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Abstract. Let Ω ⊂ RN , N ≤ 3, be a bounded domain with smooth

boundary, γ ∈ L2(Ω) be arbitrary and φ: R → R be a C1-function satisfying
a subcritical growth condition. For every ε ∈ ]0,∞[ consider the semiflow

πε on H1
0 (Ω)× L2(Ω) generated by the damped wave equation

ε∂ttu + ∂tu = ∆u + φ(u) + γ(x) x ∈ Ω, t > 0,

u(x, t) = 0 x ∈ ∂Ω, t > 0.

Moreover, let π′ be the semiflow on H1
0 (Ω) generated by the parabolic

equation
∂tu = ∆u + φ(u) + γ(x) x ∈ Ω, t > 0,

u(x, t) = 0 x ∈ ∂Ω, t > 0.

Let Γ: H2(Ω)→ H1
0 (Ω)×L2(Ω) be the imbedding u 7→ (u, ∆u + φ(u)+ γ).

We prove in this paper that every compact isolated π′-invariant set K′ lies
in H2(Ω) and the imbedded set K0 = Γ(K′) continues to a family Kε, ε ≥ 0

small, of isolated πε-invariant sets having the same Conley index as K′.
This family is upper-semicontinuous at ε = 0. Moreover, any (partially
ordered) Morse-decomposition of K′, imbedded into H1

0 (Ω)×L2(Ω) via Γ,

continues to a family of Morse decompositions of Kε, for ε ≥ 0 small. This
family is again upper-semicontinuous at ε = 0.

These results extend and refine some upper semicontinuity results for

attractors obtained previously by Hale and Raugel.
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1. Introduction

Let N ∈ {1, 2, 3} and Ω ⊂ RN be a bounded domain with smooth boundary,
γ ∈ L2(Ω) be arbitrary and φ: R → R be a C1-function such that, for N ≥ 2,
there are constants r and C ∈ [0,∞[ with |φ′(u)| ≤ C(1 + |u|r) for u ∈ R. If
N = 3 we also assume that r < 2, i.e. that φ has subcritical growth.

For every ε ∈ ]0,∞[ consider the following damped wave equation

(Hypε)
ε∂ttu + ∂tu = ∆u + φ(u) + γ(x) x ∈ Ω, t > 0,

u(x, t) = 0 x ∈ ∂Ω, t > 0.

It is well-known that equation (Hypε) generates a local semiflow (actually, a
local flow) πε on H1

0 (Ω)× L2(Ω).
Setting, formally, ε = 0 in equation (Hypε) we obtain the parabolic equation

(Par)
∂tu = ∆u + φ(u) + γ(x) x ∈ Ω, t > 0,

u(x, t) = 0 x ∈ ∂Ω, t > 0.

Again it is well-known that equation (Par) generates a local semiflow π′ on
H1

0 (Ω).
It is a natural question to ask whether, for ε → 0, solutions of πε converge,

in some sense, to solutions of π′, properly imbedded into H1
0 (Ω) × L2(Ω). This

question was considered in the context of attractors by Hale and Raugel [9], who
used some ideas and results by Haraux and by Babin and Vishik. (See [10], [1]
and the references cited therein.) Let us briefly describe the main result from [9].
To this end we need some notation. Let Γ:H2(Ω) → H1

0 (Ω)×L2(Ω) be the map
defined by Γ(u) := (u, v) where v(x) := ∆u(x) + φ(u(x)) + γ(x), for u ∈ H2(Ω)
and x ∈ Ω.

Under some additional assumptions on φ the semiflow π′ has a global attrac-
tor A′ and, for all ε > 0, the semiflow πε has a global attractor Aε. It turns out
that A′ ⊂ H2(Ω) and the family (Aε)ε≥0, where A0 = Γ(A′), is upper semicon-
tinuous at ε = 0 in H1

0 (Ω)×L2(Ω), i.e. limε→0 supy∈Aε
infz∈A0 |y−z|H1

0×L2 = 0.
Now note that A′ and Aε, ε > 0, are isolated invariant sets (relative to the

corresponding semiflows) with Conley index Σ0. Thus the above result shows
that the compact isolated invariant set A′ continues, after its imbedding into
H1

0 (Ω) × L2(Ω), to a family Aε, ε > 0 of isolated invariant sets with the same
index.

One of the objectives of this paper is to show that an analogous result holds
for arbitrary compact isolated invariant sets of the local semiflow π′.

More precisely, we have the following result:

Theorem A. Let K ′ be a compact (in H1
0 (Ω)) isolated invariant set relative

to π′. Then K ′ ⊂ H2(Ω), and there is an ε0 > 0 and for every ε ∈ ]0, ε0]
there is a compact isolated invariant set Kε relative to πε such that the Conley
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index h(πε,Kε) of Kε is equal to the Conley index h(π′,K ′) of K ′. Moreover,
the family (Kε)ε∈[0,ε0], where K0 = Γ(K ′), is upper semicontinuous at ε = 0 in
H1

0 (Ω)× L2(Ω), i.e. limε→0 supy∈Kε
infz∈K0 |y − z|H1

0×L2 = 0.

(See Theorem 6.1 below for a complete statement of a more general result).
A naive approach to the proof of Theorem A would be to make a change of

variables

Φ: (u, v) 7→ (u, w) := (u, v −∆u− φ(u)− γ)

in (Hypε), consider the corresponding conjugate semiflows π̃ε = Φ∗πε, ε > 0,
and then apply an abstract singular Conley index continuation principle estab-
lished [4] to the family π̃ε, ε ≥ 0, where π̃0 = π′. However, there is an inherent
difficulty in the present situation due to the fact that the transformation Φ is
defined on the space H2(Ω) × L2(Ω) which is only a subset of the phase space
H1

0 (Ω)× L2(Ω) of the semiflows πε, so π̃ε is not well-defined for ε > 0.
That is why we first study, in Section 3, a model finite-dimensional singu-

lar perturbation problem (equations (3.1) and (3.2) below), to which a variable
transformation like Φ is applicable. Results from [4] then yield a singular Con-
ley index continuation result for the corresponding family of finite-dimensional
semiflows (Theorems 3.1 and 3.9 below).

In Section 4 we establish some compactness and smoothing results for para-
bolic equations, which, in particular, imply that the Conley index in Theorem A
for the semiflow π′ is equal to a Conley index for equation (3.2) on an appropriate
finite dimensional subspace E of H1

0 (Ω).
Then, in Section 5, which is based on ideas from [1], [10] and [9], we establish

some boundedness and smoothing results for damped wave equations, which, in
particular, imply that the Conley index in Theorem A for the semiflow πε is
equal to a Conley index for equation (3.1) on E × E, uniformly in ε for ε > 0
small.

Combining all these results we then obtain (in Section 7) our first main result,
Theorem 6.1, which implies Theorem A above.

In the last section of this paper we use some recent results from [6] and [7]
and show that Morse decompositions of the invariant set K ′, relative to the
semiflow π′, continue to appropriate Morse decompositions of Kε relative to the
semiflows πε, for ε > 0 small.

2. Notation

In this paper we use the letter N to denote various sets (mostly isolating
neighbourhoods) as well as the dimension of the open set Ω. This should not
lead to confusion.

If a and b ∈ R then we write [[a, b]] := [a, b] ∩ Z.
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If E is a normed space, I ⊂ R, t ∈ I ∩ ClR(I \ {t}) and u: I → E is a map
which is differentiable at t, then we often use the symbol ∂(E)u(t) to denote the
derivative of u at t. This notation is more useful than the traditional u′(t) or
∂u(t) in cases in which it is important to indicate the norm | · |E with respect to
which u is differentiated.

Whenever Z is a set and h:Z × R → R, u:Z → R are arbitrary maps, then
ĥ(u):Z → R is the map defined by ĥ(u)(x) := h(x, u(x)), x ∈ Z.

Finally, given a local semiflow π on a metric space X and a strongly admis-
sible isolating neighbourhood N , relative to π, of an isolated π-invariant set K

then we write interchangeably h(π,K) or h(π,N) to denote the Conley index
of K (cf. [13] or [14]).

3. A finite dimensional singular perturbation problem

In this section let (E, | · |) be a finite dimensional Banach space. Given a
C1-map g:E → E and ε > 0 let πε,g be the local (semi)flow generated by the
following ordinary differential equation on E × E:

(3.1) u̇ = v, v̇ = (1/ε)(−v + g(u)), (u, v) ∈ E.

Furthermore, let π′g be the local (semi)flow on E generated by the following
ordinary differential equation on E:

(3.2) u̇ = g(u), u ∈ E.

One of the goals of this section is the proof of the following result.

Theorem 3.1. Let N ′ ⊂ E be a compact isolating neighbourhood relative
to π′g. Then for every β > 0 there is an ε0 > 0 such that for every ε ∈ ]0, ε0] the
set

N ′
β = N ′

β,g := {(u, v) | u ∈ N ′, |v − g(u)| ≤ β}

is an isolating neighbourhood relative to πε,g and

h(πε,g, N
′
β) = h(π′g, N

′).

The proof of Theorem 3.1 will be based on a singular Conley index continu-
ation result established in [4] (cf. also [3]). In order to state this result, we shall
need a few definitions and notations.

Let (X0, d0) be a metric space. Let ε0 > 0 and for each ε ∈ ]0, ε0] let (Yε, dε)
be a metric space and θε ∈ Yε be a distinguished point of Yε. The open ball
in Yε of center in y and radius β > 0 is denoted by Bε(y, β).

For each ε ∈ ]0, ε0] define the set Zε := X0 × Yε. Endow Zε with the metric

Γε((x, y), (x′, y′)) := max{d0(x, x′), dε(y, y′)} for (x, y), (x′, y′) ∈ Zε.
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Given a subset V of X0, β > 0 and ε ∈ ]0, ε0] define

[V ]ε,β = {(x, y) ∈ Zε | x ∈ V and y ∈ ClεBε(θε, β)}.

Let π0 be a local semiflow on X0 and for every ε ∈ ]0, ε0] let πε be a local
semiflow on Zε.

Definition 3.2. We say that the family (πε)ε∈]0,ε0] of local semiflows con-
verges singularly to the local semiflow π0 if whenever (εn) and (tn) are se-
quences in ]0, ε0] and [0,∞[, respectively such that εn → 0 and tn → t0 for
some t0 ∈ [0,∞[ and whenever x0 ∈ X0 and zn ∈ Zεn , n ∈ N are such that
Γεn

(zn, (x0, θεn
)) → 0 and x0π0t0 is defined, then there exists an n0 ∈ N such

that, for all n ≥ n0, znπεn
tn is defined and Γεn

(znπεn
tn, (x0π0t0, θεn

)) → 0.

Definition 3.3. Let β be a positive number and N be a closed subset of X0.
We say that N is a singularly strongly admissible set with respect to β and the
family (πε)ε∈[0,ε0] if the following conditions are satisfied:

(a) N is a strongly π0-admissible set;
(b) for each ε ∈ ]0, ε0] the set [N ]ε,β is strongly πε-admissible;
(c) whenever (εn) and (tn) are sequences in ]0, ε0] and [0,∞[ such that

εn → 0 and tn → ∞ and whenever zn ∈ Zεn
, n ∈ N, are such

that znπεn [0, tn] ⊂ [N ]εn,β , n ∈ N, then there exist a x0 ∈ N and
a subsequence of the sequence (znπεn

tn) of endpoints, denoted again by
(znπεn

tn), such that Γεn
(znπεn

tn, (x0, θεn
)) → 0.

Theorem 3.4 ([4]). Suppose that there exists an η0 > 0 such that for all
ε ∈ ]0, ε0] and all η ∈ ]0, η0] the set ClεBε(θε, η) is contractible to the point θε.

Let β ∈ ]0,∞[ be arbitrary. Suppose (πε)ε∈]0,ε0] is a family of local semiflows
that converges singularly to the local semiflow π0 and N is a singularly strongly
admissible set with respect to β and (πε)ε∈[0,ε0]. Assume that N is an isolating
neighbourhood for π0.

Then for every η ∈ ]0, η̃0], where η̃0 < min{η0, β}, there exists an εc =
εc(η) > 0 such that for every ε ∈ ]0, εc] the set [N ]ε,η is a strongly admissible
isolating neighbourhood relative to πε and

h(πε, [N ]ε,η) = h(π0, N).

Remark 3.5. Recall that a topological space Y is called contractible to the
point p ∈ Y if there is a continuous map H:Y × [0, 1] → Y such that H(y, 0) = y

and H(y, 1) = p for all y ∈ Y .

Proof of Theorem 3.1. Let U be a bounded open neighbourhood of N ′

and g̃:E → E be a C1-map such that g|U = g̃|U and supu∈E(|g̃(u)|+ |Dg̃(u)|) <

∞. The existence of g̃ follows since E is finite-dimensional.
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Since the differential equations defining πε,g and πε,eg coincide on the open
neighbourhood U × E of N ′

β in E × E it follows that N ′
β is an isolating neigh-

bourhood relative to πε,g if and only if N ′
β is an isolating neighbourhood relative

to πε,eg and then

h(πε,g, N
′
β) = h(πε,eg, N

′
β).

Similarly, N ′ is an isolating neighbourhood relative to π′g if and only if N ′ is an
isolating neighbourhood relative to π′

eg and then

h(π′g, N
′) = h(π′

eg, N
′).

It follows that we may assume, without loss of generality, that

(3.3) sup
u∈E

(|g(u)|+ |Dg(u)|) < ∞.

In particular, g is globally Lipschitzian and so both πε,g, ε > 0, and π′g are global
semiflows. We write πε := πε,g, ε > 0, and π′ := π′g for short.

Notice that the map Φ: E×E → E×E, Φ(u, v) = (u, w) := (u, v−g(u)) is a
C1-diffeomorphism with inverse Φ−1 given by Φ−1(u, w) = (u, v) := (u, w+g(u)).
Let π̃ε be the conjugate of πε via Φ i.e. (u, w)π̃εt := Φ((Φ−1(u, w))πεt), (u, w) ∈
E × E, t ∈ [0,∞[. Note that π̃ε is the semiflow generated by the equation

(3.4)
u̇ = w + g(u),

ẇ = −(1/ε)w −Dg(u)(w + g(u)).

Let Bβ be the closed ball in E with radius β centered at zero. Since Φ(N ′
β) =

N ′ ×Bβ , and since the Conley index is invariant under semiflow conjugation, it
follows that, for ε > 0, the set N ′

β is an isolating neighbourhood relative to πε if
and only if N ′ ×Bβ is an isolating neighbourhood relative to π̃ε and then

h(πε, N
′
β) = h(π̃ε, N

′ ×Bβ).

Thus, in order to prove Theorem 3.1, we only have to establish the validity
of the following lemma.

Lemma 3.6. There is an ε0 > 0 such that for all ε ∈ ]0, ε0[ the set N ′ ×Bβ

is an isolating neighbourhood relative to π̃ε and

h(π̃ε, N
′ ×Bβ) = h(π′, N ′).

Proof. To prove Lemma 3.6, define X0 = Zε = E, θε = 0 and d0(u, u′) =
dε(u, u′) = |u− u′| for all ε > 0 and u, u′ ∈ E. It follows that N ′×Bβ = [N ′]ε,β

for all ε > 0. Moreover, let 〈 · , · 〉 be an arbitrary scalar product on E and ‖ · ‖
be the corresponding Euclidean norm. Let ε > 0 be arbitrary and (u, w) be an
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arbitrary solution of π̃ε on R (i.e. a full solution). Then, for all s and t ∈ R with
s ≤ t, we have

(3.5) w(t) = e−(1/ε)(t−s)w(s)−
∫ t

s

e−(1/ε)(t−r)Dg(u(r))(w(r) + g(u(r))) dr.

Moreover, for t ∈ R,

1
2

d

dt
‖w(t)‖2 = 〈w(t), ẇ(t)〉 = −1

ε
‖w(t)‖2 − 〈w(t), Dg(u(t))(w(t) + g(w(t)))〉.

Since the norms | · | and ‖ · ‖ are equivalent we thus obtain from (3.3) that there
is a constant C ∈ ]0,∞[, independent of the solution (u, w), such that

(3.6)
1
2

d

dt
‖w(t)‖2 ≤ −1

ε
‖w(t)‖2 + C‖w(t)‖2 + C2‖w(t)‖, t ∈ R.

Let ε > 0 be such that −(1/ε) + C + C2 < 0 and suppose that ε ∈ ]0, ε]. We
claim that

(3.7) ‖w(t)‖ < ‖w(0)‖+ 1, t ∈ [0,∞[ .

In fact if this is not true, then there is a smallest t ∈ [0,∞[ such that ‖w(t)‖ =
‖w(0)‖ + 1. It follows that t > 0 and that ‖w(t)‖2 < ‖w(t)‖2 for t ∈

[
0, t

[
.

Therefore

(3.8)
1
2

d

dt
‖w(t)‖2

|t=t ≥ 0.

On the other hand, (3.6) implies that

1
2

d

dt
‖w(t)‖2

|t=t ≤ ‖w(t)‖2

(
− 1

ε
+ C + C2

)
< 0,

a contradiction which proves (3.7). Thus again there is a constant C ′ ∈ ]0,∞[,
independent of the solution (u, w), such that

(3.9) |w(t)| ≤ C ′(|w(0)|+ 1), t ∈ [0,∞[ .

It follows from (3.5) and (3.9) that

|w(t)| ≤ e−(1/ε)t|w(0)|+
∫ t

0

e−(1/ε)(t−r)C(C ′(|w(0)|+ 1) + C) dr, t ∈ [0,∞[

so

(3.10) |w(t)| ≤ e−(1/ε)t|w(0)|+ εC(C ′(|w(0)|+ 1) + C), t ∈ [0,∞[ .

Suppose now that εk → 0 and, for every k ∈ N, let (uk, wk) be a solution of π̃εk

on R. Assume first that tk → ∞ and (uk(r), wk(r)) ∈ N ′ × Bβ for k ∈ N and
r ∈ [0, tk]. Then, using (3.10) we see that

|wk(tk)| ≤ e−(1/εk)tkβ + εkC(C ′(β + 1) + C)



210 K. P. Rybakowski

so

(3.11) |wk(tk)| → 0.

(3.11) and the compactness of N ′ imply that there is a sequence km →∞ in N
and a u0 ∈ N ′ such that (ukm

(tkm
), wkm

(tkm
)) → (u0, 0). This shows that

item (c) in Definition 3.3 is satisfied. Items (a) and (b) of that definition are
obvious as both N ′ and N ′ × Bβ are compact. It follows that the set N ′ is
singularly strongly admissible with respect to β and the family (π̃ε)ε>0.

Now suppose that tk → t0 in [0,∞[ and (uk(0), wk(0)) → (u0, 0) for some
u0 ∈ E. Let u be the (uniquely determined) full solution of π′ with u(0) = u0.
There is a k0 ∈ N such that εk ≤ ε for all k ≥ k0. Let k ≥ k0 be arbitrary.
By (3.3), (3.10) and by the mean-value theorem we obtain, for all t ∈ [0,∞[,

(3.12) |uk(t)− u(t)| ≤ |uk(0)− u0|+
∫ t

0

(C|uk(r)− u(r)|+ |wk(r)|) dr

≤ |uk(0)− u0|+
∫ t

0

(C|uk(r)− u(r)|+ |wk(0)|

+ εkC(C ′(|wk(0)|+ 1) + C))) dr

≤ |uk(0)− u0|+ C

∫ t

0

|uk(r)− u(r)| dr + t(|wk(0)|

+ εkC(C ′(|wk(0)|+ 1) + C))).

There is a k1 ≥ k0 such that for all k ≥ k0 we have tk ≤ t := t0 + 1. Thus for all
such k we obtain, using (3.12) and Gronwall’s inequality, that

|uk(tk)− u(t)| ≤ |uk(tk)− u(tk)|+ |u(tk)− u(t0)|

≤ eCt(|uk(0)− u0|+ t(|wk(0)|
+ εkC(C ′(|wk(0)|+ 1) + C))) + |u(tk)− u(t0)|

so uk(tk) → u(t0). Again, using (3.10) we also obtain

|wk(tk)| ≤ |wk(0)|+ εkC(C ′(|wk(0)|+ 1) + C) → 0.

Altogether we have shown that (π̃ε)ε>0 singularly converges to π′.
The assertion of Lemma 3.6 now follows from Theorem 3.4.
The theorem is proved. �

We shall now generalize Theorem 3.1 to comprise isolating neighbourhoods
which are more general than N ′

β . To this end, we need the following definition.

Definition 3.7. Let (Y, d) be a metric space and C = C(R → Y ) be the
set of all continuous maps from R to Y . Let T be an arbitrary subset of C and
N ⊂ Y be arbitrary. Define

InvT (N) = {y ∈ Y | ∃σ ∈ T with σ(R) ⊂ N and y = σ(0)}.
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We say that N is a T -isolating neighbourhood (of a subset K of Y ) if N is closed
in Y and InvT (N) ⊂ IntY (N) (with K = InvT (N)). If K ⊂ Y and there exists
a set N ⊂ Y such that N is a T -isolating neighbourhood of K then we call K

a T -isolated invariant set.

Define Tg to be the set of all functions z: R → E×E such that there is a full
bounded solution u: R → E of π′ so that z(t) = (u(t), g(u(t)) for all t ∈ R. Thus,
defining the map Γg:E → E × E by Γg(ξ) = (ξ, g(ξ)), ξ ∈ E, we see that Tg is
the set of all functions z: R → E × E such that there is a full bounded solution
u: R → E of π′g with z = Γg ◦ u. Now we have the following lemma.

Lemma 3.8. The set N ′
β defined in Theorem 3.1 is a Tg-isolating neighbour-

hood of the set K := Γg(K ′), where K ′ := Invπ′g (N ′).

Proof. We have to show that, first, K ⊂ IntE×E(N ′
β) and, second, that

K = InvTg
(N ′

β). The first assertion follows since K ⊂ U where U is the set
of all (u, v) with u ∈ IntE(N ′) and |v − g(u)| < β, U is open in E × E and
U ⊂ N ′

β . To prove the second assertion, let (u, v) ∈ K be arbitrary. Then
u ∈ K ′ and v = g(u). By the π′g-invariance of K ′ there is a full solution u of π′g
with u(0) = u and lying in K ′ ⊂ N ′. It follows that z := Γg◦u ∈ Tg, z(0) = (u, v)
and z lies in N ′

β . Thus (u, v) ∈ InvTg (N ′
β). Conversely, let (u, v) ∈ InvTg (N ′

β).
Then there is a z ∈ Tg with z(0) = (u, v) and z lies in N ′

β . It follows that there
is a full solution u of π′ with z = Γg ◦ u. Consequently, u lies in N ′ and so
u = u(0) ∈ Invπ′g (N ′) = K ′ and v = g(u). Thus (u, v) ∈ K. The lemma is
proved. �

We can now state the following result.

Theorem 3.9. Let N ′ be an arbitrary compact isolating neighbourhood rela-
tive to π′, K ′ := Invπ′g (N ′) and K := Γg(K ′). Then K is a Tg-isolated invariant
set and for every compact Tg-isolating neighbourhood N of K there is an ε0 > 0
such that for all ε ∈ ]0, ε0] the set N is an isolating neighbourhood relative to
πε,g and

h(πε,g, N) = h(π′g, N
′).

Proof. Again write πε := πε,g, ε > 0, and π′ := π′g for short.
The first assertion follows from Lemma 3.8. Let us prove the second assertion.

For α > 0 let B′
α be the closed α-neighbourhood of K ′ in E. Then we claim that

there are α and β ∈ ]0,∞[ such that

B′
α,β := {(u, v) | u ∈ B′

α, |v − g(u)| ≤ β} ⊂ N

and B′
α is an isolating neighbourhood of K ′, relative to π′. In fact, if this claim

is not true then, by the definition of B′
α,β there are sequences (uk), (u′k) and

(vk) in E such that |uk − u′k| → 0, |vk − g(uk)| → 0, u′k ∈ K ′ and (uk, vk) 6∈ N
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for every k ∈ N. We may assume that u′k → u′ for some u′ ∈ K ′. It follows that
uk → u′ so g(uk) → g(u′). Hence vk → v′ := g(u′). Thus (uk, vk) → (u′, v′) ∈
K ⊂ IntE×E(N) so (uk, vk) ∈ IntE×E(N) ⊂ N for all k ∈ N large enough,
a contradiction which proves the claim. Let α and β be as in the claim. We also
claim that there is an ε1 > 0 such that

(3.13) Invπε(B
′
α,β) = Invπε(N), ε ∈ ]0, ε1] .

In fact, by the choice of α and β we have Invπε(B
′
α,β) ⊂ Invπε(N) for all ε > 0.

Thus, if there is no ε1 > 0 for which (3.13) is true, then there is a sequence (εk)
with εk → 0+ and for every k ∈ N there is a full solution (uk, vk) of πεk

lying in
N and such that (uk(0), vk(0)) 6∈ B′

α,β .
For k ∈ N and t ∈ R set wk(t) = vk(t) − g(uk(t)). Then (uk, wk) solves the

equation

(3.14)
u̇k = wk + g(uk),

ẇk = −(1/εk)wk −Dg(uk)(wk + g(uk)).

It follows from (3.14) that, for all s, t ∈ R with s ≤ t

wk(t) = e−(1/εk)(t−s)wk(s)−
∫ t

s

e−(1/εk)(t−r)(Dg(uk(r))(wk(r) + g(uk(r)) dr

so, setting
M = sup

(u,v)∈N

(|g(u)|+ |Dg(u)|+ |v|) < ∞

we obtain

|wk(t)| ≤ e−(1/εk)(t−s)M +
∫ t

s

e−(1/εk)(t−r)M2 dr ≤ e−(1/εk)(t−s)M + εkM2.

Letting s → −∞ we thus obtain

(3.15) |wk(t)| ≤ εkM2, k ∈ N, t ∈ R.

Now (3.14) and (3.15) imply that

|u̇k(t)| ≤ εkM2 + M, k ∈ N, t ∈ R

so the boundedness of N and Arzelà–Ascoli theorem imply that there is a con-
tinuous map u: R → E and a subsequence of ((uk, wk)), denoted by ((uk, wk))
again, so that uk(t) → u(t), uniformly on compact subsets of R. It follows
from (3.15) that u̇k(t) → g(u(t)), uniformly on compact subsets of R and so u is
differentiable and

u̇(t) = g(u(t)), t ∈ R.

It follows that (uk(t), vk(t)) → (u(t), v(t)) in E × E, uniformly on compact
subsets of R, where u is a full solution of π′ and v(t) = g(u(t)) for all t ∈ R. Since
N is closed in E×E it follows that (u, v) lies in N . Consequently (u, v) ∈ Tg and
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(u(0), v(0)) ∈ InvTg
(N) = K ⊂ IntE×E(B′

α,β). It follows that (uk(0), vk(0)) ∈
IntE×E(B′

α,β) for all k ∈ N large enough, a contradiction which proves (3.13).
Now using Theorem 3.1 with N ′ replaced by B′

α we see that there is an ε2 > 0
such that

(3.16) h(πε, B
′
α,β) = h(π′, B′

α).

Since B′
α and N ′ are both isolating neighbourhoods of K ′, relative to π′, we have

that

(3.17) h(π′, B′
α) = h(π′, N ′).

Now (3.13), (3.16) and (3.17) imply the second assertion of the theorem. The
proof is complete. �

4. Compactness and smoothing for parabolic equations

In this section we study local semiflows π′f generated by abstract parabolic
equations of the form u̇ = Au + f(u) where A is a positive self-adjoint operator
on a Hilbert space X (generating fractional power spaces Xβ , β ∈ [0, 1]) and
f :Xα → X is a suitable nonlinearity defined on Xα with some α ∈ [0, 1[. We
establish a compactness result (in Xα) for full bounded solutions of the semiflows
π′fκ

for a given sequence of nonlinearities (fκ) (Theorem 4.3). This result enables
us to compute the Conley index of isolating neighbourhoods of π′f by using
finite-dimensional Galerkin approximations of π′f (Propositions 4.2 and 4.4). We
then strengthen Theorem 4.3 to a compactness result in X1. (Theorem 4.6).
This will allow us to imbed compact invariant sets relative to π′f into the phase
space X1/2 × X of damped hyperbolic equations and study some perturbation
properties of such imbeddings (Theorems 4.10 and 4.11).

For the rest of this paper, let (X, 〈 · , · 〉) be a real Hilbert space and A:D(A)⊂
X → X be a positive selfadjoint operator with compact resolvent. Let (φν)ν∈N

be a complete X-orthonormal basis of X consisting of eigenfunctions of A. Let
Pn:X → X be the orthogonal projection of X onto the subspace spanned by the
first n eigenfunctions. Moreover, set Qn := I − Pn where I is the identity map
on X. Note that A is sectorial on X and so it generates a family (Xα)α∈[0,∞[ of
fractional power spaces. Moreover, for α ∈ [0,∞[ let X−α := Xα∗ be the dual
of Xα. (Here we depart from the usual notation of, say, [11].) For α ∈ [0,∞[
the formula

〈u, v〉α := 〈Aαu, Aαv〉X , u, v ∈ Xα,

defines a Hilbert product in Xα and Aα is an isometry between the Hilbert
spaces Xα and X. Endow X−α := Xα∗ with the dual product. We write | · |α
for the induced norm of Xα, α ∈ R. For α ∈ [0,∞[ we also write

A−α := (Aα)−1:X → Xα.
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It is well-known that for every β ∈ R the operator Aβ can be uniquely
extended to a map

Aβ :
⋃
α∈R

Xα →
⋃
α∈R

Xα

such that whenever α ∈ R then Aβ(Xα) = Xα−β and Aβ
|Xα :Xα → Xα−β is an

isometry. Moreover, A0 is the identity on
⋃

α∈R Xα and Aβ ◦Aγ = Aβ+γ for all
β and γ ∈ R.

Example 4.1. Set X := L2(Ω), A:D(A) := H2(Ω) ∩H1
0 (Ω) → L2(Ω),

Au := −∆u, u ∈ D(A).

It is well-known that A is positive selfadjoint in L2(Ω) and has compact resolvent.
In this case, X0 = L2(Ω), X1/2 = H1

0 (Ω) and X1 = H2(Ω) ∩H1
0 (Ω) (the latter

space being regarded as a subspace of H2(Ω)).

Given α ∈ [0, 1[ and a locally Lipschitzian map f :Xα → X let π′f be the
local semiflow on Xα generated by the abstract parabolic equation (see [11])

u̇ = −Au + f(u), u ∈ Xα.

The following result holds.

Proposition 4.2. Suppose f(Xα) ⊂ Pn(X) for some n ∈ N. Then the set
Yn := Pn(Xα) is positively invariant relative to the local semiflow π′ := π′f . Let
π′n be the restriction of π′ to Yn. π′n is the local semiflow on Yn generated by the
ordinary differential equation

(4.1) u̇ = −Au + f(u), u ∈ Yn

on Yn. Let N ′ ⊂ Xα be closed and bounded. If N ′ is an isolating neighbourhood
relative to π′, then N ′

n := N ′ ∩ Yn is an isolating neighbourhood relative to π′n
and

h(π′, N ′) = h(π′n, N ′
n).

Proof. Note that Pn(Xα) = P (X). Since A and f map Yn into itself, it
follows that the finite dimensional ODE (4.1) is well defined. Let π′′n be the local
semiflow on Zn := Qn(Xα) generated by the abstract parabolic equation

(4.2) u̇ = −Au, u ∈ Zn.

Note that for every interval J ⊂ R and every map u: J → Xα we have that u

is a solution of π′f if and only if there are maps u1: J → Yn and u2: J → Zn

such that u = u1 + u2 and u1 is a solution of π′n while u2 is a solution of π′′n;
u1 is given by u1 = Pn ◦ u while u2 is given by u2 = Qn ◦ u. It follows that Yn

is positively invariant with respect to π′ and π′n is generated by equation (4.1).
Furthermore, a set K ⊂ Xα is invariant relative to π′ if and only if Pn(K) is
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invariant relative to π′n and Qn(K) is invariant relative to π′′n. Note that there
are constants α, C ∈ ]0,∞[ such that

(4.3) |e−Atu|α ≤ Ce−αt|u|α, u ∈ Zn, t ∈ [0,∞[ .

This implies that every full bounded solution of (4.2) is trivial. Hence every
bounded invariant set K relative to π′ satisfies the inclusion Qn(K) ⊂ {0}.
Thus K ⊂ Yn so K is invariant relative to π′n. Therefore, if N ′ is an isolating
neighbourhood of K relative to π′, then N ′

n is an isolating neighbourhood of K

relative to π′n.
The estimate (4.3) shows that

(4.4) h(π′′n, {0}) = Σ0.

Now the homeomorphism Φ:Xα → Yn × Zn, u 7→ (Pnu, Qnu), conjugates the
local semiflow π′ with the product π′n × π′′n. Let K := Invπ′(N ′). It follows that
Φ maps the set K onto K ×{0} if K 6= ∅ and onto ∅ if K = ∅. Thus, in the first
case, using (4.4), we have

h(π′, N ′) = h(π′,K) = h(π′n,K) ∧ h(π′′n, {0}) = h(π′n,K) ∧ Σ0 = h(π′n, N ′
n)

and, in the second case, h(π′, N ′) = 0 = h(π′n, N ′
n). The proposition is proved.�

Theorem 4.3. Let N be a closed subset of Xα which is bounded in X.
Suppose f and fκ, κ ∈ N are locally Lipschitzian maps from Xα to X such that
fκ(u) → f(u) in X, uniformly for u lying in compact subsets of N . Moreover,
suppose

sup
κ∈N

sup
u∈N

|fκ(u)|0 < ∞.

For every κ ∈ N let uκ be a full solution of π′fκ
lying in N . Then there is a

sequence (κn) with κn →∞ and there is a full solution u of π′f lying in N such
that uκn → u in Xα, uniformly on compact subsets of R.

Proof. Choose β arbitrary with α < β < 1. Since

(4.5) uκ(t) = e−A(t−r)uκ(r) +
∫ t

r

e−A(t−s)fκ(uκ(s)) ds,

κ ∈ N, r, t ∈ R, r < t, it follows that

|uκ(t)|β ≤ Cβ(t− r)−β |uκ(r)|0 +
∫ t

r

Cβ(t− s)−β |fκ(uκ(s)|0 ds,

for κ ∈ N, r, t ∈ R, with r < t so, choosing r = t− 1 and using our hypotheses,
we see that there is a constant C ∈ ]0,∞[ such that

(4.6) |uκ(t)|β ≤ C, κ ∈ N, t ∈ R.
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Moreover, (4.5) also implies

|uκ(t)− uκ(r)|α ≤ |e−A(t−r)uκ(r)− uκ(r)|α +
∫ t

r

Cα(t− s)−α|fκ(uκ(s))|0

for κ ∈ N and r, t ∈ R with r < t, so noting that |e−A(t−r)uκ(r) − uκ(r)|α =
|e−A(t−r)Aαuκ(r)−Aαuκ(r)|0 ≤ (1/(β−α))C1−(β−α)(t−r)β−α|uκ(r)|β we obtain
from (4.6) that there is a constant C ′ ∈ ]0,∞[ such that

(4.7) |uκ(t)− uκ(r)|α ≤ C ′(t− r)β−α, κ ∈ N, r, t ∈ R, r < t.

Since A has compact resolvent, (4.6) implies that, for every t ∈ R, the set
{uκ(t) | κ ∈ N} lies in a compact subset of Xα so that, by (4.7) and the Arzelà–
Ascoli theorem, there is a sequence (κn) with κn →∞ and there is a continuous
mapping u: R → Xα such that uκn

(t) → u(t) in Xα, uniformly for t lying in
compact subsets of R. Since N is closed in Xα, we see that u lies in N . It also
follows from our hypotheses and (4.5) that

u(t) = e−A(t−r)u(r) +
∫ t

r

e−A(t−s)f(u(s)) ds, r, t ∈ R, r < t.

Hence u is a full solution of π′f , as claimed. �

Proposition 4.4. Let f :Xα → X be Lipschitzian on bounded subsets of Xα

and N ⊂ Xα be bounded and closed. Let (nκ) be a sequence in N with nκ →∞
and (θκ) be an arbitrary sequence in [0, 1]. For κ ∈ N let fκ:Xα → X be defined
by

fκ(u) = (1− θκ)f(u) + θκPnκf(Pnκu), u ∈ Xα.

Then f and fκ, κ ∈ N, satisfy the assumptions (and hence the conclusions) of
Theorem 4.3.

Proof. There is a C ∈ ]0,∞[ such that |u|α ≤ C for u ∈ N . Moreover, there
is a constant L ∈ ]0,∞[ such that |f(u)−f(v)|0 ≤ L|u−v|α for all u and v ∈ Xα

with |u|α, |v|α ≤ C. It follows that |f(u)|0 ≤ |f(0)|0 + LC =: C ′ for all u ∈ Xα

with |u|α ≤ C. Thus, for n ∈ N and u ∈ N we see that |Pnu|α ≤ |u|α ≤ C and
so, for κ ∈ N, |fκ(u)|0 ≤ |f(u)|0 + |f(Pnκu)|0 ≤ 2C ′. Moreover, if vκ → v in Xα,
then, clearly, fκ(vκ) → f(v) in X. This completes the proof. �

The following result follows by a careful inspection of the proof of Theo-
rem 3.5.2 in [11].

Lemma 4.5. For all nonnegative real constants C1, C2, L and for all con-
stants α and β ∈ [0, 1[ there is a C = C(C1, C2, L, α, β) ∈ ]0,∞[ such that
whenever f :Xα → X is Lipschitzian on bounded subsets of Xα, |f(u)|0 ≤ C2

and |f(u) − f(v)|X ≤ L|u − v|α for all u, v with |u|α, |v|α ≤ C1 and whenever
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u: R → Xα is a full solution of π′f with |u(t)|α ≤ C1 for all t ∈ R, then u is

differentiable into Xβ and |∂(Xβ)u(t)|β ≤ C for all t ∈ R.

We can now strengthen Theorem 4.3 to a compactness result in X1.

Theorem 4.6. Let N be a closed subset of Xα which is bounded in X.
Suppose f and fκ, κ ∈ N are maps from Xα to X such that fκ(u) → f(u)
in X, uniformly for u lying in compact subsets of N . Moreover, suppose C2 :=
supκ∈N supu∈N |fκ(u)|0 < ∞. Furthermore, suppose that the family (fκ)κ∈N is
equi-Lipschitzian on bounded subsets of Xα, i.e. for every C ∈ ]0,∞[ there is an
L = L(C) such that |fκ(u)− fκ(v)|0 ≤ L|u− v|α for all κ ∈ N and all u, v ∈ Xα

with |u|α, |v|α ≤ C. For every κ ∈ N let uκ be a full solution of π′fκ
lying in N .

Then there is a subsequence (uκn
) of (πκ) and there is a full solution u of π′f

lying in N such that uκn → u in X1, uniformly on compact subsets of R.

Proof. Note that, by our hypotheses, the map f is Lipschitzian on bounded
subsets of Xα so the local semiflow π′f is defined.

Let β ∈ ]0, 1[ be arbitrary. Proceeding as in the proof of Theorem 4.3 we see
that

C1 := sup
κ∈N

sup
t∈R

|uκ(t)|α < ∞.

Let L := L(C1). Finally, let C = C(C1, C2, L, α, β) be as in Lemma 4.5. By
Theorem 4.3 there is a sequence (κn) with κn →∞ and there is a full solution u

of π′f lying in N such that uκn → u in Xα, uniformly on compact subsets of R.
We claim that uκn → u in X1, uniformly on compact subsets of R. Suppose this
claim is not true. Then, choosing a subsequence of (κn) if necessary, we may
assume that there is a sequence (tn) with tn → t in [0,∞[ and a δ ∈ ]0,∞[ such
that, setting vn := uκn(tn), n ∈ N and v := u(t), we have

(4.8) |vn − v|1 ≥ δ.

By Lemma 4.5 we obtain that, for every κ ∈ N, the solution uκ is differ-
entiable into Xβ and |∂(Xβ)uκ(t)|β ≤ C for all κ ∈ N and all t ∈ R. Set
wn := ∂(Xβ)uκn

(tn), n ∈ N. It follows that the set {wn | n ∈ N} is included in a
compact subset of X0 = X so we may assume that wn → w in X for some w ∈ X.
Since vn → v in Xα it follows that Avn → Av in Xα−1 and fκn(vn) → f(v)
in X0. Hence wn = Avn + fκn

(vn) → Av + f(v) in Xα−1. Thus w = Av + f(v)
and so Avn = wn − fκn

(vn) → w − f(v) = Av in X0. This implies that vn → v

in X1, contradicting (4.8). The theorem is proved. �

Corollary 4.7. Suppose f :Xα → X is Lipschitzian on bounded subsets
of Xα. Then every full solution of π′f which is bounded in Xα, is bounded
in X1. Moreover, every compact subset of Xα which is invariant relative to π′f ,
is compact in X1.
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Proof. Actually, the proof of the first assertion is contained in the proof of
Theorem 4.6. However, it also follows from the following argument. Let u be
a full solution of π′f which is bounded in Xα. If u is not bounded in X1, then
there is a sequence (tn) such that

(4.9) |un|1 →∞,

where un := u(tn), n ∈ N. Set fn ≡ f and un(t) := u(t + tn), n ∈ N, t ∈ R.
An application of Theorem 4.6 shows that a subsequence (unk

) converges in X1,
uniformly on compact subsets of R, to a full solution v of π′f . In particular,
unk

= unk
(0) → v(0) in X1, a contradiction proving the first assertion. Now

let K be compact in Xα and invariant relative to π′f . Let (an) be an arbitrary
sequence in K. For every n ∈ N there is a full solution un of π′f lying in K with
un(0) = an. Again an application of Theorem 4.6 with fn ≡ f shows that a
subsequence (unk

) converges in X1, uniformly on compact subsets of R, to a full
solution u of π′f . In particular, ank

→ u(0) in X1. Since K is closed in Xα, we
see that v(0) ∈ K so K is compact in X1, as claimed. �

Proposition 4.8. Let f satisfy the assumptions of Proposition 4.4 and fκ,
κ ∈ N, be as in that proposition. Then (fκ)κ∈N is equi-Lipschitzian on bounded
subsets of Xα.

Proof. This follows from the estimate

|fκ(u)− fκ(v)|0 ≤ |f(u)− f(v)|0 + |f(Pnκu)− f(Pnκv)|0

and the fact that f is Lipschitzian on bounded subsets of Xα. �

Corollary 4.9. Let f :Xα → X be Lipschitzian on bounded subsets of Xα.
For n ∈ N and θ ∈ [0, 1] let fn,θ:Xα → X be defined by

fn,θ(u) = (1− θ)f(u) + θPnf(Pnu), u ∈ Xα.

Set π′n,θ := π′fn,θ, n ∈ N, θ ∈ [0, 1]. Let (nκ) and (θκ) be sequences such that
nκ →∞ and θκ ∈ [0, 1] for every κ ∈ N. For every κ ∈ N let uκ be a full solution
of π′nκ,θκ

such that

sup
κ∈N

sup
t∈R

|uκ(t)|α < ∞.

Then there is a subsequence of (uκ), denoted again by (uκ), and there is a full
solution u0 of π′ lying in X1 such that uκ → u0 in X1, uniformly on compact
subsets of R.

Proof. This follows immediately from Proposition 4.4, Proposition 4.8 and
Theorem 4.3. �
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In the sequel, unless otherwise specified, we use the following notation. If
f :Xα → X is locally Lipschitzian, then Γf :X1 → Xα × X is the map defined
by

Γf (u) := (u,−Au + f(u)), u ∈ X1.

Moreover, by Tf we denote the set of all maps z: R → Xα ×X for which there
is a full bounded solution u of π′f such that z(t) = Γf (u(t)), t ∈ R. In view of
Corollary 4.7, the definition of Tf makes sense.

The following result describes the behavior of isolated invariant sets of π′f
under the imbedding Γf .

Theorem 4.10. Let f :Xα → X be Lipschitzian on bounded subsets of Xα.
Let K ′ ⊂ Xα be compact in Xα and isolated invariant relative to π′f . Then K ′

is compact in X1. Set K := Γf (K ′). Then K is compact in Xα ×X and K is
a Tf -isolated invariant set.

Proof. K ′ is compact in X1 by Corollary 4.7 and so the continuity of the
map Γf implies that K is compact in Xα × X. Set π′ := π′f , T := Tf and
Γ := Γf . Let β ∈ ]0,∞[ be arbitrary. Let N ′ ⊂ Xα be closed and bounded in
Xα and such that N ′ is an isolating neighbourhood of K ′ relative to π′. Set
U ′ := IntXα(N ′). Let U (resp. N) be the set of all (u, v) ∈ Xα × X such that
u ∈ U ′ (resp. u ∈ N ′) and there is a u′ ∈ K ′ such that |(u, v)− Γ(u′)|Xα×X < β

(resp. |(u, v) − Γ(u′)|Xα×X ≤ β). It is clear that U is open in Xα × X while
the compactness of K ′ in X1 and the continuity of Γ imply that N is closed in
Xα×X. If (u, v) ∈ K then u ∈ K ′ ⊂ U ′ and (u, v) = Γ(u). Thus, choosing u′ :=
u we see that (u, v) ∈ U ⊂ IntXα×X(N). It follows that K ⊂ U ⊂ IntXα×X(N).
Therefore, in order to complete the proof, we must show that

(4.10) K = InvT (N).

Now, if (u, v) ∈ K then u ∈ K ′ and so there is a full solution u of π′ lying in K ′

and such that u(0) = u. Thus z := Γ ◦ u ∈ T and z lies in K ⊂ N . Since
(u, v) = z(0), it follows that (u, v) ∈ InvT (N). Conversely, if (u, v) ∈ InvT (N),
then there is a z ∈ T lying in N , such that z(0) = (u, v). Therefore there is a
full bounded solution u of π′ such that z = Γ ◦ u. Since z lies in N we have
that u lies in N ′, and so u lies in K ′. Thus z lies in K and so, in particular,
(u, v) ∈ K. Formula (4.10) is proved. �

We now establish a stability property of the imbeddings Γf under perturba-
tions of the nonlinearity f .

Theorem 4.11. Suppose f and fn, n ∈ N, are maps from Xα to X such that
fn(u) → f(u) in X, uniformly for u lying in compact subsets of N . Furthermore,
suppose that the family (fn)n∈N is equi-Lipschitzian on bounded subsets of Xα.
Let K ′ be compact in Xα and isolated invariant relative to π′f . Moreover, let N ′
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be a bounded subset of Xα which is an isolating neighbourhood of K ′ relative to
π′f . For every n ∈ N let K ′

n := Invπ′fn
(N ′). Then K ′ and K ′

n, n ∈ N are included
in X1. Set K := Γf (K ′) and Kn := Γfn(K ′

n), n ∈ N. Then K is a Tf -isolated
invariant set. Let N ⊂ Xα×X be any bounded Tf -isolating neighbourhood of K.
Then there is an n0 ∈ N such that for every n ≥ n0 the set N is Tfn

-isolating
neighbourhood of Kn.

Proof. Set π′ := π′f , T := Tf , Γ := Γf , π′n := π′fn
, Tn := Tfn

and Γn :=
Γfn

, n ∈ N. From our preceding results we know that K is a T -isolated invariant
set. Let N be as in the assumptions of this theorem. We first claim that there
is an n1 ∈ N such that

(4.11) Kn ⊂ Int(N) := IntXα×X(N), n ≥ n1.

Indeed, otherwise there is a sequence (nk) with nk →∞ such that Knk
6⊂ Int(N)

for all k ∈ N. Hence, for every k ∈ N, there is a full solution uk of π′nk
lying

in N ′ and such that (uk, vk) := Γnk
(uk(0)) 6∈ N . Using Theorem 4.3 we may

assume that there is a full solution u0 of π′ such that uk → u0 in X1, uniformly
on compact subsets of R. Thus u0 lies in N ′ and so u0 is bounded in Xα which,
by Corollary 4.7, implies that u0 is bounded in X1. Since u lies in K ′, it follows
that z := Γ ◦ u0 ∈ T and z lies in N . Hence, by our hypothesis, z lies in Int(N).
In particular, z(0) ∈ Int(N). Since (uk, vk) = Γnk

(uk(0)) → Γ(u0(0)) = z(0)
in Xα × X it follows that (uk, vk) ∈ Int(N) ⊂ N for all k ∈ N large enough,
a contradiction which proves our first claim.

We next claim that there is an n2 ∈ N such that

(4.12) Kn = InvTn(N), n ≥ n2.

In fact, let n1 be as in (4.11) and n ≥ n1 be arbitrary. Moreover, let (u, v) ∈ Kn

be arbitrary. Then there is a full solution u of π′n lying in N ′ with u(0) = u.
Thus, by Corollary 4.7, z := Γn ◦ u ∈ Tn and, by our choice of n, we see that
z(t) ∈ Kn ⊂ N for all t ∈ R. Hence (u, v) = z(0) ∈ InvTn(N). It follows that

Kn ⊂ InvTn(N), n ≥ n1.

Therefore, if there is no n2 ∈ N so that (4.12) holds, then there is a sequence
(nk) with nk →∞ such that InvTnk

(N) 6⊂ Knk
for all k ∈ N. Therefore there is

a sequence (uk) such that, for every k ∈ N, uk is a full bounded solution of π′nk
,

zk := Γnk
◦ uk lies in N and uk(0) 6∈ N ′. Since N is bounded in Xα × X, it

follows that
sup
k∈N

sup
t∈R

|uk(t)|α < ∞

so, using Theorem 4.6, we may assume that there is a full solution u0 of π′,
bounded in Xα, such that uk → u0 in X1, uniformly on compact subsets of R.
This implies that zk = Γnk

◦uk → z0 := Γ◦u0 in Xα×X, uniformly on compact
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subsets of R. Since u0 is bounded in Xα, we have that z0 ∈ T . Since N is closed
(in Xα×X) it follows that z0 lies in N . Hence, in particular, z0(0) ∈ InvT (N) =
K = Γ(K ′). Thus u0(0) ∈ K ′ ⊂ IntXα(N ′) so uk(0) ∈ IntXα(N ′) for all k ∈ N
large enough, a contradiction which proves the claim. Taking n0 := sup(n1, n2)
we now see that, for all n ≥ n0, the set N is a Tn-isolating neighbourhood of Kn.
The theorem is proved. �

5. Compactness and smoothing for damped hyperbolic equations

In this section we study local semiflows πε,f on X1/2 × X generated by
second-order equations of the type

u̇ = v, v̇ = (1/ε)(−v −Au + f(u)), (u, v) ∈ X1/2 ×X0

where ε ∈ ]0,∞[ and f :X1/2 → X is an appropriate nonlinearity. After recall-
ing some basic properties of πε,f we establish a preliminary abstract smooth-
ing property for full bounded solutions of πε,f (Proposition 5.4). Then, using
Proposition 5.4 and ideas of Haraux ([10]) and Babin and Vishik ([1]) we prove
a smoothing property of full bounded solutions of πε,fn,θ

, the map fn,θ having
the special form

(5.1) fn,θ(u) = (1− θ)(φ̂(u) + γ) + θPn(φ̂(Pnu) + γ), u ∈ X1/2

where ε ∈ ]0,∞[, n ∈ N and θ ∈ [0, 1] are arbitrary (but fixed) and φ and γ

satisfy the properties listed in the Introduction (Theorem 5.9).
Using this latter result and following the arguments from the paper [9] by

Hale and Raugel we then prove a uniform boundedness and smoothing property
of full bounded solutions of πε,fn,θ

for ε small (Theorem 5.11).
Theorem 5.11 implies a singular compactness result for bounded sequences

(uκ, vκ) of full bounded solutions of πεκ,fnκ,θκ
, where εk → 0 and nk → ∞

(Theorem 5.13). This latter result is an important step in the proof of the main
results of this paper (Theorems 6.1 and 7.4).

For every β ∈ R set
Zβ := Xβ+(1/2) ×Xβ .

Endow Zβ with the (complete) scalar product

〈(u1, u2), (v1, v2)〉Zβ
:= 〈u1, v1〉β+(1/2) + 〈u2, v2〉β .

For every ε ∈ ]0,∞[ and β ∈ R define the operator Bε,β :Zβ+(1/2) → Zβ by

Bε,β(u, v) = (−v, (1/ε)(v + Au)), (u, v) ∈ Zβ+(1/2).

It is well-known ([12]) that −Bε,β is the infinitesimal generator of a C0-group
e−tBε,β , t ∈ R, of operators on Zβ . There are constants Mε,β , αε,β ∈ ]0,∞[ such
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that

(5.2) |e−tBε,β (u, v)|Zβ
≤ Mε,βe−αε,βt|u|Zβ

, t ≥ 0, (u, v) ∈ Zβ .

Moreover, if β1, β2 ∈ R and β1 ≤ β2 then

(5.3) Bε,β1(u, v) = Bε,β2(u, v), (u, v) ∈ Zβ2+(1/2)

and

(5.4) e−tBε,β1 (u, v) = e−tBε,β2 (u, v), t ∈ [0,∞[ , (u, v) ∈ Zβ2 .

The following two propositions follow from results in [12].

Proposition 5.1. Let ε ∈ ]0,∞[, β ∈ R be arbitrary, J ⊂ R be an interval
and g: J → Xβ be continuous. Moreover, z: J → Zβ be arbitrary. The following
properties are equivalent:

(a) z(t) = e−Bε,β(t−t0)z(t0) +
∫ t

t0
e−Bε,β(t−s)(0, (1/ε)g(s)) ds for all t0 and

t ∈ J with t0 ≤ t,
(b) z is differentiable into Z := Zβ−(1/2) and

∂(Z)z(t) = −Bε,β−(1/2)z(t) + (0, (1/ε)g(t)), t ∈ J.

If, in addition, J = R, supt∈R |g(t)|β < ∞ and supt∈R |z(t)|Zβ
< ∞ then the

following properties are equivalent:

(c) z(t) =
∫ t

−∞ e−Bε,β(t−s)(0, (1/ε)g(s)) ds for all t ∈ R,
(d) z is differentiable into Z := Zβ−(1/2) and

∂(Z)z(t) = −Bε,β−(1/2)z(t) + (0, (1/ε)g(t)), t ∈ R.

Proposition 5.2. Let J be an interval in R, ε ∈ ]0,∞[ be arbitrary and
g: J → X be continuous. Suppose z: J → Z0, z(t) = (u(t), v(t)), t ∈ J , is
differentiable into Z := Z−(1/2) with

∂(Z)z(t) = −Bε,−(1/2)z(t) + (0, (1/ε)g(t)), t ∈ J.

For c ∈ [0,∞[ define the function V = Vε,c:Z0 → R by

V (u, v) =
1
2
|u|21/2 +

1
2
ε|v|20 + εc〈u, v〉0, (u, v) ∈ Z0.

Then V ◦ z: J → R is continuously differentiable and, for t ∈ J ,

(V ◦ z)′(t) = − (1− εc)|v(t)|20 − c|u(t)|21/2 − c〈u(t), v(t)〉0
+ 〈g(t), v(t)〉0 + c〈g(t), u(t)〉0.
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Let ε ∈ ]0,∞[ be arbitrary and f :X1/2 → X be a locally Lipschitzian map.
Given an interval J ⊂ R and a continuous map (u, v): J → Z0 we say that (u, v)
is a solution of the second-order equation

(5.5) u̇ = v, v̇ = (1/ε)(−v −Au + f(u)), (u, v) ∈ Z0 = X1/2 ×X0

if, setting B = Bε,0 and z(t) := (u(t), v(t)), t ∈ J , we have that

z(t) = e−B(t−t0)z(t0) +
∫ t

t0

e−B(t−s)(0, (1/ε)f(u(s))) ds

for all t0, t ∈ J with t0 < t. It is well-known (see e.g. [15]) that for every
(u0, v0) ∈ Zβ there is a unique maximally defined solution

(u, v) = (u, v)u0,v0 : [0, ωu0,v0 [ → Z0

of (5.5) satisfying (u, v)u0,v0(0) = (u0, v0). We have that ωu0,v0 ∈ ]0,∞]. Setting

(u0, v0)πε,f t := (u, v)u0,v0(t), t ∈ [0, ωu0,v0 [

we obtain a local semiflow πε,f on Z0.

Proposition 5.3. Suppose f :X1/2 → X is Lipschitzian on bounded subsets
of X1/2. Let ε ∈ ]0,∞[ be arbitrary. Suppose f(X1/2) ⊂ Pn(X) for some n ∈ N.
Then the set Xn := Pn(X1/2)×Pn(X) is positively invariant relative to the local
semiflow π := πε,f . Let πn be the restriction of π to Xn. πn is the local semiflow
on Xn generated by the ordinary differential equation

(5.6) u̇ = v, v̇ =
1
ε
(−v −Au + f(u)), (u, v) ∈ Xn.

Let N ⊂ Z0 be closed and bounded. If N is an isolating neighbourhood relative
to π, then Nn := N ∩Xn is an isolating neighbourhood relative to πn and

h(π,N) = h(πn, Nn).

Proof. The proof is completely analogous to the proof of Proposition 4.2.
Details are omitted. �

We can now state a first, abstract, smoothing result for full bounded solutions
of πε,f .

Proposition 5.4. Let ε ∈ ]0,∞[ be arbitrary and f :X1/2 → X be Lipschitz-
ian on bounded subsets of X1/2. Assume that the following hypothesis holds:

(5.7) Whenever (u, v) is a full bounded solution of πε,f , then the map f ◦ u is
differentiable into X−1 and supt∈R |∂(X−1)(f ◦ u)(t)|−1 < ∞.

Then the following properties are satisfied:

(a) For every r ∈ ]0,∞[ and β ∈ [0,∞[ there is a C(r, β) ∈ ]0,∞[ such that
whenever (u, v) is a full bounded solution of πε,f such that ∂(X−1)(f ◦u)
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is defined and continuous as a map from R to X−β, supt∈R |∂(X−1)(f ◦
u)(t)|−β ≤ r and supt∈R |u(t)|1/2 ≤ r then (u, v, w) is defined and con-
tinuous as a map from R into X−β+1 ×X−β+(1/2) ×X−β and

sup
t∈R

(|u(t)|2−β+1 + |v(t)|2−β+(1/2) + |w(t)|2−β) ≤ C(r, β)1/2.

Here, w(t) := ∂(X−1/2)v(t) for all t ∈ R.
(b) Whenever β ∈ [0,∞[, (u, v) and (uk, vk), k ∈ N, are full bounded so-

lutions of πε,f such that ∂(X−1)(f ◦ u) and ∂(X−1)(f ◦ uk), k ∈ N, are
defined and continuous as maps from R to X−β,

sup
k∈N

sup
t∈R

|∂(X−1)(f ◦ uk)(t)|−β < ∞

and if (f ◦ uk)(t) → (f ◦ u)(t) and ∂(X−1)(f ◦ uk)(t) → ∂(X−1)(f ◦ u)(t)
in X−β for every t ∈ R, then (uk(t), vk(t), wk(t)) → (u(t), v(t), w(t)) in
X−β+1 × X−β+(1/2) × X−β for all t ∈ R. Here, w(t) := ∂(X−1/2)v(t)
and wk(t) := ∂(X−1/2)vk(t) for all k ∈ N and t ∈ R.

Remark. The constant C(r, β) also depends on ε, θ and n but since these
latter numbers are fixed, we do not need to indicate this dependence explicitly.

Proof. Let (u, v) be a full bounded solution of πε,f . Using Proposition 5.1
we see that (u, v) is continuously differentiable into Z−(1/2). Let w := ∂(X−1/2)v.
Since, again by Proposition 5.1,

(5.8) εw(t) = −v(t)−Au(t) + f(u(t)), t ∈ R

it follows from hypothesis (5.7) that, first, supt∈R |(v(t), w(t))|Z−(1/2) < ∞ and
that w is differentiable into X−1 and

ε∂(X−1)w(t) = −w(t)−Av(t) + g(t), t ∈ R

where g := ∂(X−1)(f ◦ u). Proposition 5.1 now implies that

(5.9) (v(t), w(t)) =
∫ t

−∞
e−(t−s)Bε,−1(0, (1/ε)g(s)) ds, t ∈ R.

Now suppose that r ∈ ]0,∞[, β ∈ [0,∞[, ∂(X−1)(f ◦u) is defined and continuous
as a map from R to X−β , supt∈R |∂(X−1)(f◦u)(t)|−β ≤ r and supt∈R |u(t)|1/2 ≤ r.
Then by (5.4) and (5.9)

(v(t), w(t)) =
∫ t

−∞
e−(t−s)Bε,−β (0, (1/ε)g(s)) ds, t ∈ R
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so, first, (v, w) is defined and continuous as a map from R into Z−β and second,
by (5.2),

(5.10) sup
t∈R

|(u(t), v(t))|Z−β
≤ Mε,−β(1/αε,−β) sup

s∈R
(1/ε)|g(s)|−β

≤ rMε,−β/(εαε,−β).

Now (5.8) and (5.10) imply that for some constant C ′
β ∈ [0,∞[, independent of r

or (v, w), and for all t ∈ R

(5.11) |Au(t)|−β ≤ |εw(t)|−β + |v(t)|−β + |f(u(t))|0
≤ C ′

β(|(v(t), w(t))|Z−β
+ |f(u(t))|0)

≤ C ′
β(rMε,−β(1/αε,−β) + sup

|a|1/2≤r

|f(a)|0).

Moreover, (5.8) also implies that u is continuous as a map from R into X−β+1 and
so (5.10) and (5.11) prove part (a) of the proposition. Let β, (u, v), and (uk, vk),
k ∈ N, satisfy the hypothesis of part (b) of the proposition. Set g := ∂(X−1)(f◦u),
w := ∂(X−1/2)v and gk := ∂(X−1)(f ◦ uk), wk := ∂(X−1/2)vk, k ∈ N. By our
assumption, part (a) of this proposition, and the dominated convergence theorem
we have that, for all t ∈ R,

(5.12) |(vk(t), wk(t))− (v(t), w(t))|−β

≤ Mε,−β

ε

∫ t

−∞
e−(t−s)αε,−β |gk(s)− g(s)|−β ds → 0.

By (5.8) and (5.12) we have for all t ∈ R

(5.13) |A(uk(t)− u(t))|−β = |vk(t)− v(t)|−β + |εwk(t)− εw(t)|−β

+ |f(uk(t))− f(u(t))|−β → 0.

Now (5.12) and (5.13) prove the second part of the proposition. �

Let us recall the following imbedding result for interpolation spaces.

Proposition 5.5. Assume that X = L2(Ω) and X1 is continuously included
in H2(Ω). Let α ∈ [0, 1] be arbitrary. Then the following statements hold:

(a) If q ≥ 2 and 2α > (N/2)− (N/q) then Xα ⊂ Lq(Ω).
(b) If 2α > N/2 then Xα ⊂ C(Ω).
(c) If 2α > (N/q)− (N/2) then Lq(Ω) ⊂ X−α.

The maps induced by the above inclusions are continuous.

Proof. Parts (a) and (b) follow from Theorem 1.6.1 in [11]. Part (c) is
obtained from part (a) by passing to dual spaces. �

We also require the following essentially known results.
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Proposition 5.6. Assume the following hypotheses:

(a) r ∈ ]0,∞[ and pi ∈ [1,∞[, i ∈ [[1, 4]], are given numbers such that
p2 = p1/r, p3 ≤ p1 and 1/p4 = 1/p2 + 1/p3.

(b) g: Ω× R → R, (x, s) 7→ g(x, s), is such that g( · , 0) ∈ Lp4(Ω), g( · , s) is
measurable for every s ∈ R and g(x, · ) is of class C1 for every x ∈ Ω.

(c) h(x, s) ≡ g′s(x, s) satisfies the estimate |h(x, s)| ≤ a(x) + b|s|r for all
(x, s) ∈ Ω× R, where a ∈ Lp2(Ω) and b ∈ [0,∞[.

(d) I ⊂ R, u: I → Lp1(Ω), t ∈ I, u is continuous at t as a map into Lp1(Ω)
and u is differentiable (resp. continuously differentiable) at t as a map
into Lp3(Ω).

Then the map ĝ◦u is defined and differentiable (resp. continuously differentiable)
at t as a map into Lp4(Ω), where 1/p4 := 1/p2 + 1/p3. Finally,

(5.14) ∂(Lp4 )(ĝ ◦ u)(t) = ĥ(u(t))∂(Lp3 )u(t).

Proof. We have the estimate

|g(x, s)| ≤ |g(x, 0)|+ |a(x)||s|+ (b/(r + 1))|s|r+1, (x, s) ∈ Ω× R.

If w ∈ Lp1(Ω) then, by Hölder inequality, aw ∈ Lp5(Ω) where 1/p5 = 1/p2 +
1/p1 ≤ 1/p2 + 1/p3 = 1/p4 so p5 ≥ p4. Moreover, |w|r+1 ∈ Lp6(Ω), where
p6 = p1/(r+1), so 1/p6 = r/p1+1/p1 = 1/p2+1/p1 = 1/p5. Thus p6 = p5 ≥ p4.
Altogether we see that ĝ(w) ∈ Lp4(Ω) for every w ∈ Lp1(Ω). Suppose now that
u is differentiable at t (into Lp3(Ω)). For every x ∈ Ω and ξ with t + ξ ∈ I set

(5.15) αξ(x) :=
∫ 1

0

(h(x, (1− θ)u(t)(x) + θu(t + ξ)(x))− h(x, u(t)(x)) dθ.

Moreover, write v := ∂(Lp3 )u(t). Then we easily obtain

ĝ(u(t + ξ))− ĝ(u(t))− ξĥ(u(t))v = (αξ + ĥ(u(t)))(u(t + ξ)− u(t)− ξv) + ξαξv.

Thus, by the Hölder inequality, in order to prove the differentiability claim and
formula (5.15) we only need to show that αξ ∈ Lp2(Ω) and |αξ|Lp2 → 0 as ξ → 0.
Now, for every θ ∈ [0, 1] the integrand of (5.15) is easily seen to be a measurable
function of x ∈ Ω. Since for every x ∈ Ω

αξ(x) = lim
m→∞

(1/m)
m∑

j=1

(h(x, (1−j/m)u(t)(x)+(j/m)u(t+ξ)(x))−h(x, u(t)(x))),

it follows that αξ is measurable.
Now

(5.16) |αξ(x)| ≤ sup
θ∈[0,1]

|h(x, (1− θ)u(t)(x) + θu(t + ξ)(x))− h(x, u(t)(x))|

≤ 2|a(x)|+ 2b|u(t)(x)|r + b|u(t + ξ)(x)|r.
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It follows that αξ ∈ Lp2(Ω). Suppose that |αξ|Lp2 6→ 0 as ξ → 0. Then there is
a sequence (ξn) converging to 0 and there is a δ ∈ ]0,∞[ with

(5.17) |αξn
|Lp2 ≥ δ, n ∈ N.

We may assume that u(t + ξn)(x) → u(t)(x) for almost every x ∈ Ω. (5.16) thus
implies that, for almost every x ∈ Ω, αξn

(x) → 0 and, moreover,

(5.18) |αξ(x)|p2 ≤ C(|a(x)|p2 + |u(t)(x)|p1 + |u(t + ξ)(x)|p1) =: ζξ(x)

for some constant C ∈ [0,∞[ independent of x ∈ Ω. Now we use some classical
results on equi-integrability (cf. [2]). Set ζ(x) := C(|a(x)|p2 + 2|u(t)(x)|p1),
x ∈ Ω. Then ζξn

(x) → ζ(x) for almost every x ∈ Ω and so ζξn
→ ζ stochastically

(Theorem 20.5 in [2]). Since u(t + ξ) → u(t) in Lp1(Ω) as ξ → 0, we have that
|u(t + ξ)|Lp1 → |u(t)|Lp1 as ξ → 0 and so

∫
Ω
|ζξ| dx →

∫
Ω
|ζ| dx as ξ → 0.

Theorem 21.7 in [2] now implies that ζξn
→ ζ in L1(Ω) as n → ∞, so, by

Theorem 21.4 in [2], we have that the set {ζξn | n ∈ N} is equi-integrable.
Thus formula (5.18) and the definition of equi-integrability shows that the set
{|αξn

|p2 | n ∈ N} is equi-integrable and thus, by Theorem 21.7 in [2], we obtain
that |αξn

|Lp2 → 0 as n →∞, a contradiction to (5.17).
If u is continuously differentiable at t into Lp3 then, by what has been proved

so far, for all t′ ∈ I lying in a neighbourhood of t we see that ∂(Lp4 )(ĝ ◦ u)(t′)
exists and

(5.19) ∂(Lp4 )(ĝ ◦ u)(t′) = ĥ(u(t′))∂(Lp3 )u(t′).

Since, for t′ → t, ∂(Lp3 )u(t′) → ∂(Lp3 )u(t) in Lp3(Ω) and ĥ(u(t′)) → ĥ(u(t)) in
Lp2(Ω), it follows from (5.19) and Hölder’s inequality that ∂(Lp4 )(ĝ ◦ u)(t′) →
∂(Lp4 )(ĝ ◦ u)(t) in Lp4(Ω) as t′ → t. This proves the proposition. �

Proposition 5.7. Let g: R → R, be a C1-function and h := g′. Let p ∈
[1,∞[, I ⊂ R, t ∈ I and u: I → C(Ω) be a map such that u is continuous at t

as a map into C(Ω) and u is differentiable (resp. continuously differentiable) at
t as a map into Lp(Ω). Then the map ĝ ◦ u is defined and differentiable (resp.
continuously differentiable) at t as a map into Lp(Ω). Finally,

(5.20) ∂(Lp)(ĝ ◦ u)(t) = ĥ(u(t))∂(Lp)u(t).

Proof. For h(x, s) ≡ h(s) define the functions αξ as in the proof of Propo-
sition 5.6. It is easily seen that αξ ∈ C(Ω) and |αξ|C(Ω) → 0 as ξ → 0. Thus the
arguments from the proof of Proposition 5.6 complete the proof of the present
proposition. �

For the rest of this section we assume the following Standing Hypothesis.

(5.21) N ∈ {1, 2, 3} and Ω ⊂ RN is a bounded domain with smooth boundary
and such that X = L2(Ω) and X1 is continuously included in H2(Ω);
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γ ∈ L2(Ω) and φ: R → R is a C1-function such that, for N ≥ 2, there
are constants r and C ∈ [0,∞[ with |φ′(ξ)| ≤ C(1 + |ξ|r) for all ξ ∈ R.
If N = 3 then r < 2.

Proposition 5.8. Let Φ(s) :=
∫ s

0
φ(t) dt, t ∈ R. Let ε ∈ ]0,∞[, θ ∈ [0, 1]

and n ∈ N be arbitrary. Define f = fn,θ:X1/2 → X by

f(u) := (1− θ)(φ̂(u) + γ) + θPn(φ̂(Pnu) + γ), u ∈ X1/2.

Then f is well-defined, Lipschitzian on bounded subsets of X1/2 and compact.
Moreover, let F = Fn,θ:X1/2 → L1(Ω) be defined by

F (u) := (1− θ)(Φ̂(u) + γu) + θ(Φ̂(Pnu) + γPnu), u ∈ X1/2.

Define the function Wε = Wε,n,θ:Z0 → R by

Wε(u, v) :=
1
2
|u|21/2 +

1
2
ε|v|20 −

∫
Ω

F (u(x)) dx, (u, v) ∈ Z0.

Under these assumptions, whenever J ⊂ R is an interval and z: J → Z0, z(t) =
(u(t), v(t)), t ∈ J , is a solution of πε,f then the function Wε ◦ z: J → R is
continuously differentiable and

(Wε ◦ z)′(t) = −|v(t)|20, t ∈ J.

Proof. All statements of the proposition are known and easily proved.
In particular, the assertions concerning f follow from our Standing Hypothe-
sis (5.21), Proposition 5.5 and the fact that the inclusion Xβ ⊂ Xα is compact
whenever 0 ≤ α < β < 1. �

We will now prove a generalization of a Haraux-Babin-Vishik smoothing
result.

Theorem 5.9. Let ε and f be as in Proposition 5.8. Then the following
properties are satisfied:

(a) For every r ∈ ]0,∞[ there is a C(r) ∈ ]0,∞[ such that whenever (u, v)
is a full bounded solution of πε,f with supt∈R |(u(t), v(t))|Z0 ≤ r then
(u, v) lies in Z1/2 and

sup
t∈R

(|(u(t), v(t))|Z1/2 ≤ C(r).

Moreover, the map f ◦ u is continuously differentiable from R into X.
Setting w := ∂(X−1/2)v we have

∂(X)(f ◦ u)(t) = (1− θ)φ̂′(u(t)) · v(t) + θPn(φ̂′(Pnu(t)) · v(t)), t ∈ R,

εw(t) = −v(t)−Au(t) + ∂(X)(f ◦ u)(t), t ∈ R.
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(b) Whenever (u, v) and (uk, vk), k ∈ N, are full bounded solutions of
πε,f such that supk∈N supt∈R |(uk(t), vk(t)|Z0 < ∞ and (uk(t), vk(t)) →
(u(t), v(t)) in Z0 for every t ∈ R, then (uk(t), vk(t)) → (u(t), v(t)) in
Z1/2 for every t ∈ R.

Proof. We follow, in spirit, the proof method by Haraux ([10]). We first
treat the case N = 1. Then, by Proposition 5.5, X1/2 ⊂ C(Ω) with continuous
inclusion. Let (u, v) be full bounded solution of πε,f . Then an application of
Proposition 5.7 shows that f ◦ u is continuously differentiable into X = L2(Ω)
and

(5.22) g(t) = (1− θ)φ̂′(u(t)) · v(t) + θPn(φ̂′(Pnu(t)) · v(t)), t ∈ R

where g := ∂(X)(f ◦ u). Thus hypothesis (5.7) of Proposition 5.4 is satisfied.
Actually, (5.22) implies that for every r ∈ ]0,∞[ there is a C1(r) ∈ ]0,∞[,
C1(r) ≥ r, such that whenever supt∈R |(u(t), v(t))|Z0 ≤ r then

(5.23) sup
t∈R

|g(t)|0 ≤ C1(r).

Let C2(r) := C(r′, β), where C(r′, β) is as in Proposition 5.4, r′ := C1(r) and
β := 0. It follows from that proposition that (u, v) lies in Z1/2 and

sup
t∈R

(|u(t)|1 + |v(t)|1/2) ≤ C2(r).

This clearly implies part (a) of the theorem. Let (u, v) and (uk, vk), k ∈ N,
satisfy the assumption of part (b) of this theorem. Then formula (5.22) implies
that ∂(X)(f ◦ uk)(t) → ∂(X)(f ◦ u)(t) in X for all t ∈ R and

sup
k∈N

sup
t∈R

|∂(X)(f ◦ uk)(t)|0 < ∞.

Now Proposition 5.4 implies that (uk(t), vk(t)) → (u(t), v(t)) in Z1/2 for all
t ∈ R. Let us now consider the case N = 2. Then, by Proposition 5.5, X1/2 is
continuously included in Lp(Ω) for every p ∈ [2,∞[. Choose p ∈ [2,∞[ so that
r/p < (1/2). Then (1/q) := (r/p) + (1/2) < 1 and so Proposition 5.6 implies
that f ◦ u is continuously differentiable into Lq(Ω) and

(5.24) ∂(Lq(Ω))(f ◦ u)(t) = (1− θ)φ̂′(u(t)) · v(t) + θPn(φ̂′(Pnu(t)) · v(t)),

for t ∈ R. Since Nr/p < 1 it is possible to choose β ∈ [0, 1] such that Nr/p <

2β < 1. This implies, by Proposition 5.5, that Lq(Ω) is continuously included
in X−β . Thus f ◦u is continuously differentiable into X−β and (5.24) shows that
supt∈R |g(t)|−β < ∞ where g := ∂(X−β)(f ◦ u). In particular, hypothesis (5.7) of
Proposition 5.4 holds and so u is defined and continuous as a map from R into Xα,
where α := −β + 1. Moreover, that proposition, together with formula (5.24)
imply that for every r ∈ ]0,∞[ there is a C1(r) ∈ ]0,∞[ such that whenever
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supt∈R |(u(t), v(t))|Z0 ≤ r then supt∈R(|u(t)|α + |v(t)|0) ≤ C1(r). Since α ∈ [0, 1]
and 2α > 1 = N/2 it follows that Xα is continuously included in C(Ω). Now
proceeding as in the case N = 1 we see that (u, v) lies in Z1/2. Moreover, starting
with r′ := C1(r) we see that there is a C2(r′) ∈ ]0,∞[ such that whenever
supt∈R(|u(t)|α + |v(t)|0) ≤ r′ then supt∈R(|(u(t), v(t))|Z1/2 ≤ C2(r′). Setting
C(r) := C2(r′) we complete the proof of part (a) of the theorem. Let (u, v)
and (uk, vk), k ∈ N, satisfy the assumption of part (b) of this theorem. Then
formula (5.24) implies that ∂(X−β)(f ◦ uk)(t) → ∂(X−β)(f ◦ u)(t) in X for all
t ∈ R and

sup
k∈N

sup
t∈R

|∂(X−β)(f ◦ uk)(t)|0 < ∞.

Now Proposition 5.4 implies that (uk(t), vk(t)) → (u(t), v(t)) in Xα ×X for all
t ∈ R. Proceeding as in case N = 1 we now see that (uk(t), vk(t)) → (u(t), v(t))
in Z1/2 for all t ∈ R. The proof of part (b) is complete.

Let us now consider the case N = 3. Let us first assume that r < 1. Then
X1/2 is continuously included in Lp(Ω) for all p ∈ [2, 6[. Since (r/6) < (1/6), we
may choose p ∈ [2, 6[ satisfying (r/p) < (1/6). Then (1/q) := (r/p) + (1/2) < 1.
Since (Nr/p) = (3r/p) < (1/2), it is possible to choose β ∈ [0, 1] such that
(Nr/p) < 2β < (1/2).

It follows that with α := −β + 1 we have α ∈ [0, 1] and 2α = −2β + 2 >

−(1/2) + 2 = 3/2 = N/2 so Xα is continuously included in C(Ω). Now the
proof in the present case proceeds exactly as in the case N = 2. Let us now
turn to the proof of case r ≥ 1. We will show that there is a µ ∈ N and
there are finite sequences (αm), m ∈ [[1, µ + 1]], in [0, 1], (pm), m ∈ [[1, µ]], in
[2,∞[ and (βm), m ∈ [[1, µ]], in [0, 1] such that α1 = (1/2), 2αµ+1 > (N/2),
2αm > (N/2) − (N/pm), (r/pm) + (1/2) ≤ 1, 2βm > (Nr/pm), m ∈ [[1, µ]],
and αm = −βm−1 + 1 for m ∈ [[2, µ + 1]]. Then a finite number of applications
of the arguments from the preceding cases completes the proof of the theorem.
Let δ ∈ ]0,∞[ be arbitrary, to be specified later. Define the sequence (αm),
m ∈ N, by induction, setting α1 := (1/2) and αm+1 := rαm + b where b :=
1− (Nr/4)− (rδ/2)− (δ/2). Moreover, define the sequence (sm), m ∈ N so that
2αm = (N/2) − Nsm + δ, m ∈ N. Finally, let (βm), m ∈ N be defined so that
2βm = Nrsm + δ. We thus see that αm+1 = −βm + 1 for all m ∈ N. It also
follows that, for r = 1

(5.25) αm+1 = (1/2) + m((1/4)− δ), m ∈ N

and, for r > 1,

(5.26) αm+1 = (1/2)rm + b(rm − 1)/(r − 1), m ∈ N.

Since r < 2 we see that, for all δ < (1/4) small enough, (1/2) + (b/(r − 1)) > 0
so, in this case the sequence (αm) is increasing by (5.25) and (5.26). Thus the
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sequences (sm) and (βm) are decreasing. Since α1 = (1/2) and r < 2 we may
arrange, by choosing δ even smaller, that rs1 + (1/2) ≤ 1 and β1 ∈ [0, (1/2)]. It
follows that rsm + (1/2) ≤ 1, m ∈ N and so, in particular, sm ≤ (1/2), m ∈ N
(as r ≥ 1). Our choice of δ also implies that αm → ∞ as m → ∞. Thus there
is a smallest µ ∈ N such that 2αµ+1 > (N/2). Therefore 2αm ≤ (N/2) for all
m ∈ [[1, µ]]. In particular αm ∈ [0, 1] and sm > 0 for all m ∈ [[1, µ]]. Therefore
βm ∈ [0, (1/2)] for m ∈ [[1, µ]]. Set pm := (1/sm), m ∈ [[1, µ]]. It follows that
pm ≥ 2 and (r/pm) + (1/2) ≤ 1, m ∈ [[1, µ]]. The theorem is proved. �

Corollary 5.10. Let ε and f be as in Proposition 5.4. If K ⊂ Z0 is
compact in Z0 and invariant relative to πε,f then K ⊂ Z1/2 and K is compact
in Z1/2. Moreover, if (u, v) is a full bounded solution of πε,f and (sk) is a
sequence in R such that (u(sk), v(sk)) → (u, v) in Z0 for some (u, v) ∈ Z0, then
(u(sk), v(sk)) → (u, v) in Z1/2.

Proof. There is an r ∈ ]0,∞[ such that |(u, v)|Z0 ≤ r for all (u, v) ∈ K.
Let (uk, vk), k ∈ N, be an arbitrary sequence in K. Since K is compact in Z0

and invariant relative to πε,f , it follows that K is strongly πε,f -admissible. Thus
we may assume, by taking a subsequence, if necessary, that there is a sequence
(uk, vk), k ∈ N, of full solutions of πε,f lying in K with (uk(0), vk(0)) = (uk, vk),
k ∈ N and (uk(t), vk(t)) → (u(t), v(t)) in Z0 for every t ∈ N, where (u, v) is
a full solution of πε,f lying in K. It follows from Theorem 5.9 that (u, v) and
(uk, vk), k ∈ N, lie in Z1/2 and (uk(t), vk(t)) → (u(t), v(t)) in Z1/2 for t ∈ R. In
particular, (uk, vk) → (u(0), v(0)) ∈ K in Z1/2. This proves the first assertion.

The second assertion follows from the first one, noting that, by the compact-
ness of f , every closed bounded subset of Z0 is πε,f -admissible (cf. Theorem 5.3
in [5] and its proof) so the closure in Z0 of a full bounded orbit of πε,f is compact
in Z0 and invariant relative to πε,f . The corollary is proved. �

We will now prove an extension of a ε-uniform boundedness and smoothing
result by Hale and Raugel.

Theorem 5.11. Let ε0 ∈ ]0,∞[ be arbitrary. Then, for every r ∈ ]0,∞[
there is a C(r) = C(r, ε0) ∈ ]0,∞[ such that

sup
t∈R

(|u(t)|21 + |v(t)|21/2 + ε|w(t)|20)1/2 ≤ C(r)

for all ε ∈ ]0, ε0[, n ∈ N and θ ∈ [0, 1] and every full solution (u, v) of πε,f with
supt∈R |(u(t), v(t))|Z0 ≤ r. Here, w := ∂(X−(1/2))v and f = fn,θ:X1/2 → X is
defined by f(u) = (1− θ)(φ̂(u) + γ) + θPn(φ̂(Pnu) + γ).

In the proof we use arguments from the proof of Theorem 2.5 in [9]. We first
need a lemma.
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Lemma 5.12. For every r ∈ ]0,∞[ there is a C1(r) ∈ ]0,∞[ such that

|φ̂′(u)|2L∞ ≤ C1(r)(1 + |u|21)

for all u ∈ X1 with |u|1/2 ≤ r.

Proof. Let r ∈ ]0,∞[ and u ∈ X1 with |u|1/2 ≤ r be arbitrary.
Case 1. Let N = 1. Then X1/2 ⊂ C(Ω) with some embedding constant C.

Thus φ̂′(u) ∈ C(Ω) ⊂ L∞(Ω) and

|φ̂′(u)|L∞ ≤ sup
|s|≤Cr

|φ′(s)| =: C2(r)

so
|φ̂′(u)|2L∞ ≤ C1(r)(1 + |u|21)

with C1(r) := C2(r)2.
If N ∈ {2, 3} then the Gagliardo–Nirenberg inequality implies that, given p

and θ with

(5.27) p ∈ [1,∞[, θ ∈ [0, 1] and 0 < θ(2− (N/2))− (1− θ)(N/p)

there is some constant C(p, θ) ∈ ]0,∞[, independent of u, such that

(5.28) |u|L∞ ≤ C(p, θ)|u|θH2 |u|(1−θ)
Lp .

Case 2. Let N = 2. Choose θ ∈ [0, 1] with θr ≤ 1 and p ∈ [2,∞[ with
θ− (1− θ)(2/p) > 0. Then (5.27) is satisfied so estimate (5.28) implies that, for
almost all x ∈ Ω,

|u(x)|r ≤ C(p, θ)r|u|θr
H2 |u|(1−θ)r

Lp ≤ C(p, θ)r|u|θr
H2C(1−θ)r

p |u|(1−θ)r
1/2 ≤ C2(r)|u|θr

1

where C ′ and Cp are embedding constants for the embeddings X1 ⊂ H2(Ω) and
X1/2 ⊂ Lp(Ω), and C2(r) := C(p, θ)r(C ′)θr(Cpr)(1−θ)r. Therefore, again for
almost all x ∈ Ω,

|φ̂′(u)(x)|2 ≤ |C(1 + |u(x)|r|2 ≤ 2C
2
(1 + |u(x)|2r) ≤ 2C

2
(1 + C2(r)|u|2θr

1 )

≤ 2C
2
(1 + C2(r)2(1 + |u|21) ≤ C1(r)(1 + |u|21)

where C1(r) := 2C
2
(1 + C2(r)2).

Case 3. Let N = 3. Since r < 2, it follows that there is a θ ∈ ](1/2), 1] with
θr ≤ 1. Thus θ > 1 − θ so there is a p ∈ [2, 6[ with 0 < θ(1/2) − (1 − θ)(3/p).
Using the fact that X1/2 is continuously imbedded in Lp(Ω) we now complete
the proof exactly as in Case 2. �

Proof of Theorem 5.11. Fix ε0 ∈ ]0,∞[ arbitrarily and let r ∈ ]0,∞[,
ε ∈ ]0, ε0], n ∈ N and θ ∈ [0, 1] be arbitrary. Let (u, v) be an arbitrary full
solution of πε,f with

(5.29) sup
t∈R

|(u(t), v(t))|Z0 ≤ r.
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In the course of this proof we denote by Ci(r), resp. Ci(r, ε0), i ∈ N, real positive
constants which depend on r, resp. on r and ε0, but are independent of the choice
of ε ∈ ]0, ε0], n ∈ N, θ ∈ [0, 1] or the solution (u, v). Set g := ∂(X−1)(f ◦ u). It
follows from Theorem 5.9 that

(5.30) g(t) = (1− θ)φ̂′(u(t))v(t) + θPn(φ̂′(Pnu)Pnv(t)), t ∈ R.

Then, by Theorem 5.9, g is continuous into X, and z := (v, w): R → Z0 is
well-defined and differentiable into Z := Z−(1/2) with

(5.31) ∂(Z)z(t) = −Bε,−(1/2)z(t) + (0, (1/ε)g(t)), t ∈ R.

Now (5.30) implies that, for all t ∈ R,

|g(t)|0 ≤ (|φ̂′(u(t))|L∞ + |φ̂′(Pnu(t))|L∞)|v(t)|0

so, by Lemma 5.12,

(5.32) |g(t)|20 ≤ 2(|φ̂′(u(t))|2L∞ + |φ̂′(Pnu(t))|2L∞)|v(t)|20
≤ 4C1(r)(1 + |u(t)|21)|v(t)|20.

Since, by (5.31), εw(t) = −v(t)−Au(t) + f(u(t)) for t ∈ R, we see that

|u(t)|1 = |Au(t)|0 ≤ ε|w(t)|0 + |v(t)|0 + |f(u(t))|0, t ∈ R

and
|εw(t)|0 ≤ |v(t)|0 + |u(t)|1 + |f(u)|0, t ∈ R.

Therefore, using (5.29) and the fact that supa∈X1/2, |a|1/2≤r |f(a)|0 is independent
of ε, n and θ, we finally obtain that

(5.33) |u(t)|21 ≤ 2ε2|w(t)|20 + C2(r), t ∈ R,

(5.34) ε2|w(t)|20 ≤ 2|u(t)|21 + C2(r), t ∈ R.

Thus, by (5.32) and (5.33), we have

(5.35) |g(t)|20 ≤ 4C1(r)(1 + 2ε2|w(t)|20 + C2(r))|v(t)|20
≤ C3(r, ε0)ε|w(t)|20|v(t)|20 + C3(r, ε0)|v(t)|20.

Let c ∈ ]0, (1/2)[ be arbitrary and V := Vε,c be defined as in Proposition 5.2.
Since, for all t ∈ R,

V (z(t)) =
1
2
|v(t)|21/2 +

1
2
ε|w(t)|20 + εc〈v(t), w(t)〉0

we have

(5.36) V (z(t)) ≤
(

1
2

+
c

2

)
ε|w(t)|20 +

1
2
|v(t)|21/2 +

cε

2
|v(t)|20, t ∈ R,

(5.37) V (z(t)) ≥
(

1
2
− c

2

)
ε|w(t)|20 +

1
2
|v(t)|21/2 −

cε

2
|v(t)|20, t ∈ R.
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It follows from (5.37) that(
1
2
− c

2

)
ε|w(t)|20 ≤ V (z(t)) +

cε

2
|v(t)|20, t ∈ R

so (5.29) and our choice of c imply that

ε|w(t)|20 ≤ 4V (z(t)) + εr2, t ∈ R.

Thus, by (5.35),

(5.38) |g(t)|20 ≤ C3(r, ε0)(4V (z(t)) + εr2)|v(t)|20 + C3(r, ε0)|v(t)|20
≤ C4(r, ε0)(V (z(t)) + 1)|v(t)|20.

An application of (5.38) and Proposition 5.2 shows that V ◦ z is continuously
differentiable and, for every t ∈ R,

(5.39) (V ◦ z)′(t) = − (1− εc)|w(t)|20 − c|v(t)|21/2 − c〈v(t), w(t)〉0
+ 〈g(t), w(t)〉0 + c〈g(t), v(t)〉0

≤ − (1− εc)|w(t)|20 − c|v(t)|21/2 +
c

2
|v(t)|20 +

c

2
|w(t)|20

+
1
2
|g(t)|20 +

1
2
|w(t)|20 +

c

2
|g(t)|20 +

c

2
|v(t)|20

≤
(
− 1 + εc +

c

2
+

1
2

)
|w(t)|20 − c|v(t)|21/2 + c|v(t)|20

+
(

1
2

+
c

2

)
(C4(r, ε0)(V (z(t)) + 1)|v(t)|20).

Now let k ∈ ]0,∞[ be arbitrary. Then (5.36) and (5.39) imply

(5.40) (V ◦ z)′(t) ≤ − kV (z(t)) +
(
− 1 + εc +

c

2
+

1
2

+
εk

2
+

εkc

2

)
|w(t)|20

+
(
− c +

k

2

)
|v(t)|21/2

+
(

c +
(

1
2

+
c

2

)
C4(r, ε0) +

εkc

2

)
|v(t)|20

+
(

1
2

+
c

2

)
C4(r, ε0)V (z(t))|v(t)|20,

for t ∈ R. We can choose the constants c and k, depending only on ε0, such that
the coefficients of the terms |w(t)|20 and |v(t)|21/2 in (5.40) are nonpositive. With
this choice of c and k we have, for t ∈ R,

(5.41) (V ◦ z)′(t) ≤ −kV (z(t)) + C5(r, ε0)|v(t)|20 + C5(r, ε0)V (z(t))|v(t)|20.
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By an elementary differential inequality we thus see that, for all t0 and t ∈ R
with t0 ≤ t,

V (z(t)) ≤
(

exp
( ∫ t

t0

(−k + C5(r, ε0)|v(ρ)|20) dρ

))
V (z(t0))

+
∫ t

t0

(
exp

( ∫ t

s

(−k + C5(r, ε0)|v(ρ)|20) dρ

))
C5(r, ε0)|v(s)|20) ds

≤ exp(−k(t− t0) + C5(r, ε0)
∫ ∞

t0

|v(s)|20 ds)V (z(t0))

+ C5(r, ε0) exp
(

C5(r, ε0)
∫ ∞

t0

|v(s)|20 ds

)( ∫ ∞

t0

|v(s)|20 ds

)
.

Let Wε be as in Proposition 5.8. Then, by that proposition,∫ t

t0

|v(s)|20 ds = Wε((u(t0), v(t0))−Wε((u(t), v(t))) ≤ C6(r, ε0),

for t0, t ∈ R, t0 ≤ t so ∫ ∞

t0

|v(s)|20 ds ≤ C6(r, ε0), t0 ∈ R.

Thus, for t0, t ∈ R, t0 ≤ t,

(5.42) V (z(t)) ≤ C7(r, ε0) exp(−k(t− t0))V (z(t0)) + C7(r, ε0).

Now (5.36), (5.37) and (5.42) imply that

(5.43) ε|w(t)|20 + |v(t)|21/2 ≤C8(r, ε0) exp(−k(t− t0))(ε|w(t0)|20 + |v(t0)|21/2)

+ C8(r, ε0), t0, t ∈ R, t0 ≤ t.

By (5.33), (5.34) and (5.43) we see that

(5.44) ε|w(t)|20+|v(t)|21/2 + |u(t)|21
≤ (1 + 2ε0)(ε|w(t)|20 + |v(t)|21/2) + C2(r)

≤C9(r, ε0) exp(−k(t− t0))(ε|w(t0)|20 + |v(t0)|21/2) + C9(r, ε0)

≤C9(r, ε0) exp(−k(t− t0))((1/ε)(2|u(t0)|21 + C2(r))

+ |v(t0)|21/2) + C9(r, ε0), t0, t ∈ R, t0 ≤ t.

Let t ∈ R be arbitrary. Since πε,f is gradient-like, there are an equilibrium (u, v)
of πε,f and a sequence (sν)ν with sν → ∞ such that (u(−sν), v(−sν)) → (u, v)
in Z0. An application of Corollary 5.10 shows that (u(−sν), v(−sν)) → (u, v) in
Z1/2 so there is a ν ∈ N such that, setting t0 := −sν , we have

t0 ≤ t, e−k(t−t0)(1/ε) ≤ 1 and |(u(t0), v(t0))− (u, v)|Z1/2 ≤ 1,
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so that, by (5.44),

(5.45) ε|w(t)|20 + |v(t)|21/2 + |u(t)|21 ≤C10(r, ε0)|(u, v)|2Z1/2
+ C10(r, ε0)

=C10(r, ε0)||f(u)|20 + C10(r, ε0) ≤ C11(r, ε0).

Here, we used the fact that v = 0 and Au = f(u) so that |u|1/2 = |(u, v)|Z0 ≤ r

and so |(u, v)|Z1/2 = |u|1 = |Au|0 = |f(u)|0 ≤ C12(r).
Setting C(r, ε0) := C11(r, ε0)1/2 we complete the proof. �

We can now state the following important singular compactness result.

Theorem 5.13. Define the maps f and fn,θ, n ∈ N and θ ∈ [0, 1], from
X1/2 to X by

f(u) = φ̂(u) + γ, u ∈ X1/2

and
fn,θ(u) = (1− θ)(φ̂(u) + γ) + θPn(φ̂(Pnu) + γ), u ∈ X1/2.

Let (εκ)κ, (nκ)κ and (θκ)κ be sequences in ]0,∞[, N and [0, 1], respectively.
Suppose that εκ → 0 and nκ →∞. For each κ ∈ N let (uκ, vκ) be a full solution
of πεκ,fnκ,θκ

such that

sup
κ∈N

sup
t∈R

|(uκ(t), vκ(t))|Z0 =: r < ∞.

Then there is a subsequence of ((uκ, vκ))k, denoted ((uκ, vκ))k again, and there
is a full bounded solution u of π′f such that (uκ, vκ) → (u, v) in Z0, uniformly
on compact subsets of R. Here, (u, v) = Γ ◦ u.

Proof. Fix ε0 ∈ ]0,∞[ with supκ∈N εκ ≤ ε0. Set wκ := ∂(X−1/2)vκ, κ ∈ N.
Then, by Theorem 5.11,

(5.46) sup
κ∈N

sup
t∈R

(|uκ(t)|21 + |vκ(t)|21/2 + εκ|wκ(t)|20)1/2 ≤ C(r, ε0).

Theorem 5.9 implies that, for every κ ∈ N, (uκ, vκ) is continuous into Z1/2

and so, since vκ = ∂(X)uκ, we obtain that uκ is continuously differentiable into
X1/2 with vκ = ∂(X1/2)uκ. Since X1 is compactly included in X1/2 we thus
obtain from (5.46) and the Arzelà–Ascoli theorem that there is a subsequence
of ((uκ, vκ))κ, denoted ((uκ, vκ))κ again, and a u ∈ C(R → X1/2) such that
uκ → u in X1/2, uniformly on compact subsets of R. Since

εκwκ(t) = −vκ(t)−Auκ(t) + fnκ,θκ(uκ(t)), κ ∈ N, t ∈ R

and fnκ,θκ
(a) → f(a) in X, uniformly for a lying in compact subsets of X1/2,

we thus obtain from (5.46) that vκ → v in X−1/2, uniformly on compact subsets
of R, where v: R → X−1/2 is defined by v(t) := −Au(t) + f(u(t)) for all t ∈ R.
It follows that u is differentiable into X−1/2 and ∂(X−1/2)u = v. We thus obtain

∂(X−1/2)u(t) = −Au(t) + f(u(t)), t ∈ R
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and so, by a result analogous to Proposition 5.1,

u(t) = e−A(t−t0)u(t0) +
∫ t

t0

e−A(t−s)f(u(s)) ds, t0, t ∈ R, t0 ≤ t.

Thus, by Lemma 3.3.2 in [11], u is a full solution of π′f and so, in particular,
(u, v) = Γ ◦ u. �

6. The main result

In this section, we again assume our Standing Hypothesis (5.21). Define the
map f :X1/2 → X by

f(u) = φ̂(u) + γ, u ∈ X1/2.

Moreover, for n ∈ N and θ ∈ [0, 1], let fn,θ:X1/2 → X be defined by

fn,θ = (1− θ)f(u) + θPnf(Pnu) = (1− θ)(φ̂(u) + γ) + θPn(φ̂(Pnu) + γ),

where u ∈ X1/2. For ε ∈ ]0,∞[, n ∈ N and θ ∈ [0, 1] set π′ := π′f , Γ := Γf ,
T := Tf , πε := πε,f , π′n,θ := π′fn,θ

, π′n := π′n,1, Γn := Γfn,θ
, Tn := Tfn,1 ,

πε,n,θ := πε,fn,θ
and πε,n := πε,n,1.

We can now state the first main result of this paper.

Theorem 6.1. Let K ′ ⊂ X1/2 be a compact isolated invariant set relative
to π′. Then K ′ ⊂ X1 and K := Γ(K ′) is compact in Z0 and K is a T -isolated
invariant set. Let N ⊂ Z0 be any bounded T -isolating neighbourhood of K.
Then there is an ε0 > 0 such that for all ε ∈ ]0, ε0] the set N is an isolating
neighbourhood relative to πε of an isolated invariant set Kε, the Conley index
h(πε,Kε) is defined and

h(πε,Kε) = h(π′,K ′).

The family (Kε)ε∈[0,ε0], where K0 := K = Γ(K ′), is upper semicontinuous at
ε = 0 in Z0, i.e.

lim
ε→0

sup
y∈Kε

inf
z∈K0

|y − z|Z0 = 0.

The family (Kε)ε∈[0,ε0] is asymptotically independent of N in the sense that
whenever N1 and N2 are two T -isolating neighbourhoods of K and

Kj
ε := Invπε(Nj), ε ∈ ]0, εj ] , j = 1, 2,

then there is an ε′ ∈ ]0,∞[, ε′ ≤ min{ε1, ε2}, such that K1
ε = K2

ε , ε ∈ ]0, ε′].

The proof of Theorem 6.1 follows from a series of lemmas.

Lemma 6.2. K ′ is compact in X1 and K is compact in Z0 and is a T -isolated
invariant set.

Proof. This follows from Theorem 4.10. �
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Lemma 6.3. Let N ′ be a bounded isolating neighbourhood of K ′ relative to π′.
Then there is an n1 ∈ N such that for every n ≥ n1 and every θ ∈ [0, 1] the set N ′

is an isolating neighbourhood relative to π′n,θ.

Proof. This follows by an application of Corollary 4.9. �

Lemma 6.4. There is an n2 ∈ N and an ε2 > 0 such that for all n ≥ n2,
ε ∈ ]0, ε2] and θ ∈ [0, 1] the set N is an isolating neighbourhood relative to πε,n,θ.

Proof. This follows by an application of Theorem 5.13. �

Lemma 6.5. There is an n3 ∈ N such that for every n ≥ n3 the set N is
Tn-isolating neighbourhood of Kn := Γn(K ′

n), where N ′ is as in Lemma 6.3 and
K ′

n := Invπ′n(N ′).

Proof. This follows from Theorem 4.11. �

Lemma 6.6. For every n ≥ n1 the set Yn := Pn(X1/2) = Pn(X) is positively
invariant relative to π′n, the set N ′ ∩Yn is an isolating neighbourhood relative to
the restriction π′n|Yn of π′n to Yn and

h(π′n, N ′) = h(π′n|Yn, N ′ ∩ Yn).

(Here N ′ is as in Lemma 6.3.) Moreover, in the notation of Section 3, π′n = π′g,
where g = gn:Yn → Yn is defined by

g(u) = −Au + Pn(φ̂(u) + γ), u ∈ Yn.

Proof. This follows from Proposition 4.2. �

Lemma 6.7. For every n ≥ n2 and every ε ∈ ]0, ε2] the set Xn := Pn(X1/2)×
Pn(X) = Pn(X)× Pn(X) is positively invariant relative to πε,n, the set N ∩Xn

is an isolating neighbourhood relative to the restriction πε,n|Xn of πε,n to Xn

and

h(πε,n, N) = h(πε,n|Xn, N ∩Xn).

Moreover, in the notation of Section 3, πε,n = πε,g, where g is defined as in
Lemma 6.6.

Proof. This follows from Proposition 5.3. �

Proof of Theorem 6.1. Let n0 := max{n1, n2, n3}. Fix n ≥ n0 arbitrar-
ily. Since K ′

n ⊂ IntYn
(N ′ ∩ Yn), Kn ⊂ IntXn

(N ∩ Xn), Invπ′n|Yn
(N ′ ∩ Yn) =

Invπ′n(N ′) and, in the notation of Section 3, InvTg
(N ∩ Xn) = InvTn

(N), an
application of Theorem 3.9 shows that there is an ε0 ∈ ]0, ε2] such that

(6.1) h(πε,n|Xn, N ∩Xn) = h(π′n|Yn, N ′ ∩ Yn), ε ∈ ]0, ε0] .
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Let ε ∈ ]0, ε0] be arbitrary. Since π′ = π′n,0 and π′n = π′n,1, we obtain from
Lemma 6.3 and the homotopy invariance of the Conley index (see [13] or [14])
that

(6.2) h(π′, N ′) = h(π′n, N ′).

Since πε = πε,n,0 and πε,n = πε,n,1, we obtain from Lemma 6.4 and the homotopy
invariance of the Conley index that

(6.3) h(πε, N) = h(πε,n, N).

(The applicability of the Conley index continuation theorem from [13] or [14]
is easily justified. In particular, the admissibility conditions follow from the
compactness of the map f :X1/2 → X, cf Theorems 5.3 and 5.5 in [5].) By
Lemma 6.7 we have

(6.4) h(πε,n, N) = h(πε,n|Xn, N ∩Xn).

By Lemma 6.6 we have

(6.5) h(π′n, N ′) = h(π′n|Yn, N ′ ∩ Yn).

Now formulas (6.1), (6.3), (6.4), (6.5) and (6.2) imply that

h(πε, N) = h(π′, N ′).

Since ε ∈ ]0, ε0] is arbitrary, the first assertion assertion of the theorem is proved.
If the family (Kε)ε∈[0,ε0] is not upper-semicontinuous at ε = 0 in Z0 then there
are a δ ∈ ]0,∞[, a sequence (εk) in ]0, ε0[ with εk → 0 and a sequence (yk) with
yk ∈ Kεk

for every k ∈ N such that infz∈K0 |yk − z|Z0 ≥ δ for all k ∈ N. Thus,
for every k ∈ N there is a full solution (uk, vk) of πεk

lying in N such that

(6.6) inf
z∈K0

|(uk(0), vk(0))− z|Z0 ≥ δ, k ∈ N.

Since πε = πε,k,0 for every ε ∈ ]0, ε0] and every k ∈ N, an application of The-
orem 5.13 shows that a subsequence of ((uk, vk)), denoted ((uk, vk)) converges
in Z0 to (u, v), uniformly on compact subsets of R, where u is a full bounded
solution of π′ and (u, v) = Γ ◦ u. It follows that (u, v) ∈ T and (u, v) lies in N .
This implies that, in particular, (u(0), v(0)) ∈ InvT (N) = K0, a contradiction
to (6.6), proving the second assertion of the theorem.

If the third assertion of the theorem is not true, then there are two T -isolating
neighbourhoods N1 and N2 of K and a sequence (εk) in ]0,∞[ with εk → 0 such
that

Invπεk
(N1) 6⊂ Invπεk

(N2), k ∈ N.

Thus, for every k ∈ N there is a full solution (uk, vk) of πεk
lying in N1 such that

(6.7) (uk(0), vk(0)) /∈ N2, k ∈ N.
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Again an application of Theorem 5.13 shows that a subsequence of ((uk, vk)),
denoted ((uk, vk)) again, converges in Z0 to (u, v), uniformly on compact subsets
of R, where u is a full bounded solution of π′ and (u, v) = Γ ◦ u. It follows that
(u, v) ∈ T and (u, v) lies in N1. This implies that, in particular, (u(0), v(0)) ∈
InvT (N1) = K0 ⊂ IntZ0(N2), so (uk(0), vk(0)) ∈ N2 for all k ∈ N large enough,
a contradiction to (6.7), proving the third assertion of the theorem. The proof
is complete. �

Specializing, in Theorem 6.1, to the Dirichlet problem (cf Example 4.1) we
obtain, in particular, Theorem A from the Introduction.

7. Continuation of Morse decompositions

In this section we again assume the Standing Hypothesis (5.21). Let the map
f :X1/2 → X again be defined by

f(u) = φ̂(u) + γ, u ∈ X1/2.

We will prove that Morse decompositions of the invariant set K ′, relative to π′f ,
continue to Morse decompositions of the invariant sets Kε, relative to πε,f , for
ε > 0 small.

We will first recall some relevant concepts. For details, see [6] and [7].
Let P be a finite set and ≺ be a strict order relation on P . A subset I of P

is called a ≺-interval if i, k ∈ I, j ∈ P and i ≺ j ≺ k imply j ∈ I. By I(≺) we
denote the set of all ≺-intervals.

Let (Y, d) be a metric space. Similarly as in [6] we endow the set C :=
C(R → Y ) of continuous functions from R to Y with the topology of uniform
convergence on compact subsets of R. If π is a local semiflow on Y and N ⊂ Y

then we denote by Tπ,N the set of all full solutions of π lying in N .
Recall the following definition.

Definition 7.1 ([8]). Let π be a local semiflow on Y and S be a compact
invariant set relative to π. A family (Mi)i∈P of subsets of S is called a ≺-ordered
Morse decomposition of S (relative to π) if the following properties hold:

(a) The sets Mi, i ∈ P , are closed, π-invariant and pairwise disjoint.
(b) For every full solution σ of π lying in S either σ(R) ⊂ Mk for some

k ∈ P or else there are k, l ∈ P with k ≺ l, α(σ) ⊂ Ml and ω(σ) ⊂ Mk.

This concept can be generalized as follows:

Definition 7.2 ([7]). Let T be a subset of C. A family (Mi)i∈P of subsets
of Y is called a ≺-ordered T -Morse decomposition if the following properties
hold:

(a) The sets Mi, i ∈ P , are closed, T -invariant and pairwise disjoint.
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(b) For every σ ∈ T either σ(R) ⊂ Mk for some k ∈ P or else there are k,
l ∈ P with k ≺ l, α(σ) ⊂ Ml and ω(σ) ⊂ Mk.

It is easily proved that, for π and S as in Definition 7.1, a family (Mi)i∈P of
subsets of S is a ≺-ordered Morse decomposition of S (relative to π) if and only
if (Mi)i∈P is a ≺-ordered T -Morse decomposition, where T := Tπ,S .

If A, B ⊂ Y then the T -connection set CST (A,B) from A to B is the set
of all points y ∈ Y for which there is a σ ∈ T with σ(0) = y, α(σ) ⊂ A and
ω(σ) ⊂ B. If π, S are as in Definition 7.1 and T := Tπ,S , then we write

CSπ,S(A,B) := CST (A,B).

Definition 7.3. Let (Tκ)κ be a sequence of subsets of C and T ⊂ C be
arbitrary. We say that (Tκ)κ converges to T in Y , if for every sequence (κn)n

in N with κn →∞ as n →∞ and every sequence (σn)n such that σn ∈ Tκn for
all n ∈ N there is a subsequence (σnm

)m and a σ ∈ T such that σnm
(t) → σ(t)

in Y as m →∞, uniformly for t lying in compact subsets of R.

We can now state the second main result of this paper.

Theorem 7.4. For ε ∈ ]0,∞[ set π′ := π′f , πε := πε,f and Γ := Γf . Let
K ′ be a compact isolated invariant set relative to π′ and K := Γ(K ′). Let T
be the set of all (u, v) ∈ Tf such that (u(t), v(t)) ∈ K for all t ∈ R. Moreover,
let (M ′

i)i∈P be a family of subsets of K ′ which is a Morse decomposition of K ′

relative to π′ and let Mi := Γ(M ′
i), i ∈ P . For every I ∈ I(≺) set

M ′(I) :=
⋃

i,j∈I

CSπ′,K′(M ′
i ,M

′
j)

and M(I) := Γ(M ′(I)). Then (Mi)i∈P is a ≺-ordered T -Morse decomposition
and

(7.1) M(I) =
⋃

i,j∈I

CST (Mi,Mj), I ∈ I(≺).

Moreover, the sets K, Mi, i ∈ P and M(I), I ∈ I(≺), are Tf -isolated in-
variant sets. Let N be a bounded Tf -isolating neighbourhood of K, Ni ⊂ N

be a Tf -isolating neighbourhood of Mi, i ∈ P , and NI ⊂ N be a Tf -isolating
neighbourhood of M(I), I ∈ I(≺).

For ε ∈ ]0,∞[ set Kε := Invπε
(N), Mε,i := Invπε

(Ni), i ∈ P and Mε(I) :=
Invπε

(NI), I ∈ I(≺).
Then there is an ε0 ∈ ]0,∞[ such that, for every ε ∈ ]0, ε0], N (resp. Ni,

resp. NI) is an isolating neighbourhood of Kε (resp. Mε,i, resp. Mε(I)) relative to
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πε, for all i ∈ P and all I ∈ I(≺). Moreover, the family (Mε,i)i∈P is a ≺-ordered
Morse decomposition of Kε and

(7.2) Mε(I) =
⋃

i,j∈I

CSπε,Kε(Mε,i,Mε,j), I ∈ I(≺).

Proof. We see either directly or using Corollaries 3.5 and 3.6 in [7] that
M ′

i , i ∈ P and M ′(I), I ∈ I(≺), are compact isolated invariant sets relative
to π′. Thus, by Theorem 4.10, the sets K, Mi, i ∈ P , and M(I), I ∈ I(≺), are
Tf -isolated invariant sets. Moreover, the sets Mi are closed in Z0 (being compact
in Z0) and pairwise disjoint (Γ being one-to-one). If i ∈ P and (u, v) ∈ Mi are
arbitrary, then u ∈ M ′

i so there is a full solution u of π′ lying in M ′
i with u = u(0).

Thus u lies in K ′ and so z := Γ ◦ u lies in Mi ⊂ K and is an element of Tf .
Hence z ∈ T , z lies in Mi and z(0) = (u, v). It follows that Mi is T -invariant.

Let (u, v) ∈ T be arbitrary. Then u is a full solution of π′ lying in K ′. Thus
either u lies in M ′

k for some k ∈ P , which implies that (u, v) lies in Mk or else
there are k, l ∈ P with k ≺ l, α(u) ⊂ M ′

l and ω(u) ⊂ M ′
k. In the latter case it

is clear from the continuity of Γ that α(u, v) ⊂ Ml and ω(u, v) ⊂ Mk.
We have proved that (Mi)i∈P is a ≺-ordered Morse decomposition.
Now let i and j ∈ P be arbitrary. We show that

(7.3) Γ(CSπ′,K′(M ′
i ,M

′
j)) = CST (Mi,Mj).

This immediately implies (7.1). If u is a full solution of π′ lying in K ′ with
α(u) ⊂ M ′

i and ω(u) ⊂ M ′
j then, clearly, z := Γ ◦ u ∈ Tf , z lies in K and

α(z) ⊂ Mi and ω(z) ⊂ Mj . Thus z ∈ CST (Mi,Mj). Conversely, if z = (u, v) ∈
CST (Mi,Mj), then u is a full solution of π′ lying in K ′. Clearly, α(u) ⊂ M ′

i and
ω(u) ⊂ M ′

j . Hence z ∈ Γ(CSπ′,K′(M ′
i ,M

′
j)). This implies (7.1).

Now let N be a bounded Tf -isolating neighbourhood of K, Ni ⊂ N be
a Tf -isolating neighbourhood of Mi, i ∈ P , and NI ⊂ N be a Tf -isolating
neighbourhood of M(I), I ∈ I(≺). Notice that

(7.4) W ⊂ N ⇒ InvTf
(W ) = InvT (W ).

For ε ∈ ]0,∞[ set Kε := Invπε(N), Mε,i := Invπε(Ni), i ∈ P , and Mε,I :=
Invπε

(NI), I ∈ I(≺); moreover, let Tε := Tπε,N . It follows that

(7.5) Mε,i = InvTε(Ni), i ∈ P,

(7.6) Mε,I = InvTε(NI), I ∈ I(≺).

Now we claim that,

(7.7) whenever (εκ) is a sequence in ]0,∞[ with εκ → 0 then Tεk
→ T in Z0.
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In fact, let (κn) be an arbitrary sequence in N with κn → ∞ and, for every
n ∈ N let (un, vn) be a full solution of πεκn

lying in N . Thus

sup
n∈N

sup
t∈R

|(un(t), vn(t))|Z0 < ∞

so, by Theorem 5.13, there is a subsequence ((unm , vnm))m of ((un, vn))n and
there is a full bounded solution u of π′ such that (unm

, vnm
) → (u, v) in Z0,

uniformly on compact subsets of R. Here, (u, v) = Γ ◦ u. Since N is closed in
Z0, we see that (u, v) lies in N , so that (u, v) actually lies in K. Thus (u, v) ∈ T
and (7.7) is proved.

We also claim that

(7.8) both T and Tε, ε ∈ ]0,∞[, are compact in C(R → Z0), translation and
cut-and-glue invariant.

Let us assume (7.8) for a moment. Then an application of Theorem 6.1 and
Theorem 3.3 in [7] together with (7.4), (7.7) and (7.8) shows that there is an
ε0 ∈ ]0,∞[ such that, for every ε ∈ ]0, ε0], N is an isolating neighbourhood of
Kε (relative to πε) and Ni, resp. NI , is a Tε-isolating neighbourhood of Mε,i,
resp. Mε(I), for all i ∈ P and all I ∈ I(≺). Moreover, the family (Mε,i)i∈P is a
≺-ordered Tε-Morse decomposition and

(7.9) Mε,I =
⋃

i,j∈I

CSTε
(Mε,i,Mε,j), I ∈ I(≺).

Since

(7.10) Tε = Tπ,Kε , ε ∈ ]0,∞[ ,

this completes the proof except for (7.8). Now (7.10) and Proposition 2.7 in [7]
implies that, for ε ∈ ]0,∞[, the set Tε is compact in C(R → Z0), translation and
cut-and-glue invariant.

In order to prove the compactness of T , let ((uκ, vκ))κ be an arbitrary se-
quence in T . Thus, for every κ ∈ N, uκ is a full solution of π′ lying in K ′. Now
an application of Theorem 4.6 (with fκ ≡ f) shows that there is a sequence (κn)
in N with κn → ∞ and there is a full solution u of π′ lying in K ′ such that
uκn → u in X1, uniformly on compact subsets of R. Thus (uκn , vκn) → (u, v)
in Z0, uniformly on compact subsets of R, where (u, v) = Γ ◦ u. It follows that
(u, v) ∈ T and so T is compact in C(R → Z0), as claimed.

The translation and cut-and-glue invariance of T is obvious. The proof is
complete. �

Remark 7.5. Setting M0,i := Mi and M0(I) := M(I), i ∈ P and I ∈ I(≺),
we see, using the arguments from the proof of Theorem 6.1, that, for i ∈ P and
I ∈ I(≺), the families (Mε,i)ε∈[0,ε0] and (Mε(I))ε∈[0,ε0] are upper-semicontinuous
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at ε = 0 in Z0 and asymptotically independent of the choice of the isolating
neighbourhoods Ni and NI .
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