lated by continuation, then H(<λ) and H(<µ), the homology index braids of the

admissible orderings, are isomorphic.

The next global continuation theorem for connection matrices of admissible

orderings of Morse decompositions follows from the previous theorem.

Theorem 1.8 (Franzosa). If the admissible orderings <λ and <µ are related

by continuation, then CM(<λ) = CM(<µ).

The following proposition describes the relationship between connection ma-

trices of Morse decompositions if the flow ordering of one Morse decomposition
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continues to an admissible ordering of another, since every admissible ordering

is an extension of the flow ordering.

Proposition 1.9 (Franzosa). Let <1 and <2 be admissible orderings for

M(S) and assume that <1 is an extension of <2. Then

CM(<2) ⊆ CM(<1).

The collection of connection matrices of a Morse decomposition is upper

semicontinuous over the space of Morse decompositions and over the parameter

space Λ.

Theorem 1.10 (Franzosa). There exists a neighbourhood W of λ in Λ such

that if µ ∈W , then Mλ is related by continuation with order to a Morse decom-

position Mµ of an isolated invariant set in Xµ, and for such Mµ, CM(Mµ) ⊆
CM(Mλ).

The next proposition is not hard to verify and it can be found in [11].

Proposition 1.11 (Franzosa, Mischaikow). Let C = {C(p)}p∈P and C ′ =

{C ′(p)}p∈P be collections of graded modules, and ∆: C(P)→ C(P), ∆′ : C ′(P)

→ C ′(P) be <-upper triangular boundary maps. If T : C(P)→ C ′(P) is <-upper

triangular and such that T∆ = ∆′T , then {T (I)}I∈I(<) is a chain map from C∆
to C∆′.

2. Generalization of the topological transition matrix

In this section we introduce the (generalized) topological transition matrix.

As we mentioned previously, this provides a generalization of the classical topo-

logical transition matrix because we do not require that there are no connections

at the initial and final parameters of a continuation, and therefore the general

case applies to a much broader class of dynamical systems than the classical

case. Furthermore, we show that there is no loss in the bifurcation information

that can be obtained in the general case in comparison to the classical case (see

Theorem 5 in comparison to the corresponding classical result presented here as

Theorem 4). But first, we introduce a quick review of the classical topological

transition matrix in [17] and [18].

Suppose that S0 and S1 are invariant sets related by continuation in Xλ0

and Xλ1 . Hence, there exist a map ω : [0, 1] → Λ such that ω(0) = λ0 and

ω(1) = λ1 and an isolated invariant set S over ω(I) such that Sλi = Si. The

inclusion fi : Xλi → X × ω(I) induces an isomorphism CH∗(Si)
fi∗−→ CH∗(S),

where CH∗(Si) and CH∗(S) indicate the Conley homology indices of Si in Xλi

and of S in X × ω(I), respectively. Thus, there is an isomorphism

Fω : CH∗(S0)
f−1
1∗ ◦f0∗−−−−−−→ CH∗(S1)
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that depends on the endpoint-preserving homotopy class ω. If π1(Λ) = 0 then

Fω is independent of the path ω and one writes Fλ1,λ2
instead of Fω. The flow-

defined continuation isomorphism is well-behaved with respect to composition

of paths: Fλ,λ = id, Fµ,ν ◦ Fλ,µ = Fλ,ν and Fλ,µ = F−1
µ,λ. For more details see

[18] and [24].

Let Mλ = {Mλ(π)}π∈P and Mµ = {Mµ(π)}π∈P be Morse decompositions,

related by continuation, for the isolated invariant sets Sλ ⊆ Xλ and Sµ ⊆ Xµ,

respectively. In this setting, let

Λ′ =

{
λ ∈ Λ

∣∣∣∣ Sλ =
⋃

p∈P
Mλ(p)

}

be a parameter set in which the corresponding Morse decomposition does not

have connecting orbits. Choose a path ω from λ to µ, where λ, µ ∈ Λ′. To

simplify the notation, we denote CH∗(Mν(I)) = H∗,ν(I) or just CH(Mν(I)) =

Hν(I), where I ∈ I(<ν) and ν ∈ {λ, µ}.
By Conley’s theory we have that there is an isomorphism Φλ : C∗∆λ(P) →

H∗,λ(P) for λ ∈ Λ′, where C∗∆λ(P) =
⊕
π∈P

CH(Mλ(π)) is the chain complex

with the connection matrix ∆λ.

Therefore, we can carry out the continuation along the path ω in two ways:

first by continuing Sλ along the path ω using the isomorphism Fλ,µ; secondly con-

tinuing
⋃
p∈P

Mλ(p) along the path ω by using isomorphism Eλ,µ=
⊕
p∈P

Fλ,µ(M(p)).

More precisely, we have the following diagram:

C∆λ(P)
Eλ,µ

//

Φλ

��

C∆µ(P)

Φµ

��

Hλ(P)
Fλ,µ

// Hµ(P).

In general the diagram above is not commutative. Due to the lack of commuta-

tivity, one is able to obtain information about connection orbits. Fix a base Bλ

in C∗∆λ and use the isomorphism Eλ,µ in order to define a base Eλ,µ(Bλ) in

C∗∆µ. The composition Tλ,µ = Φ−1
µ ◦ Fλ,µ ◦ Φλ can be represented as a matrix

with respect to those bases and such matrix is called a (classical) topological

transition matrix.

The following theorem in [17] summarizes some important properties for this

matrix, which we refer to, from now on, as the classical topological transition

matrix.

Theorem 2.1 (McCord–Mischaikow). Let Λ′ ⊆ Λ be such that for all λ and

µ ∈ Λ′ there are no connection orbits in Mλ and Mµ, and Mλ and Mµ are related

by continuation. Then:
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(a) ∆µTλ,µ + Tλ,µ∆λ = 0.

(b) Tλ,µ is an isomorphism.

(c) Tλ,µ is upper triangular matrix with respect to order <.

(d) If ν ∈ Λ′ then Tλ,λ = id, Tλ,ν = Tµ,ν ◦ Tλ,µ and Tµ,λ = T−1
λ,µ.

(e) If Tλ,µ(p, q) 6= 0 and ω is a path between λ and µ, then there exist a finite

sequence 0 < s1 ≤ . . . ≤ sn < 1 and a sequence (pi) ⊆ P such that

p0 = q, pn = p and the connecting orbit set C(Mω(si)(pi−1),Mω(si)(pi))

is nonempty.

Item (a) of the theorem above is trivial since ∆λ = ∆µ = 0, and Tλ,µ has

the property of being unique, since Tλ,µ is a composition of isomorphisms.

Definition 2.2. Given chain complex braids C and C′ and graded module

braids G and G′, a chain map T : C → C′ is said to cover an isomorphism θ

(relative to Φ and Φ′) if for all I ∈ I(<), we have that the following diagram

commutes:

HC(I)
T∗(I)

//

Φ(I)

��

HC′(I)

Φ′(I)

��

G(I)
θ(I)

// G′(I),

where T∗(I) is the homology map induced by the chain map T (I), Φ: HC → G
and Φ′ : HC′ → G′ are isomorphisms from the homology of the chain complex

braid to the graded module braid.

Definition 2.3. If, in Definition 2.2, C and C′ arise from connection matrices

∆:
⊕
P

C(p) → ⊕
P

C(p), ∆′ :
⊕
P

C ′(p) → ⊕
P

C ′(p), respectively, and T arises

from a matrix T :
⊕
P

C(p) → ⊕
P

C ′(p) then T is called a generalized transition

matrix for ∆ and ∆′.

In a forthcoming paper we will further explore properties of the generalized

transition matrix and demonstrate how it generalizes all four transition matrices,

namely, singular [22], topological [17], algebraic [11] and directional [15]. In this

paper we prove generalizations of the definition and properties of the classical

topological transition matrices. With this in mind we restrict Definition 2.3 in

order to obtain a new and broader definition for a topological transition matrix.

Definition 2.4. If T is a generalized transition matrix that covers the flow-

defined continuation isomorphism F , then we refer to T as a generalized topo-

logical transition matrix.

As we mentioned previously, an advantage of this definition over the def-

inition of the classical topological transition is that here we do not need the
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restrictive requirement that there are no connections between the Morse sets at

the end parameter values in a continuation. In Example 2.11 in this section and

in Sections 3 and 4 we provide some dynamical examples where we apply the

generalized topological transition matrix in settings where it is not possible to

apply the classical topological transition matrix.

We have the following characterization result.

Proposition 2.5. T is a generalized topological transition matrix related to

the connection matrices (∆λ,Φλ) and (∆µ,Φµ) if and only if

T :
⊕

p∈P
CH∗(Mλ(p))→

⊕

p∈P
CH∗(Mµ(p))

is a zero degree map such that

(a) {T (I)}I∈I(<) is a chain map from C∆λ to C∆µ;

(b) the following diagram:

H∆λ(I) //

��

��

H∆λ(IJ) //

}}

��

H∆λ(J)
∆λ(J,I)

//

��

��

H∆λ(I)

��

T̂ (I)

��

Hλ(I) //

Fλµ(I)

��

Hλ(IJ) //

��

Hλ(J)
δλ(J,I)

//

��

Hλ(I)

��

H∆µ(I) //

��

H∆µ(IJ) //

~~

H∆µ(J) //

��

H∆µ(I)

��

Hµ(I) // Hµ(IJ) // Hµ(J) // Hµ(I)

Diagram 1

commutes for all adjacent pairs (I,J), where T̂ ( · ) is the induced homo-

logy map of T ( · ).
Proof. By Definition 2.4, the diagram commuting in the transversal sections

implies that the whole diagram commutes. This follows easily since the top

and bottom diagrams commute by the definition of the connection matrix; the

diagram in the background commutes because T is a chain map, and lastly the

diagram in the foreground commutes by the continuation of the homology index

braid (Theorem 1.7) which, in part, asserts that for all adjacent pairs (I,J) the

following diagram commutes:

· · · // Hλ(I) //

F (I)

��

Hλ(IJ) //

F (IJ)

��

Hλ(J)
δλ(J,I)

//

F (J)

��

Hλ(I) //

F (I)

��

· · ·

· · · // Hµ(I) // Hµ(IJ) // Hµ(J)
δµ(J,I)

// Hµ(I) // · · · �
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Denote GTTM (<) as the set of all generalized topological transition matrices

with the partial order <.

When there are no connections in the λ and µ parameters, then ∆λ = 0 =

∆µ. Thus, the induced homology map T̂ = T and by choosing an adjacent pair

(I,J) such that P = IJ, from Diagram 1 we have that the following diagram

commutes:

Hλ(P) //

F (P)

��

C∆λ(P)

T (P)

��

Hµ(P) // C∆µ(P).

Therefore, T (P) is a classical topological transition matrix. Thus, generalized

topological transition matrices encompass the classical topological transition ma-

trices.

Proposition 2.6. The classical topological transition matrix is a particular

case of the generalized topological transition matrix.

Although the next result is straightforward from Definition 2.5, it is worth-

while to emphasize its importance, since given two connection matrices related

by continuation there exist some entries that are the same for the matrices ∆λ

and ∆µ. More accurately,

Proposition 2.7. Let p, q ∈ P be such that either p and q are not related

by order < or p < q. If the pair ({p}, {q}) is an adjacent pair, i.e. there is no

p′ ∈ P such that p < p′ < q, then ∆qp,λ = T−1({q}) ◦∆qp,µ ◦ T ({p}).
Proof. By hypothesis, ({p}, {q}) is an adjacent pair, then by the defini-

tion of the generalized topological transition matrix we have that the following

diagram commutes:

H∆λ({p}) ∆λ({q},{p})
//

T̂ ({p})
��

H∆λ({q})

T̂ ({q})
��

H∆µ({p})
∆µ({q},{p})

// H∆µ({q})

which can be rewritten as

CH(Mλ(p))
∆qp,λ

//

T ({p})
��

CH(Mλ(q))

T ({q})
��

CH(Mµ(p))
∆qp,µ

// CH(Mµ(q)).

Since T ({p}) and T ({q}) are isomorphisms it follows that

∆qp,λ = T−1({q}) ◦∆qp,µ ◦ T ({p}). �
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In this paper, for the sake of simplicity, we do not address the existence

of the generalized transition matrix, since the existence problem is related to

the unification of the transition matrix theory. In a forthcoming paper, we

have obtained existence results, nevertheless, here we establish the existence in

particular cases as one can observe in Corollary 2.9 and Theorem 3.1.

The primary goal in this section is to establish properties of the generalized

topological transition matrix – including connecting orbit existence results –

corresponding to those of the classical topological transition matrix. In the last

two sections we present applications of the generalized topological transition

matrix.

The following properties of generalized topological transition matrices are an

extension of Theorem 2.1.

Theorem 2.8. Let Mλ = {Mλ(π)}π∈(P,<λ) and Mµ = {Mµ(π)}π∈(P,<µ) be

Morse decompositions, ∆λ and ∆µ their respective connection matrices with the

flow-defined order. Moreover, assume that Mλ and Mµ are related by continua-

tion with an admissible ordering <. Then the generalized topological transition

matrix T satisfies the following properties:

(a) T ◦∆λ = ∆µ ◦ T .

(b) Tλ,µ({p}) = id and T is upper triangular with respect to <.

(c) T is an isomorphism.

(d) Tλ,λ = id, Tλ,ν(I) = Tµ,ν ◦ Tλ,µ(I) and Tµ,λ(I) = T−1
λ,µ(I) are generalized

topological transition matrices, for all intervals I ∈ I and p ∈ P, in

particular T = T (P).

(e) Let ω : [0, 1] → Λ be a path that continues Mλ to Mµ. Assume that

Tλ,µ(p, q) 6= 0 for all generalized topological transition matrices and

GTTM (<m) 6= ∅ for all ω[s, t], where s, t ∈ [0, 1]. Then there exist a fi-

nite sequence 0 ≤ s1 ≤ . . . ≤ sn ≤ 1 and a sequence (pi) ⊆ P such that

p0 =q, pn=p and the set of connecting orbits C(Mω(si)(pi−1),Mω(si)(pi))

is nonempty.

Before proving Theorem 2.8, we present the following corollary.

Corollary 2.9. Under the same hypothesis as Theorem 2.8, assume that

Tλ,µ(p, q) 6= 0 and ∆λ(K) = 0 = ∆µ(K), where K is an interval that contains

p and q. Then there exist a finite sequence 0 ≤ s1 ≤ . . . ≤ sn ≤ 1 and a se-

quence (pi) ⊆ P such that p0 = q, pn = p and the set of connecting orbits

C(Mω(si)(pi−1),Mω(si)(pi)) is nonempty.

Proof. Since ∆λ(K) = 0 = ∆µ(K) then

H∆λ(K) =
⊕

π∈K
CH(Mλ(π)) and H∆µ(K) =

⊕

π∈K
CH(Mµ(π)),
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hence GTTM (<m) = {Tλ,µ(K) = Φ−1
µ ◦F ◦Φλ(K)} 6= ∅. Therefore, by item (e)

of Theorem 2.8, one just needs that Tλ,µ(p, q) 6= 0 in order to prove the result.�

Note that when ∆λ(K) = 0 = ∆µ(K) we cannot use the classical topological

matrix to obtain Corollary 2.9, since ∆λ(K) = 0 does not imply that there is

no connection at the parameter λ. Actually one can use Corollary 2.9 when-

ever there is no connection at parameter λ and µ in order to prove item (e) of

Theorem 2.1.

Proof of Theorem 2.8 (a)–(d). (a) Since ∆λ(I) and ∆µ(I) are boundary

maps and Tλ.µ(I) is a chain map, we have that Tλµ(I) ◦∆λ(I) = ∆µ(I) ◦ Tλµ(I)

for all I.

(b) Fix a base Bλ for the domain then Bµ =
⊕
p∈P

F (p)(Bλ) is a base for the

codomain of the map
⊕

p∈P
F (p) :

⊕

p∈P
Hλ(p)→

⊕

p∈P
Hµ(p).

Therefore, Φ−1
λ (Bλ) and Φ−1

µ (Bµ) are bases for the domain and codomain of the

map
⊕
p∈P

T∗({p}), i.e. T∗({p})=id and, since T∗({p})=T ({p}), then T ({p})=id.

In order to prove that T is upper triangular it is enough to prove Tq,p = 0

for q ≮ p. Indeed, let I be an interval that has p and q at the ends, and choose

the adjacent pair (p, I \ p). It follows that

[T (I)(α⊕ 0)] = T∗(I)[α⊕ 0] = T∗(I) ◦ i(α) = i ◦ T∗({p})(α)

= i ◦ T ({p})(α) = i(α̇) = [i(α̇)] = [α̇⊕ 0],

where α ∈ C(p), α̇ = T ({p})(α) and 0 ∈ ⊕
π∈I\p

C(π). Therefore,

T (I)(α⊕ 0)− α̇⊕ 0 ∈ Im ∆µ(I)

and since ∆′(I) is an upper triangular boundary map then there exists β ∈⊕
I

C ′(π) such as

T (α⊕ 0)− α̇⊕ 0 = ∆′(I)(β) = d⊕ 0, where d ∈
⊕

π∈I\q
C ′(π).

As T (α⊕ 0) = α̇⊕ · · · ⊕ Tq,p · α then Tq,p · α = 0, thus Tq,p = 0.

(c) By item (b), we have that T is an upper triangular matrix with nonzero

entries on the diagonal, thus T is an isomorphism.

(d) By the properties of the continuation isomorphism, specifically Fλ,λ = id,

Fµ,ν ◦ Fλ,µ = Fλ,ν and Fλ,µ = F−1
µ,λ, the result follows. �

One needs a technical lemma in order to prove item (e) of Theorem 2.8.
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Lemma 2.10. Let Mλ = {Mλ(π)}π∈(P,<λ) and Mµ = {Mµ(π)}π∈(P,<µ) be

Morse decompositions, ∆λ and ∆µ their respective connection matrices with the

flow-defined order. Moreover, assume that Mλ and Mµ are related by continua-

tion with an admissible ordering <. If Tλ,µ(p, q) 6= 0 for all generalized topological

transition matrices and GTTM (<m) 6= ∅ then there is a ucc from q to p.

Proof. Since T (p, q) 6= 0 for all T ∈ GTTM (<), then T (p, q) 6= 0 for all

T ∈ GTTM (<m), given that <m is the minimal order that continues. Therefore,

by T being <m-upper triangular, we have that p <m q. �

Proof of Theorem 2.8 (e). By Lemma 2.10, we have Tpq 6= 0 for all

T ∈ GTTM (<) implies that there exists a ucc from q to p.

p0 = q

p1

...

pn = p

λ2 = ω(s2) λ1 = ω(s1) λn = ω(sn)

µλ

Figure 2. Unordered chain connections from q to p.

It remains to prove that si ≤ si+1, i.e. the connections occur along the path

ω. Since GTTM (<m) ⊆ GTTM (<) then it is enough to prove the result for

Tλµ(p, q) 6= 0 for the order <m. Indeed, we will prove by induction on the

numbers of elements m that K has.

Case m = 2. Follows directly from Lemma 2.10.

Assume the result is true for k < m+1. Let 0 < sξ < 1 and ξ = ω(sξ). Since

Tλµ(p, q) 6= 0 for all Tλµ ∈ GTTMλµ(<), it follows that for all Tξµ ∈ GTTMξµ(<)

and for all Tλξ ∈ GTTMλξ(<) there exists 0 ≤ j ≤ m such that

Tξµ(q0, qj) · Tλξ(qj , qm) 6= 0.

See Figure 3.

Since j depends on the choice of Tξµ and Tλξ, we will fix j for Tξµ ∈
GTTMξµ(<mξµ) and Tλξ ∈ GTTMλξ(<mλξ), given that

GTTMξµ(<mξµ) ⊆ GTTMξµ(<m) ⊆ GTTMξµ(<),

GTTMλξ(<mλξ) ⊆ GTTMλξ(<),

where <mξµ and <mλξ are the minimal orders that continue for ω[sξ, 1] and for

ω[0, sξ], respectively.
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


id ∗
. . .

. . .

id




=




id
. . .

. . .

id







id ≈
. . .

. . .

id




p = q0

qj

qj

qm = q TλµTξµ Tλξ

∗

Figure 3

If j 6= 0 and j 6= m consider the submatrices in Figure 3, (Tξµ(ql, qk))l,k∈[0,j]

and (Tλξ(ql, qk))l,k∈[j,m]. By the induction hypothesis, there exist connections

between Mλ(qm) and Mξ(qj) and between Mξ(qj) and Mµ(q0) that occur along

the path ω. Using these connections, we get connections between Mλ(qm) and

Mµ(q0) that occur along the path ω. See Figure 4.

ξ

qj

q0 = p

q = qm

Figure 4. Connections between Mλ(qm) and Mµ(q0) that occur along the

path ω.

If j = 0 or j = m then Tλξ(p, q) 6= 0 or Tξµ(p, q) 6= 0, respectively. Suppose

Tξµ(p, q) 6= 0 then let sξ < sξ1 < 1 and ξ1 = ω(sξ1). If for ξ and µ there exist

jξ1 6= 0 and jξ1 6= m the result follows. Nevertheless if jξ1 = 0 (Tξξ1(p, q) 6= 0)

choose sξ < sξ2 < sξ1 and ξ2 = ω(sξ2) and if jξ1 = m (Tξ1µ(p, q) 6= 0) choose

sξ1 < sξ2 < 1 and ξ2 = ω(sξ2). See Figure 5.

µλ ξ ξ2
ξ1 ξ2

j = mj = 0

Figure 5

By respecting this process and assuming always that jξi = 0 or jξi = m, it

follows that there exists θ such that

ω(sξi) = ξi → θ, ω(sξi′ ) = ξi′ → θ, 0 ≤ sξi < sξi′ ≤ 1 and Tξiξi′ (p, q) 6= 0.
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Suppose that there is no chain of connections from q to p at the parameter θ,

thus p ≮θ q, where <θ is the flow defined order at parameter θ. By Theorem 1.10,

there exists a neighbourhood W of θ such that M(S) continues with order <θ
over W , therefore <θ extends <mW , where <mW is the minimal order that

continues overW . Choose ξl and ξl′ such that θ ∈ ω[sξl , sξl′ ] ⊂W . It follows that

Tξlξl′ (p, q) 6= 0, i.e., there exists a ucc from q to p in ω[sξl , sξl′ ]. Thus p <mW q.

Since <θ extends <mW we have that p <θ q for the Morse decompositionM(S),

which is a contradiction, given that p ≮θ q. Therefore the result follows. �

The following Example 2.11 shows that the connections obtained from item (e)

of Theorem 2.8 can occur at parameter λ or µ. This contrasts Theorem 2.1 in [17]

and Theorem 3.13 in [22], where those connections cannot occur at parameters λ

and µ. However, when they do occur, one sees in Example 2.11 that the classical

results on transition matrices (topological, singular and algebraic) do not apply

and therefore do not provide information on connections.

Example 2.11. Consider the following family of ordinary differential equa-

tions parameterized by the variable θ > 0:

ẋ = y, ẏ = −θy − x
(
x− 1

3

)
(1− x).

The connection matrices for θ > 0 are well known, see [9], [10] and [22]. Let

µ be the parameter which has a heteroclinic connection between the Morse sets

Mµ(2) and Mµ(3), and 0 < λ < µ. The order that continues is the total order

and the set of connection matrices are




0 ≈ 0

0 0 0

0 0 0


 and




0 ≈ ≈
0 0 0

0 0 0


 .

In this case, it is easy to see that id ∈ T Uλ, µ, where T Uλ, µ is the set of algebraic

transition matrices. Hence, Theorem 4.3 in [11], does not apply and one cannot

retrieve dynamical information from T Uλ, µ.

Now, in order to calculate the singular transition matrix, first introduce

a slow drift θ̇ = ε(λ− θ)(µ− θ) in the parameter space, see Figure 6. Since there

are two connection matrices for the flow ordering at parameter µ, choose

∆µ =




0 ≈ ≈
0 0 0

0 0 0


 .
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λ µ

Mλ(1)

Mλ(2)

Mλ(3)

Mµ(1)

Mµ(2)

Mµ(3)

Figure 6. Drift flow in the parameter space.

The associated singular transition matrix is

∆ =

(
∆λ Ts
0 ∆µ

)
=




0 ≈ 0 ≈
0 0 0 ≈ ∗
0 0 0 ≈
0 0 0 0 ≈ ≈
0 0 0 0 0 0

0 0 0 0 0 0




.

Since ∆2 = 0 must be zero, we see that multiplying the top row and the last col-

umn in ∆ forces ∗ = ∆(Mµ(3),Mλ(2)) 6= 0. Even though the entry Ts(p, q) 6= 0,

one cannot conclude from Ts that there exists a connection between Mλ(2) and

Mµ(3) for ε > 0 sufficiently small. Thus, one cannot apply Theorem 3.13 in [22].

Therefore, in this example, singular transition matrices do not give dynamical

information. The same thing happens for classical topological transition matri-

ces, since they are only defined when there are no connections at parameters λ

and µ.

Now, we will calculate a generalized topological transition matrix related

with

∆λ =




0 ≈ 0

0 0 0

0 0 0


 and ∆µ =




0 ≈ ≈
0 0 0

0 0 0


 .

It is not hard to see that

Tλ,µ =



≈ 0 0

0 ≈ ≈
0 0 ≈




satisfies items (a)–(c) of Theorem 2.8, hence Tλ,µ is a good candidate to be

a generalized topological transition matrix. Thus, it remains to prove that Tλ,µ
covers the flow defined isomorphism F . Indeed, it is enough to prove that Tλ,µ(I)
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covers F (I) for the interval I = {2, 3} (Tλ,µ covers F for others intervals, because

Tλ,µ is a 0 degree chain map). For I = {2, 3} we have that ∆λ(I) = 0 =

∆µ(I), therefore we can choose generators: αν and βν for CH1(Mν(I)); aν for

CH1(Mν(3)); and bν for CH1Mν(2), where ν = λ, µ. Figure 7 indicates such

choices.

αλ αµ

βλ βµ

aµ

bµbλ

aλ

Mλ(3)

Mλ(2)

Mµ(3)

Mµ(2)

Figure 7. Generators of the Conley indices.

Observe that Fλ,µ(I)(αλ) = αµ, Fλ,µ(I)(βλ) = βµ, Φλ(aλ) = αλ, Φλ(bλ) =

βλ, Φµ(aµ) = αµ ∗ βµ and Φµ(bµ) = βµ. Thus Tλ,µ(I) = Φ−1
µ ◦ Fλ,µ ◦ Φλ(I),

which means that Tλ,µ(I) covers F (I) and Tλ,µ(2, 3) 6= 0.

Note that the total order 1 < 2 < 3 is the minimal order that continues,

therefore by Lemma 2.10 we have a connection between M(2) and M(3), since

Tλ,µ(2, 3) 6= 0. In fact, one could have used item (v) of Theorem 2.8, since it is

not hard to obtain that GTTM(<m) 6= ∅ for all [s, t], where s, t ∈ [λ, µ].

3. Morse–Smale flows without periodic orbits

In this section, the generalized topological transition matrix for Morse–Smale

flows without periodic orbits is presented. In other words, the Morse decomposi-

tion consists of hyperbolic rest points and whenever the stable manifold of M(π)

and the unstable manifold of M(π′) have nonempty intersection, it is transversal.

As one can see in [23], the connection matrix for Morse–Smale flows without

periodic orbits is unique for the flow-defined order. It is no surprise that the gen-

eralized topological transition matrix is unique. This is verified in Theorem 3.1.

Furthermore, in [16] and [25], an alternative and easier way to compute the

connection matrix in this setting is presented. Likewise, we show in Theorem 3.1
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that the generalized topological transition matrix can be computed, without

difficulty, from the set of the classical topological transition matrix.

Theorem 3.1. Let Mλ = {Mµ(π)}π∈P and Mµ = {Mµ(π)}π∈P be Morse

decompositions, and ∆λ and ∆µ be the respective connection matrices with the

flow-defined order. Moreover, assume that Mλ and Mµ are related by continu-

ation with the admissible ordering < and the flow at λ and µ is Morse–Smale

without periodic orbits. Then the generalized topological transition matrix T sat-

isfies the following properties:

(a) T ◦∆λ = ∆µ ◦ T .

(b) Tλ,µ({p}) = id and T is upper triangular with respect to <.

(c) T is an isomorphism.

(d) Tλ,λ = id, Tλ,ν(I) = Tµ,ν ◦Tλ,µ(I) and Tµ,λ(I) = T−1
λ,µ(I), for all intervals

I ∈ I.

(e) Let ω : [0, 1]→ Λ be the path that continues Mλ and Mµ. If Tλ,µ(p, q) 6= 0

then there exist a finite sequence 0 < s1 ≤ . . . ≤ sn < 1 and a sequence

(pi) ⊆ P such that p0 = q, pn = p and the set of connecting orbits

C(Mω(si)(pi−1),Mω(si)(pi)) is nonempty.

(f) Tλ,µ is unique.

(g) The generalized topological transition matrix is a matrix in block form

with submatrices being the classical topological transition matrix Ttop,i of

the critical points of index i

Tλ,µ =




Ttop,0 0 0 0

0 Ttop,1 0 0

0 0
. . . 0

0 0 0 Ttop,k



.

Proof. (g) We let Criti denote the set of critical points of index i, and

Criti,i+1 denote the set of critical points that have indices i and i+ 1 along with

all connecting orbits between them.

Since the order < extends the flow ordering, then, without loss of generality,

we can suppose that the columns of the generalized topological transition matrix

T are ordered from the critical point of the lowest index to the largest index.

If M(I) ⊆ Critk then T (I) = Ttop(I), since there is no connecting orbit

between critical points with the same index at parameters λ and µ. Moreover,

for Mλ(p) and Mλ(q) with different indices, we have that T (p, q) = 0, since T

is a zero degree map. Therefore T must be a matrix in block form, and from
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property (b) of Theorem 2.8, T must be an upper triangular matrix. Thus

T =




Ttop,0 0 0 0

0 Ttop,1 0 0

0 0
. . . 0

0 0 0 Ttop,k




is a good candidate to be a generalized topological transition matrix.

Therefore, we will prove that:

• {T (I)}I∈I(<) is a chain map from C∆λ to C∆µ;

• T makes Diagram 1 commute for all adjacent pairs (I,J).

Indeed, by Proposition 1.11, we only need to show that T ◦∆λ = ∆µ ◦ T , i.e.



Ttop,0 0 0 0

0 Ttop,1 0 0

0 0
. . . 0

0 0 0 Ttop,k






0 ∆λ(Crit1,Crit0) 0 0

0 0
. . . 0

0 0 0 ∆λ(Critk,Critk−1)
0 0 0 0




=




0 ∆µ(Crit1,Crit0) 0 0

0 0
. . . 0

0 0 0 ∆µ(Critk,Critk−1)
0 0 0 0





Ttop,0 0 0 0

0 Ttop,1 0 0

0 0
. . . 0

0 0 0 Ttop,k


 .

By multiplying the matrices, one obtains

Ttop,l−1 ◦∆λ(Critl,Critl−1) = ∆µ(Critl,Critl−1) ◦ Ttop,l

for all l ∈ {1, . . . , k}. But this follows from the commutativity of the following

diagram:

H∆λ(Critl)
∆λ(Critl,Critl−1)

//

T (Critl)

��

H∆λ(Critl−1)

T (Critl−1)

��

H∆µ(Critl)
∆µ(Critl,Critl−1)

// H∆µ(Critl−1)

whereas T (Critl) = Ttop,l = Φ−1
µ ◦ F (Critl) ◦ Φλ.

Now we will prove that T makes Diagram 1 commute for all adjacent pairs

(I,J). Indeed, suppose without loss of generality, M(I) ⊆ Critk−1,k and M(J) ⊆
Critk,k+1, and let Lj = L∩Critj where L = I or L = J and j ∈ {k− 1, k, k+ 1}.
First, we calculate the homologies from the long exact sequences that come from

Diagram 1

· · · → Hk+1∆(I)→ Hk+1∆(IJ)→ Hk+1∆(J)→ Hk∆(I)→ Hk∆(IJ)

→ Hk∆(J)→ Hk−1∆(I)→ Hk−1∆(IJ)→ Hk−1∆(J)→ · · ·

By the definition of connection matrices, we have to make the following calcula-

tions:
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(C∗∆(IJ),∆(IJ)) :

0→
⊕

π∈Jk+1

CH(M(π))
∆−→

⊕

π∈Critk

CH(M(π))
∆−→

⊕

π∈Ik−1

CH(M(π))→ 0,

(C∗∆(I),∆(I)) :

0→ 0→
⊕

π∈Ik
CH(M(π))

∆−→
⊕

π∈Ik−1

CH(M(π))→ 0,

(C∗∆(J),∆(J)) :

0→
⊕

π∈Jk+1

CH(M(π))
∆−→

⊕

π∈Jk
CH(M(π))→ 0→ 0.

Therefore, the homologies are

Hk∆(I) = Ker ∆k(I), Hk−1∆(I) =

⊕

π∈Ik−1

CH(M(π))

Im ∆k(I)

and Hj∆(I) = 0 for all j 6= k, k − 1,

Hk+1∆(J) = Ker ∆k+1(J), Hk∆(J) =

⊕

π∈Jk
CH(M(π))

Im ∆k+1(J)

and Hj∆(J) = 0 for all j 6= k + 1, k,

Hk+1∆(IJ) = Ker ∆k+1(IJ), Hk∆(IJ) =
Ker ∆k

Im ∆k+1

and Hk−1∆(IJ) =

⊕

Ik−1

CH(M(π))

Im ∆k
for all j 6= k − 1, k, k + 1.

Thus, making the substitutions, one obtains Diagram 2.

Now we will prove that T̂ (I) and T̂ (J) are the induced maps for the map T .

Indeed, consider the adjacent pair (Ik−1, Ik), hence

0
i
// Hk∆λ(I)

p
//

T̂ (I)

��

Hk∆λ(Ik)
∆λ
//

T̂ (Ik)

��

Hk−1∆λ(Ik−1)
i
//

T̂ (Ik−1)

��

Hk−1∆λ(I)
p
//

T̂ (I)

��

0

0
i
// Hk∆µ(I)

p
// Hk∆µ(Ik)

∆µ

// Hk−1∆µ(Ik−1)
i
// Hk−1∆µ(I)

p
// 0.

Note that T (Ik) and T (Ik−1) are the classical topological transition submatrices

of T , i.e. the rightmost diagram commutes in Diagram 3.
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1
)

C
H

(M
µ
(π

))

Im
∆
k
,µ

(I
)

i →

⊕

π
∈I

(
k
−

1
)

C
H

(M
µ
(π

))

Im
∆
k
,µ

p →
0

T̂
(I
J

)
T̂

(I
J

)
T̂

(I
J

)
T̂

(J
)

T̂
(I

)
T̂

(J
)

T̂
(I

)
I

I
I

I
I
I

I
I

D
ia
g
r
a
m

2

1
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Hk∆λ(I) //

~~

��

Hk∆λ(Ik)

||

T (Ik)

��

Hk,λ(I) //

F (I)

��

Hk,λ(Ik)

��

Hk∆µ(I) //

~~

Hk∆µ(Ik)

||

Hk,µ(I) // Hk,µ(Ik).

Diagram 3

In order to show that the leftmost diagram in Diagram 3 commutes when

we place T̂ (I), it is enough to show that the background diagram commutes,

whereas the rightmost and foreground diagrams commute and p, the induced

projection map Ck∆λ(I)→ Ck∆λ(Ik), is the inclusion map. Indeed, as

Hk∆λ(I) = Ker ∆k,λ(I)EHk∆λ(Ik) =
⊕

Ik

CH(Mλ(π)),

it follows that p is the inclusion map and therefore

T (Ik) ◦ p = p ◦ T̂ (I).

Analogously, one can show that i, the induced inclusion map

Ck−1∆λ(Ik−1)→ Ck−1∆λ(I),

is a projection map and

T̂ (I) ◦ i = i ◦ T (Ik−1),

since

Hk−1∆λ(I) =

⊕

π∈Ik−1

CH(Mλ(π))

Im ∆λ(I)
=
Hk−1∆λ(Ik−1)

Im ∆λ(I)
.

In the same way, the above construction can be done for J = JkJk+1 and

the adjacent pair (Jk,Jk+1). Hence T̂ (I) and T̂ (J) are the map induced by T

and make Diagram 1 commute sectionwise.

Now it remains to prove the same for T̂ (IJ), using the same idea described

previously. So it is enough to prove that diagrams I, II and III in Diagram 2

commute. But this comes from ∆λ(I) and ∆λ(J) being submatrices of ∆λ(IJ).

The only diagram that deserves special attention is diagram II.

We will prove that diagram II commutes. Indeed, let a ∈ Ker ∆k,λ(I).

Then i(a) = a + Im ∆k+1,λ(IJ) = [a + b], where b is such that there exists
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c ∈ ⊕
π∈Jk+1

CH(Mλ(π) such that ∆k+1,λ(IJ)(c) = b. Applying T̂ (IJ), we have

T̂ (IJ)([a+ b]) = [T (IJ)(a+ b)].

On the other hand,

i ◦ T̂ (I)(a) = T̂ (I)(a) + Im ∆k+1,µ(IJ) = [T (I)(a) + d],

where d ∈ Im ∆k+1,µ(IJ). Therefore, we need to show

[T (IJ)(a+ b)] = [T (I)(a) + d].

Since T (IJ)a = T (I)a, for a ∈ Ker ∆k,λ(I) ⊆ ⊕
π∈Ik

CH(Mλ(π)), it is enough to

show

T (IJ)a+ T (IJ)b− T (I)a− d = T (IJ)b− d ∈ Im ∆k,µ(IJ).

Indeed, d ∈ Im ∆k,µ(IJ) so it is sufficient to prove that Diagram 4 commutes.

⊕

π∈Jk+1

CH(Mλ(π))
∆k+1,λ(IJ)

//

T (Jk+1)

��

⊕

π∈Ik
CH(Mλ(π))⊕

⊕

π∈Jk
CH(Mλ(π))

T (IJ)

��⊕

π∈Jk+1

CH(Mµ(π))
∆k+1,µ(IJ)

//
⊕

π∈Ik
CH(Mµ(π))⊕

⊕

π∈Jk
CH(Mµ(π)).

Diagram 4

Considering the adjacent pair (IkJk,Jk+1), we have that the diagram com-

mutes in the sections, since T (Jk+1) and T (IkJk) are precisely the classical

topological transition matrices. Therefore the diagram

⊕

Jk+1

CH(Mλ(π))
∆k+1,λ(IJ)

//

yy

��

⊕

Ik

CH(Mλ(π))⊕
⊕

Jk

CH(Mλ(π))

vv
T (IkJk)

��

Hk+1,λ(Jk+1) //

F (Jk+1)

��

Hk,λ(IkJk)

��

⊕

Jk+1

CH(Mµ(π)) //

yy

⊕

Ik

CH(Mµ(π))⊕
⊕

Jk

CH(Mµ(π))

vv

Hk+1,µ(Jk+1) //Hk,µ(IkJk)
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in the background commutes. Observing that

Tk(IJ) :
⊕

Ik−1

0
⊕

π∈IkJk
CHk(Mλ(π))

⊕

Jk+1

0
0⊕Tk(IkJk)⊕0

−−−−−−−−−−→

⊕

Ik−1

0
⊕

π∈IkJk
CHk(Mµ(π))

⊕

Jk+1

0

thus Diagram 4 commutes. Hence it is proved that diagram II commutes on the

left. One can prove analogously that it also commutes on the right. Therefore

T makes Diagram 1 commute for all adjacent pairs (I,J).

Item (f) follows from the fact that the classical topological transition ma-

trices are unique, and hence T is unique. Items (a)–(d) follow from T being

a generalized topological transition matrix and from the fact that T is unique.

Item (e) follows from (g) and from property (e) of Theorem 2.8. �

4. Generalized transition matrix for the sweeping method

In this section we present an application of a generalized topological transi-

tion matrix in a continuation associated to a dynamical spectral sequence, see [5]

and [12]. Our dynamical interpretation result implies the existence of connecting

orbits in a fast-slow system “going from M(q) to M(p)” for a nontrivial entry

on T rpq associated to the spectral sequence.

Let M be an n-dimensional compact Riemannian manifold, f : M → R
a Morse function that is Morse–Smale, and φ the gradient flow of f . Choose

a finite Morse decomposition
⋃
M(p), p ∈ P = {1, . . . ,m}, such that there are

distinct critical values cp with f−1(cp) ⊃M(p). Then

{Fp}mp=1 = {f−1(−∞, cp + ε)}mp=1.

This defines an admissible ordering on M called the filtration order. In this case,

each Morse set, M(p), is a non-degenerate singularity of the gradient flow φ and

hence the Conley index of each Morse set is the homology of a pointed k-sphere,

where k is the Morse index of the singularity M(p). We denote by h
(p)
k the index

k singularity in Fp \ Fp−1.

In the case where each M(p) is a non-degenerate singularity and the stable

and unstable manifolds intersect transversally, the connection matrix ∆ asso-

ciated to D(M) is unique (see [22] and [23]). It can also be defined as the

differential of the graded Morse chain complex (C,∆), where C is generated

by the singularities and graded by their indices, i.e. C = Z2〈Crit f〉 and ∆ is

determined by the maps ∆k : Ck → Ck−1 via

∆k(x) =
∑

y∈Critk−1f

n(x, y)〈y〉,
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where n(x, y) is the number of connecting orbits counted mod 2 for nondegen-

erate singularities x and y of indices k and k − 1 respectively. We require that

the columns of the matrix ∆ are ordered such that ∆k(FpCk) ⊂ Fp−1Ck−1.

In [5] and [20] it is proved that a certain algorithm (called the sweeping

method) applied to a connection matrix ∆ determines a spectral sequence (Er, dr)

of a filtered chain complex (C,∆). To achieve this we apply the sweeping method

to the connection matrix. The sweeping method is an iterative process that, given

a connection matrix, generates a collection of connection matrices ∆1, . . . ,∆F

and transition matrices T 1, . . . , TF . This method singles out important nonzero

entries, namely primary pivots and change of basis pivots, of the r-th diagonal

of ∆r, which are necessary to define a matrix ∆r+1. At each step, ∆r+1 is ob-

tained from ∆r by a change of basis. Moreover, as r increases, the modules Erp
change generators. In practice, the generators of the chain complex C mentioned

above are very specific: singularities in the Morse case. The domain of dr, E
r, is

a certain quotient of a subgroup of C. Elements in this domain are represented

by elements of C whose appropriate classes are in the kernels of all previous

differentials ds, s < r.

The change of basis matrices T r, r = 1, . . . , F , determined by the sweeping

method algorithm are called transition matrices associated to the spectral se-

quence. In [12], it was proven that such matrices satisfy the following properties.

Proposition 4.1. Each matrix T r associated to the spectral sequence satis-

fies the following properties:

(a) ∆r+1T r + T r∆r = 0;

(b) T r is an isomorphism;

(c) T r is an upper triangular matrix with respect to the filtration order.

In [12] a dynamical interpretation of the spectral sequence (Er, dr) is given

in a setting of a fast-slow system flow,

ẋ = f(x, y), ẏ = ε(y − 1)(y − 2),

where the sweeping method output of n× n connection matrices and transition

matrices, ∆1, T 1, . . . , TF−1,∆F , reveals bifurcations that arise as a result of the

nonzero entries of T r.

In this article we consider a more general fast-slow system flow

ẋ = f(x, y), ẏ = εg(x, y),

in M × [0, F ] with the following properties:

• When ε = 0 the parameterized system has an isolated invariant set Sy
for each y which continues over the interval [0, F ] (slow variable), and

which has a Morse decomposition D(M)y = {Mλ(p)y | p = 1, . . . , n}
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that also continues over the interval [0, F ]. Assume also that the order

from the sweeping method continues.

• For each r = 0, 1, . . . , F , we have that f(x, r) = fr is a gradient function

which comes from a Morse function whose stable and unstable manifolds

intersect transversely, and g(My(p), y) 6= 0 for y ∈ (0, F ) and p ∈ P.

• For each r = 0, 1, . . . , F , the sweeping method connection matrices ∆r

are connection matrices of the Morse decomposition at parameter r.

• Lastly, the continuation of the Morse decomposition D(M)y is such that

Diagram 5 commutes. At each stage r of the sweeping method, F rk ’s

are continuation isomorphisms, ∆r
k+1,k is a submatrix of the connection

matrix ∆r at parameter r, and T rk is a submatrix of T r.

⊕

x∈Critk+1fr

Z2〈x〉
∆r

k+1,k
//

xxqqq
qqq

qq

��

⊕

x∈Critkfr

Z2〈x〉
∆r

k,k−1
//

yysss
sss

ss

��

⊕

x∈Critk−1fr

Z2〈x〉

xxqqq
qqq

qq

T r
k−1

��

H(Critk+1fr) //

F r
k+1

��

H(Critkfr) //

��

H(Critk−1fr)

��

⊕

x∈Critk+1fr+1

Z2〈x〉

xx

//
⊕

x∈Critkfr+1

Z2〈x〉

yy

//
⊕

x∈Critk−1fr+1

Z2〈x〉

xxqqq
qqq

qq

H(Critk+1fr+1)
δr+1
k+1,k

//H(Critkfr+1)
δr+1
k,k−1

//H(Critk−1fr+1)

Diagram 5

Theorem 4.2. Consider the fast-slow system defined previously. Then the

sweeping method transition matrices are generalized topological transition matri-

ces.

Therefore, the sweeping method transition matrices inherit all properties

from Theorem 3.1,

T0,1 =




Ttop,0 0 0 0

0 Ttop,1 0 0

0 0
. . . 0

0 0 0 Ttop,k




as well as the connection result in Theorem 6.1 in [12]. Furthermore, in this

setting, the use of topological transition matrix will allow us, in the forthcoming

work, to employ the direction transition matrix theory (see [13] and [15]). As

a consequence, it will be possible to obtain results that are not unidirectional

(related to slow flow) as presented in Theorem 6.1 in [12].
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Proof. By Proposition 1.11, the collection of the submatrices {T r(I)}I∈I(<)

of the sweeping method transition matrices is a chain map from C∆r to C∆r+1,

since T r is an upper triangular matrix and

T r ◦∆r = ∆r+1 ◦ T r.

Now we will prove that T r is a matrix in block form as Tr,r+1 the generalized

topological transition matrix for ∆r and ∆r+1.

Indeed, since the boundary map ∆r of a Morse complex is a connection ma-

trix (see [25]) we have that for each adjacent pair of intervals (I,J) the following

diagram is commutative:

· · · // H∆r(I) //

Φr(I)

��

H∆r(IJ) //

Φr(IJ)

��

H∆r(J)
∆r(J,I)

//

Φr(J)

��

H∆r(I) //

Φr(I)

��

· · ·

· · · // Hr(I) // Hr(IJ) // Hr(J)
δr(J,I)

// Hr(I) // · · ·

Set Mr(I) = Critk−1fr and Mr(J) = Critkfr. One obtains ∆r(J, I) = ∆r
k,k−1.

And since there are no connections in Mr(I) and in Mr(J) it follows that

H∆r(I) =





⊕

x∈I
Z2〈x〉 for n = k − 1,

0 otherwise,

H∆r(J) =





⊕

x∈J
Z2〈x〉, for n = k,

0 otherwise.

Therefore Diagram 5, in this case, is equal to Diagram 6.

0 //

}}zz
zz
zz
zz
zz
z

��

Hk∆r(IJ) //

��

yyttt
ttt

ttt
ttt

⊕

x∈J
Z2〈x〉

∆r
k,k−1

//

��

||yy
yy
yy
y

⊕

x∈I
Z2〈x〉

zzuuu
uuu

uuu

T r
k−1(I)

��

Hk(Critk−1fr)

F r
k−1(I)

��

// Hk(Critk−1,kfr)

��

// Hk(Critkfr)

��

// Hk−1(Critk−1fr)

��

0

}}

// Hk∆r+1(IJ)

yy

//
⊕

x∈J
Z2〈x〉

||

//
⊕

x∈I
Z2〈x〉

zzuuu
uuu

uuu

Hk(Critk−1fr+1) // Hk(Critk−1,kfr+1) // Hk(Critkfr+1)
δr+1

// Hk−1(Critk−1fr+1)

Diagram 6
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Note that for homology dimensions different from k and k − 1, the sequence

becomes

0 //

Φr(I)

��

Hn∆r(IJ) //

Φr(IJ)

��

0
0

//

Φr(J)

��

0

Φr(I)

��

Hn(Critk−1fr) // Hn(Critk−1,kfr) // Hn(Critkfr)
δr(J,I)

// Hn−1(Critk−1fr).

Since Hn∆r(IJ) = 0 and Φr is an isomorphism, it follows that Hn( · ) = 0.

Therefore T r has the same block structure as Tr,r+1 and, by hypothesis, each

submatrix T rk of T r is actually Ttop,k. Thus, by item (f) and (g) of Theorem 3.1,

we have that T r = Tr,r+1. �

Applying Proposition 2.7 to a fast-slow system as defined previously, we

obtain the following corollary.

Corollary 4.3. The entries from ∆0 which are preserved, independent of

continuation, are the primary pivots of the initial stages of the sweeping method.

Note that these entries are the first step to define a new algebraic method in

attempting to generalize the sweeping method, which is defined only for Morse–

Smale flows without periodic orbits.
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