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MORSE THEORY FOR NORMAL GEODESICS
IN SUB-RIEMANNIAN MANIFOLDS

WITH CODIMENSION ONE DISTRIBUTIONS

R. Giambò — F. Giannoni — P. Piccione — D. V. Tausk

Abstract. We consider a Riemannian manifold (M, g) and a codimension
one distribution ∆ ⊂ TM on M which is the orthogonal of a unit vector

field Y on M. We do not make any nonintegrability assumption on ∆. The
aim of the paper is to develop a Morse Theory for the sub-Riemannian ac-

tion functional E on the space of horizontal curves, i.e. everywhere tangent

to the distribution ∆. We consider the case of horizontal curves joining
a smooth submanifold P of M and a fixed point q ∈ M. Under the as-

sumption that P is transversal to ∆, it is known (see [19]) that the set of

such curves has the structure of an infinite dimensional Hilbert manifold
and that the critical points of E are the so called normal extremals (see

[10]). We compute the second variation of E at its critical points, we define

the notions of P-Jacobi field, of P-focal point and of exponential map and
we prove a Morse Index Theorem. Finally, we prove the Morse relations for

the critical points of E under the assumption of completeness for (M, g).

1. Introduction

Sub-Riemannian geometry is the geometry of of manifolds endowed with a
partially defined positive definite metric tensor. More precisely, a sub-Rieman-
nian manifold consists of a triple (M,∆, g), where M is a smooth manifold,
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∆ ⊂ TM is a (non necessarily integrable) smooth distribution in M, and g is
a smoothly varying positive definite inner product in ∆. Such partially defined
metric tensors are also called Carnot–Carathéodory metrics in the literature (see
[7], [8]). The interest in the study of sub-Riemannian geometry comes essentially
from Control Theory, from the study of mechanics of systems subject to (non
holonomic) linear constraint, and also from other applications of Critical Point
Theory when one considers solutions of constrained variational problems (see [5],
[6] for an example in general relativity).

Many aspects of both the local and the global geometry of sub-Riemannian
manifolds are drastically different from the case of Riemannian geomery; for
instance, the exponential mapping is never a local diffeomorphism on a neigh-
bourhood of the point at which it is based, the space of paths tangent to the
distribution and joining two fixed points may contain singularities which may
happen to be minimizing geodesics, the Hausdorff dimension of the induced met-
ric space structure is always strictly bigger than the manifold dimension, etc.

There is nowadays a quite extensive literature on sub-Riemannian geometry
(see for instance [1], [10], [12], [14] and the references therein); in this paper
we continue the development of a variational theory for curves that are local
minimizers of the sub-Riemannian length functional started in [3]. More pre-
cisely, the aim of this paper is to develop the basis of a Morse theory for sub-
Riemannian normal geodesics; recall that the normal geodesics are the curves
that are regular points of the set of horizontal curves and that are stationary for
the sub-Riemannian energy functional. Under strong non integrability assump-
tions for the distribution ∆, for instance when ∆ is strongly bracket generating,
it is well known that every sub-Riemannian geodesic is normal. In this context,
a first version of the Morse index theorem was proven by Kishimoto in [8].

The aim of this paper is to develop an infinite dimensional Morse theory
for sub-Riemannian geodesics. More specifically, we will consider geodesics in
a sub-Riemannian manifold (M,∆, g), where ∆ is a codimension one transver-
sally oriented distribution in M, starting at a given submanifold P of M which
is transversal to ∆. By this, we mean that the sub-Riemannian geodesics in
consideration are obtained as stationary points of the sub-Riemannian action
functional in the space of curves whose initial edpoint is left free to move on P
and whose final endpoint is fixed. Such geodesics are called P-normal geodesics
in this paper. In this context, we will do the following:

• study the second variation of the sub-Riemannian action functional at
a given geodesic,

• define a suitable notion of exponential map, Jacobi fields and focal
points along a geodesic relativey to the initial submanifold P,

• prove a Morse index theorem,
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• prove the Morse relations for sub-Riemannian geodesics.

Observe that no assumption is made on the non integrability of ∆. Also, it
will be quite clear that the codimension one assumption makes our computation
much easier, although it is certainly non crucial in the theory presented; virtually
all the results of the paper can be proven in the case of distribution of arbitrary
codimension.

The crucial assumption in our setup is that we allow variations of geodesics
whose initial endpoint is not fixed, but left free to move on the submanifold P.
When P is transversal to ∆, this assumption implies that the space of trial paths
for our variational problem does not contain singularity (see [19]), that the expo-
nential map defined by the P-normal geodesics is indeed a local diffeomorphism
(see Section 3), and that many of the classical results in Riemannian geometry
can be extended to this situation. It is interesting to observe that, despite the
analogies with the Riemannian case, in our context sub-Riemannian geodesics
may admit a continuum of focal points; the set of focal points consists of a finite
union of isolated points and of segments of a P-normal geodesic (Proposition 4.4).
However, we prove that sufficiently small portions of a P-normal geodesic does
not contain focal points, and as an application of the Morse index theorem we
prove the minimality of sufficiently small initial portions of P-normal geodesics
(Proposition 5.2).

The discreteness of the set of focal points holds under generic circumstances,
for instance when the data are real-analytic (see Proposition 4.4). Our formu-
lation of the Morse Index Theorem (Section 4) holds only when one assumes
finiteness of the set of focal points. A more general version of the theorem in-
volving the so-called Maslov index (rather than the number of focal points) of
the corresponding solution of the Hamiltonian geodesic (see [18], [17] for some
index theorems involving the Maslov index); the statement of this generalization
is quite involved (see [20], [21]) and it will not be discussed in this paper.

Finally, in Section 6 we use techniques of Critical Point Theory to prove the
Morse relations for P-normal geodesics under a suitable completeness assump-
tion. These relations give an estimate on the number of P-normal geodesics from
P and a fixed point q ∈ M in terms of some topological invariants of the space
of horizontal curves from P to q.

2. The second variation of the sub-Riemannian action functional

We will consider throughout the article the following setup: (M, g) is a
Riemannian manifold with dim(M) = n, ∆ ⊂ TM is a smooth distribution
of rank n − 1 on M. We assume that ∆ is transversally oriented, i.e. ∆ is
the orthogonal distribution to a nonvanishing smooth vector field Y on M; we
can clearly assume g(Y, Y ) ≡ 1. Let P be a smooth submanifold of M which
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is everywhere transversal to ∆, i.e. TpP + ∆p = TpM for all p ∈ P; we set
d = dim(P). Let q ∈ M be a fixed point; we denote by ΩP,q the set of curves
x: [0, 1] → M of Sobolev class H1 with x(0) ∈ P and x(1) = q. Recall that a
curve is of class H1 if it is absolutely continuous and if its derivative ẋ is square
integrable; we refer to [2] for the basics on Sobolev spaces. It is well known that
ΩP,q has the structure of an infinite dimensional Hilbert manifold and that, for
x ∈ ΩP,q, the tangent space TxΩP,q can be identified with the space of vector
fields V along x of class H1 with V (0) ∈ Tx(0)P and V (1) = 0.

We denote by ∇ the covariant derivative of the Levi–Civita connection of
g and by R its curvature tensor, chosen with the following sign convention:
R(X,Z) = ∇X∇Z − ∇Z∇X − ∇[X,Z]. When there is no danger of confusion,
we will denote with a dot the derivative of curves in M and with a prime the
covariant derivative of vector fields along curves. A possible exception to this
convention will be made in the case of the covariant derivative of the tangent
field along a curve z: rather than the awkward notation ż′ we will use the double
prime notation z′′.

Given a smooth vector field W on M, we denote by (∇W )∗ the g-transpose
of the covariant derivative of W , which is the (1, 1) tensor field on M whose
value at a point p ∈M is the linear map on TpM defined by:

(2.1) g((∇W )∗v1, v2) = g(∇v2W, v1) for all v1, v2 ∈ TpM.

For all p ∈ P and all n ∈ TpP⊥, let SPn be the second fundamental form of P
in the orthogonal direction n, which is the symmetric bilinear form on TpP given
by SPn (v1, v2) = g(n,∇v1V2), where V2 is any extension of v2 to a vector field
tangent to P. We will also look at the second fundamental form as the linear
map SPn :TpP 7→ TpP such that g(SPn (v1), v2) = SPn (v1, v2) and we observe that,
if N is a normal field along P and v ∈ TpP, then ∇vN + SPN(p)(v) is in TpP⊥

(this will be used in the proof of Lemma 2.5).
By ΩP,q(∆) we will mean the subset of ΩP,q consisting of horizontal curves,

i.e. those curves x for which ẋ ∈ ∆ almost everywhere. It is proven in [19] that,
since P is transversal to ∆, ΩP,q(∆) is a smooth submanifold of ΩP,q. More
precisely, it is shown in [19] that 0 is a regular value for the map F : ΩP,q →
L2([0, 1],R) given by F (x) = g(ẋ, Y ); the tangent space TxΩP,q(∆) is given by
the kernel of dF (x):

(2.2) TxΩP,q(∆) = {V ∈ TxΩP,q : g(V ′, Y ) + g(ẋ,∇V Y ) = 0}.

We will consider the following Hilbert space inner product on TxΩP,q(∆):

〈V,W 〉 =
∫ 1

0

g(V ′,W ′) dt.
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We will consider the action functional on ΩP,q and on ΩP,q(∆), denoted by
E and defined by E(x) = (1/2)

∫ 1

0
g(ẋ, ẋ) dt. It is a smooth map and its critical

points in ΩP,q(∆) are the so called normal sub-Riemannian geodesics x between
P and q whose Hamiltonian lifts X: [0, 1] → TM∗ annihilate Tx(0)P (see [19]).
The critical points x of E in ΩP,q(∆) can be thought as critical points in ΩP,q

subject to the constraint F (x) = 0.
In this Section we want to study the second variation of E at its critical

points in ΩP,q(∆); we will use the method of Lagrange multipliers. To this aim,
let x ∈ ΩP,q(∆) be a fixed critical point of E and let λ ∈ L2([0, 1],R) be the
corresponding Lagrange multiplier, i.e. λ is the unique map such that x is a
critical point in ΩP,q of the functional Eλ = E − λ ◦ F :

Eλ(x) =
∫ 1

0

(
1
2
g(ẋ, ẋ)− λ g(ẋ, Y )

)
dt.

The following result is basically contained in [3] and [19]:

Proposition 2.1. Let x ∈ ΩP,q(∆) be fixed. Then, x is a critical point of
E in ΩP,q(∆) if and only if x is of class C2 and there exists λ ∈ C1([0, 1],R)
such that the following are satisfied:

x′′ = (λY )′ − λ(∇Y )∗ẋ,(2.5)

λ(0)Y (x(0))− ẋ(0) ∈ Tx(0)P⊥.(2.6)

Proof. The regularity of x and λ is obtained by standard bootstrap ar-
guments (see [3], [19]). Equations (2.5) and (2.6) are obtained as the Euler–
Lagrange equations of Eλ, using integration by parts of the terms containing V ′

in the following formula for the first variation of Eλ:

(2.7) dEλ(x)[V ] =
∫ 1

0

(g(V ′, ẋ)− λ g(V ′, Y )− λ g(ẋ,∇V Y )) dt,

for all V ∈ TxΩP,q. �

Remark. We observe that the map λ in the statement of Proposition 2.1
is precisely the Lagrangian multiplier that appears in (2.4). Multiplying (2.5)
by Y we obtain the following differential equation for λ:

(2.8) λ′ − g(∇Y Y, ẋ)λ+ g(Y ′, ẋ) = 0.

Moreover, since Y (x(0)) 6∈ Tx(0)P⊥, observe that (2.6) allows at most one value
for λ(0).

Definition 2.3. A horizontal curve x of class C2 (defined in an interval
containing 0) with x(0) ∈ P and that satisfies (2.5) and (2.6) for some map λ

will be called a P-normal geodesic.
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Multiplying (2.5) by ẋ we obtain (d/dt)g(ẋ, ẋ) = 0, hence if x is a P-normal
geodesic, then g(ẋ, ẋ) is constant.

By the abstract theory, the second variation of E at x in ΩP,q(∆) is given
by the restriction to TxΩP,q(∆) of the second variation of Eλ at x in ΩP,q.

We recall that the Hessian HessZ of a smooth vector field Z on M is the
(2,1)-tensor field on M given by ∇∇Z; more explicitly, it is computed as:

HessZ(v1, v2) = ∇v1∇V2Z −∇∇v1V2Z,

where V2 is any extension of v2. The symmetric and the anti-symmetric part of
HessZ are easily computed:

(2.9)
HessaZ(v1, v2) =

1
2
R(v1, v2)Z,

HesssZ(v1, v2) = HessZ(v1, v2)−
1
2
R(v1, v2)Z.

Given a tangent vector v1 ∈ TpM, we will consider HessY (v1) and HesssY (v1)
as linear maps on the tangent space TpM; for the computation of the kernel of
the second variation on Eλ we will need the adjoint of HesssY (v1). This is easily
computed from (2.9) as:

(2.10) (HesssY (v1))∗(v2) = (HessY (v1))∗(v2)−
1
2
R(Y, v2)v1.

Proposition 2.4. Let x be a critical point of E in ΩP,q(∆), λ the associated
Lagrange multiplier and let nx ∈ Tx(0)P⊥ denote the vector given in (2.6). Then,
the second variation d2Ex of E at x is given by the following symmetric bilinear
form on TxΩP,q(∆):

(2.11) d2Ex(V,W )

=
∫ 1

0

(g(V ′,W ′) + g(R(ẋ, V )ẋ,W )) dt

−
∫ 1

0

(λg(V ′,∇WY ) + λg(W ′,∇V Y ) + λg(HesssY (V,W ), ẋ)) dt

−
∫ 1

0

(
1
2
λg(R(V, ẋ)W,Y ) +

1
2
λg(R(W, ẋ)V, Y )

)
dt

+ SPnx
(V (0),W (0)).

Proof. The second variation d2Ex(V, V ) of E in TxΩP,q(∆) is computed as
the second derivative

d2

ds2
Eλ(xs)

∣∣∣∣
s=0

,

where {xs}s∈]−ε,ε[ is a variation of x in ΩP,q with variational vector field V ∈
TxΩP,q(∆), i.e. (d/ds)xs|s=0 = V . Such computation is straightforward, it uses
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the equation (2.5) satisfied by x and the definitions of R and of SP . Formula
(2.11) is then obtained by polarization. �

Lemma 2.5. Let p ∈ P, v, z ∈ TpP and n0 ∈ TpP⊥ be fixed. Then, the
following two statements are equivalent:

(a) there exists a smooth curve µ: ]−ε, ε[ → P and a smooth vector field
n: ]−ε, ε[ → TP⊥ along µ with

µ(0) = p, n(0) = n0, µ̇(0) = v, n′(0) = z,

(b) v ∈ TpP and z + SPn0
(v) ∈ TpP⊥.

Proof. If (a) holds, then clearly v ∈ TpP. Moreover, let X be an arbitrary
vector field tangent to P. Differentiating the expression g(n(s), X) ≡ 0 at s = 0
we get g(n′(0), X)+g(n0,∇µ̇(0)X) = g(z+SPn0

(v), X) = 0. Hence, (a) implies (b).
Conversely, suppose that (b) holds; let µ: ]−ε, ε[ → P be any smooth curve

with µ(0) = p and µ̇(0) = v. Let X1, . . . , Xn−d be a local referential of TP⊥

around p and choose numbers α1, . . . , αn−d ∈ R so that n0 =
∑

i αiXi(p). As
we have observed, ∇v(

∑
i αiXi) = SPn0

(v) + v0, with v0 ∈ TpP⊥, hence:

z −
∑

i

αi∇vXi = z −∇v

( ∑
i

αiXi

)
∈ TpP⊥.

Now, choose numbers β1, . . . , βn−d in such a way that

z −
∑

i

αi∇vXi =
∑

i

βiXi(p)

and let c1, . . . , cn−d be smooth maps on ]−ε, ε[ such that ci(0) = αi and c′i(0) =
βi for all i. Finally, define n(s) =

∑
i ci(s)Xi(µ(s)), which gives the required

vector field along µ. �

Proposition 2.6. Let x be a critical point of E in ΩP,q(∆) with Lagrange
multiplier λ, let nx ∈ Tx(0)P⊥ be the vector given in (2.6) and let V ∈ TxΩP,q(∆).
Then, V is in the kernel of d2Ex if and only if V is of class C2 and there exists
a map δ ∈ C1([0, 1],R) such that the following linear differential equation with
initial condition is satisfied:

(2.12) V ′′ = − λ(∇Y )∗V ′ + (λ∇V Y )′ +R(ẋ, V )ẋ− δ(∇Y )∗ẋ+ (δ Y )′

− λHessY (V )∗ẋ− λR(ẋ, V )Y,

(2.13) −V ′(0) + λ(0)∇V (0)Y + SPnx
(V (0)) + δ(0)Y (x(0)) ∈ Tx(0)P⊥.

Proof. It is easy to see that the elements in the kernel of d2Ex in TxΩP,q(∆)
are the critical points of the quadratic form d2Ex(V, V )/2 subject to the con-
straint dF (x)[V ] = 0. Since dF (x) is surjective, we can use again the method of
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Lagrange multipliers. Given V in the kernel d2Ex in TxΩP,q(∆), we denote by δ
the corresponding Lagrange multiplier in L2. Then, V is a critical point of the
map:

(2.14) G(V ) =
1
2
d2Ex(V, V )−

∫ 1

0

(δg(V ′, Y ) + δg(ẋ,∇V Y )) dt,

in TxΩP,q, and d2Ex is given in (2.11). The regularity of V and δ is obtained by
a bootstrap argument, and the equations (2.12), (2.13) are the Euler–Lagrange
equations of the functional G. They are computed using integration by parts of
the terms containing W ′ in the following formula for the first variation of G:

(2.15) dGV (W ) = d2Ex(V,W )−
∫ 1

0

(δ g(W ′, Y ) + δg(ẋ,∇WY )) dt

To obtain the result in the final form (2.12) one needs to use the first Bianchi
identity for R:

R(ẋ, V )Y +R(Y, ẋ)V +R(V, Y )ẋ = 0. �

Remark 2.7. Multiplying (2.12) by Y , using (2.5) and the fact that V ∈
TxΩP,q(∆) (see (2.2)) we obtain the following differential equation for δ:

δ′ = g(∇Y Y, ẋ)δ + g(∇V∇Y Y, ẋ)λ+ g(∇Y Y, V
′)λ(2.16)

− g((∇V Y )′, ẋ)− g(R(ẋ, V ) ẋ, Y ))− g(Y ′, V ′).

Moreover, since Y (x(0)) 6∈ Tx(0)P⊥, observe that (2.13) allows at most one value
for δ(0).

3. Exponential map, Jacobi fields and focal points

A P-normal geodesic x is uniquely determined by the choice of some p ∈ P
and n ∈ TpP⊥ in the following way. Consider the unique solution (x, λ) of the
system of differential equations (2.5) and (2.8) with initial conditions λ(0) =
g(n, Y (p)), x(0) = p, ẋ(0) = λ(0)Y (p) − n. Clearly, with such a choice (2.6)
is also satisfied and that ẋ(0) ∈ ∆p. By differentiating g(ẋ, Y ) and using (2.5)
and (2.8), it is easy to see that x is horizontal and it is therefore a P-normal
geodesic. Conversely, any P-normal geodesic can be obtained in this way by
setting n equal to the vector in (2.6).

Remark 3.1. A straightforward calculation shows that, if x is a P-normal
geodesic with Lagrange multiplier λ, then given c ∈ R, the linear reparameteriza-
tion t 7→ x(ct) is again a P-normal geodesic with Lagrange multiplier t 7→ cλ(ct).

We can therefore give the following:
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Definition 3.2. We define the map exp in a subset of TP⊥ taking values
in M by exp(n) = x(1), where x is the unique P-normal geodesic determined
by n.

By standard results in ordinary differential equations, exp is a smooth map
and its domain is an open subset of TP⊥ that contains the zero section. More-
over, it follows from Remark 3.1 that for all n ∈ TP⊥, the curve t 7→ exp(tn) is
a P-normal geodesic.

Definition 3.3. Given a P-normal geodesic x(t) = exp(tn0), a vector field
V along x is a P-Jacobi field along x if there exists a smooth curve s 7→ n(s) ∈
TP⊥ with n(0) = n0 and

(3.1) V (t) =
d

ds
exp(tn(s))

∣∣∣∣
s=0

.

Proposition 3.4. V is P-Jacobi along the P-normal geodesic x if and only
if, for some δ of class C1, (V, δ) satisfies the system of differential equations
(2.12), (2.16) with initial conditions (2.13).

Proof. It is easy to see that (2.12) and (2.16) can be obtained respectively
as the linearizations of (2.5) and (2.8).

If V is P-Jacobi, then (2.12) and (2.16) are satisfied. Now, Lemma 2.5 is
used to prove that (2.13) is the linearized of (2.6), and therefore (2.13) is satisfied
by (V, δ).

Conversely, if (V, δ) satisfies (2.12) and (2.16), Lemma 2.5 is used to construct
a curve n(s) in TP⊥ so that we can define

W (t) =
d

ds
exp(tn(s))

∣∣∣∣
s=0

.

Then, W is a P-Jacobi field. By the first part of the proof V and W satisfy
the same differential equation with initial conditions, hence V = W and we are
done. �

Observe that, by Remark 2.7, every P-Jacobi field V determines uniquely
the map δ appearing in (2.12).

Corollary 3.5. Let x ∈ ΩP,q(∆) be a P-normal geodesic. Then, the kernel
of d2Ex in TxΩP,q(∆) is the set of P-Jacobi fields V along x with V (1) = 0.

Proof. By linearizing the condition g(ẋ, Y ) = 0, it is easily seen that a
P-Jacobi field V with V (1) = 0 is in TxΩP,q(∆). The conclusion follows from
Propositions 2.6 and 3.4. �
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Definition 3.6. Let x be a P-normal geodesic. We say that x(t) is a P-focal
point along x if there exists a non zero P-Jacobi field V along x with V (t) = 0.
The dimension mul(t) of the vector space of P-Jacobi fields vanishing at t is
called the multiplicity of the P-focal point x(t).

In Section 4 we will prove that a sufficiently small initial portion of a P-
normal geodesic does not contain P-focal points. As an application of this fact,
we will show in Section 5 that a sufficiently small initial portion of a P-normal
geodesic is a global arc length minimizer.

The set of P-focal points along a P-normal geodesic is characterized in Propo-
sition 4.4.

4. The Morse Index Theorem

In this section we prove that the second variation d2Ex of E at a P-normal
geodesic x has finite index, and that such index equals the number of P-focal
points along x counted with multiplicity, provided that the latter number is
finite.

We recall that the index n−(B) of a symmetric bilinear form defined on the
vector space V is the (possibly infinite) supremum of the dimensions of the sub-
spaces W of V on which B is negative definite. If V is a Hilbert space with inner
product 〈 · , · 〉 and B is bounded, then, by Riesz’s Theorem, B is represented
by a linear operator TB , i.e. 〈TBx, y〉 = B(x, y) for all x, y ∈ V. In this case,
the symmetry of B implies that TB is self-adjoint. If TB is diagonalizable in
a Hilbert basis, then n−(B) equals the number of negative eigenvalues of TB

counted with multiplicity.
Throughout this section we will assume that x: [0, 1] → M is a P-normal

geodesic, with associated Lagrange multiplier λ. We choose the following Hilbert
space inner product on TxΩP,q(∆):

(4.1) 〈V1, V2〉 =
∫ 1

0

g(V ′1 , V
′
2) dt.

Proposition 4.1. The symmetric bilinear form d2Ex is represented on the
Hilbert space TxΩP,q(∆) by a self-adjoint operator of the form I − K, where
I is the identity and K is compact. In particular, d2Ex has finite index on
TxΩP,q(∆).

Proof. The first term in the first integral of (2.11) is the inner product
(4.1) of TxΩP,q(∆), and therefore it is represented by the identity operator. All
the remaining terms in formula (2.11) are continuous with respect to the C0-
topology in at least one of the variables V1, V2. By the compact embedding
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of H1 in C0, the bilinear form corresponding to such terms is represented by a
compact operator (see [4]). �

Let K be a compact self-adjoint operator on a Hilbert space H. By the
spectral theorem, we can write the set of positive eigenvalues of K as a (possibly
finite) nonincreasing sequence σ1 ≥ σ2 ≥ . . . , where each eigenvalue is repeated
according to its multiplicity. If such sequence is finite, we extend it to an infinite
sequence by setting σk = 0 whenever σk is undefined (observe that 0 may not
be an eigenvalue of K). Then we have the following minimax formula:

(4.2) σk(K) = sup
V subspace of H

dim(V)=k

min
ξ∈V

〈ξ,ξ〉=1

〈Kξ, ξ〉.

Observe that the supremum in (4.2) is actually attained if σk > 0.

Lemma 4.2. Given a, b, c ∈ R, for t > 0 sufficiently small and for all
V : [0, t] → Rn of class H1 with V (t) = 0 and V 6= 0, we have:

(4.3)
∫ t

0

(‖V ′‖2 + a‖V ′‖‖V ‖+ b‖V ‖2) dr + c‖V (0)‖2 > 0,

where ‖ · ‖ denotes the Euclidean norm.

Proof. Let t ∈ ]0, 1] be fixed and V be as in the statement. Using Young’s
inequality, for all ε > 0 we have

(4.4) ‖V ′‖ · ‖V ‖ ≤ ε

2
‖V ′‖2 +

1
2ε
‖V ‖2.

Since V (t) = 0, for s ∈ [0, t] we have V (s) = −
∫ t

s
V ′ dr, hence, using Schwarz’s

inequality, we obtain:

(4.5) ‖V (s)‖ ≤
∫ t

s

‖V ′‖ dr ≤
( ∫ t

0

‖V ′‖2 dr
)1/2

·
√
t,

hence

(4.6)
∫ t

0

‖V ′‖2 dr ≥ 1
t2

∫ t

0

‖V ‖2 dr.

Inequality (4.3) follows at once from (4.4) and (4.6). �

Theorem 4.3 (Morse Index Theorem). Let x: [0, 1] → M be a P-normal
geodesic. If the number of P-focal points along x is finite then the following
identity holds:

(4.7) n−(d2Ex) =
∑

t∈]0,1[

mul(t).

Proof. For t ∈ ]0, 1], let xt denote the restriction of x to [0, t], which is
again a P-normal geodesic, and by λt the corresponding Lagrangian multiplier.
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Observe that λt is the restriction of λ to [0, t]. Denote by Ht the Hilbert space
TxtΩP,x(t)(∆). By Proposition 4.1, d2Ext is represented on Ht by a self-adjoint
operator of the form I −Kt, where Kt is compact. By considering extensions to
zero in the interval [t, 1], we can regard each Ht as an isometrically embedded
Hilbert subspace of H1 = TxΩP,q(∆), and, with this identification, we have the
following identity:

〈Ktξ1, ξ2〉 = 〈Ksξ1, ξ2〉, 0 < t ≤ s ≤ 1, for all ξ1, ξ2 ∈ Ht.

For k ≥ 1, set σk(t) = σk(Kt) as in formula (4.2); since the map σk of (4.2) is
continuous in the norm topology, for each k the continuity of the map t 7→ σk(t)
can be deduced with arguments similar to [4, Proposition 3.3 and Corollary 4.5].

The left hand side of equality (4.7) is precisely the total number of indices k
for which σk(1) is greater than 1. By Corollary 3.5, the dimension of the kernel
of d2Ext

is precisely mul(t). It follows that x(t) is a P-focal point if and only
if for some k it is σk(t) = 1; in this case, the multiplicity mul(t) is equal to the
total number of indices k for which σk(t) = 1.

Using (2.11) and Lemma 4.2, it is easy to see that d2Ext is positive definite
for t > 0 sufficiently small, hence, for such t, σk(t) < 1 for all k.

The function σk(t) is nondecreasing on ]0, 1]; this is easily seen from formulas
(4.2) and (4.8). The conclusion now follows from our assumption of finiteness
for the number of P-focal points, which implies that each σk assumes the value 1
exactly once whenever σk(1) > 1. �

Using the ideas appearing in the proof of the index theorem we also get
the following characterization of the set of P-focal points. We recall that ∆ is
said to be a contact distribution if the following skew-symmetric bilinear form is
nondegenerate on ∆:

(4.9) ∆×∆ 3 (v, w) 7→ g(∇vY,w)− g(∇wY,w).

Proposition 4.4. Let x: [0, 1] →M be a P-normal geodesic. Then

• there are no P-focal points along a sufficiently small initial portion of x,
• the set of P-focal points consists of a finite union of isolated points and

closed segments of x,
• if (M, g) and Y are real-analytic, or if ∆ is a contact distribution, then

the set of P-focal points along x is finite.

Proof. The first statement is an immediate corollary of Lemma 4.2 and
Corollary 3.5.

In the notations of the proof of Theorem 4.3, the second statement follows
from the fact that the P-focal points correspond to the zeroes of the continuous
nondecreasing functions σk(t) − 1. Observe also that there are only a finite
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number of indexes k for which σk(1) ≥ 1; only for such indexes k it is possible
for σk to assume the value 1 on ]0, 1].

To prove the last statement, we start with the observation that if there is an
infinite number of P-focal points along x, then there exists a non zero P-Jacobi
field V along x that vanishes on a non trivial subinterval [t, s] ⊂ ]0, 1]. To prove
this claim, observe that if there are infinitely many P-focal points along x then
there exists k ∈ IN such that σk = 1 on an interval [t, s].

Let W ⊂ Ht be a k-dimensional subspace such that:

min
ξ∈W
〈ξ,ξ〉=1

〈Ktξ, ξ〉 = 1.

Write Hs as an orthogonal sum Hs = H0 ⊕H+ ⊕H−, where H0,H+,H− are
respectively the null, positive and negative eigenspace of I−Ks. Let π:Hs → H−

be the orthogonal projection; observe that π cannot be injective on W because
this would imply dim(π(W)) = k, and therefore

σk(s) ≥ min
ξ∈π(W)
〈ξ,ξ〉=1

〈Ktξ, ξ〉 > 1 = σk(t),

contradicting σk(s) = 1. Let ξ ∈ W be a non zero vector in Ker(π) = H0 ⊕H+;
write ξ = ξ0+ξ+ ∈ W, with ξ0 ∈ H0 and ξ+ ∈ H+. If ξ+ 6= 0, then 〈Ksξ

+, ξ+〉 <
〈ξ+, ξ+〉. Hence,

〈Ksξ, ξ〉 = 〈Ksξ
+, ξ+〉+ 〈Ksξ

0, ξ0〉 < 〈ξ+, ξ+〉+ 〈ξ0, ξ0〉 = 〈ξ, ξ〉,

which contradicts the fact that ξ ∈ W. Now, it follows that ξ ∈ H0, i.e. ξ is a
non zero P-Jacobi field that vanishes on [t, s].

Under the assumption that (M, g) and Y are real-analytic, then clearly ξ is
also real-analytic, and we obtain a contradiction.

Let us consider now the case that ∆ is a contact distribution. We have
observed that non isolated P-focal points determine non trivial P-Jacobi fields
V that vanish in some interval [t, s]. Hence, to conclude the proof we must show
that every P-Jacobi field that vanishes on a non trivial interval [t, s] must vanish
on [0, 1]; to this aim, by the uniqueness of the solution of the system of ODE’s
given by equations (2.12) and (2.16), it suffices to show that the Lagrangian
multiplier δ corresponding to V vanishes somewhere in [t, s]. To see this, observe
that, since V ′′ = 0 on [t, s], from (2.12) we get:

(4.10) −δ (∇Y )∗ẋ+ (δ Y )′ = 0

on [t, s]. If we multiply (4.10) by some vector v ∈ ∆ = Y ⊥ we get:

δ(−g(∇vY, ẋ) + g(∇ẋY, v)) = 0
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and since (4.9) is nondegenerate on ∆ it follows that δ = 0 on [t, s]. This
concludes the proof. �

Observe that in the above proof, the finiteness of the number of P-focal
points along x could be obtained under the weaker assumption that x is never
tangent to the kernel of the bilinear form (4.9) on ∆.

We conclude the section with the observation that, using Theorem 4.3 and
a result of [16], it is easy to determine a formula for the index of the second
variation of the sub-Riemannian action functional in the space of horizontal
paths with both endpoints variable in two submanifolds of M.

5. Minimality of P-normal geodesics

In this section we prove the following minimality property as an application
of the Morse Index Theorem. Given a P-normal geodesic x: [0, T ] →M, then, if
T > 0 is sufficiently small, x is a global arc length minimizer among all horizontal
curves in M connecting P and x(T ). The result is indeed not new, it is already
proven in a very different way in [19, Proposition B.1]; the proof in [19] uses
the Hamiltonian formalism and is an adaptation of the proof of minimality of
normal geodesics between fixed endpoints presented in [10, Appendix C].

Let L denote the length functional on M. In first place, we observe that a
horizontal curve x is an action minimizer if and only if it is a length minimizer
and g(ẋ, ẋ) is constant (see for instance [19, Appendix A]).

From the Morse Index Theorem we deduce that x: [0, T ] →M, a P-normal
geodesic, that does not contain any P-focal point is a local action minimizer with
respect to the H1-topology of ΩP,x(T )(∆). Our first Lemma tells us that x is
also a local action minimizer with respect to the C0-topology of ΩP,x(T )(∆).

Let dist denote the distance function induced by the Riemannian metric g
on M.

Lemma 5.1. Let x: [0, T ] → M be a P-normal geodesic. For T > 0 small
enough there exists ε > 0 such that if y: [0, T ] → M is an horizontal curve of
class H1 with y(0) ∈ P, y(T ) = x(T ) and dist(y(s), x(s)) < ε for all s, then
E(x) ≤ E(y).

Proof. Let T > 0 be small enough so that there are no P-focal points
along x (Proposition 4.4) and such that the image of x is contained in the domain
of a local chart of M. For simplicity, the coordinate representation of the objects
appearing in this proof will be denoted by the same letter as the original objects.

We can assume x(T ) = 0. We argue by contradiction: suppose there exists
a sequence {xn} in ΩP,x(T )(∆) which is uniformly convergent to x and with

(5.1) E(xn) < E(x) for all n.
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By a reparameterization argument, we can assume that g(ẋn, ẋn) = cn is con-
stant. Indeed it is possible to reparameterize the curves using arc length (cf. [19,
Appendix A]) and then to see that, for any given curve, the parameterization
by arc length minimizes the functional E among all reparameterizations. Since
E(xn) is bounded, then cn is a bounded sequence.

We consider the Hilbert space H of Rn-valued maps of class H1 on [0, T ]
vanishing at T , endowed with the following inner product:

〈u1, u2〉 =
1
2

∫ T

0

gx(t)(u̇1, u̇2) dt.

Observe that E(x) = 〈x, x〉. Moreover,

(5.2) E(xn)− 〈xn, xn〉 =
1
2

∫ T

0

(gxn(t) − gx(t))(ẋn, ẋn) dt→ 0,

because gxn(t) − gx(t) is uniformly convergent to 0 and ẋn is bounded in L∞.
Since E(xn) is bounded, by (5.2) xn is bounded in H, and, passing to a

subsequence, we can assume that xn is weakly convergent to x in H. By the
lower semi-continuity of the norm with respect to the weak topology, we get:

E(x) = 〈x, x〉 ≤ lim inf
n→∞

〈xn, xn〉 = lim inf
n→∞

E(xn) ≤ lim sup
n→∞

E(xn) ≤ E(x).

By the above formula and (5.2) it follows that 〈xn, xn〉 converges to 〈x, x〉, hence
xn converges to x in H. This means that xn tends to x in the H1-topology of
ΩP,x(T )(∆), and therefore E(x) ≤ E(xn) for n sufficiently large, which contra-
dicts (5.1) and proves the lemma. �

Proposition 5.2. Let x: [0, T ] → M be a P-normal geodesic. If T > 0 is
small enough, then x is a global minimum point of E (and L) in ΩP,x(T )(∆).

Proof. Let T be small enough so that we can take ε > 0 as in Lemma 5.1.
Now choose a possibly smaller T so that L(x) ≤ ε

2 and let y ∈ ΩP,x(T )(∆). If
dist(y(s), x(s)) < ε for all s, then by construction E(y) ≥ E(x).

If for some s ∈ [0, T ] we have dist(y(s), x(s)) ≥ ε, then by the triangle
inequality we have:

L(y) ≥ dist(y(s), x(T )) ≥ dist(y(s), x(s))− L(x) ≥ ε

2
≥ L(x).

Since g(ẋ, ẋ) is constant, a simple computation using the Cauchy–Schwarz in-
equality shows that also E(y) ≥ E(x). �

6. The Palais–Smale condition and the Morse relations
for sub-Riemannian geodesics

In this section we prove a multiplicity result for sub-Riemannian geodesics
joining the submanifold P and the point q. We use the Morse theory for the
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sub-Riemannian action functional E defined on the Hilbert manifold ΩP,q(∆),
endowed with the Riemannian structure:

(6.1) 〈V,W 〉x =
∫ 1

0

g(V ′,W ′) dt, x ∈ ΩP,q(∆), V,W ∈ TxΩP,q(∆).

The main technical assumption that allows the development of an infinite
dimensional Morse Theory is the Palais–Smale condition.

We recall that, given a C1 functional F :X → R on a Hilbert manifold (X, h),
then F satisfies the Palais–Smale condition at level c ∈ R if every sequence (xk)
in X such that

(6.2) lim
k→∞

F (xk) = c, lim
k→∞

h(∇F (xk),∇F (xk)) = 0,

has a subsequence converging in X. By ∇F (x) we denote the gradient of F at
x ∈ X, defined by h(∇F (x), · ) = dF (x). A sequence (xk) satisfying (6.2) is
called a Palais–Smale sequence for F in X at the level c.

In order to prove the Palais–Smale condition for the sub-Riemannian action
functional E we will assume that (M, g) is a complete Riemannian manifold; in
order to simplify our proof, we will also make the assumption that Y (p) ∈ TpP
for all p ∈ P, without a significant loss of generality. Note that this assumption
implies λ(0) = 0 in the initial condition (2.6) for critical points of E in ΩP,q(∆).

Proposition 6.1. The functional E satisfies the Palais–Smale condition in
ΩP,q(∆) with respect to the Riemannian metric (6.1) at every level c ∈ R.

Proof. Let (xk) a Palais–Smale sequence for E in ΩP,q(∆) at the level
c ∈ R. By the completeness of (M, g), the Theorem of Ascoli–Arzelà implies
that a subsequence of (xk) (still denoted by (xk)) is uniformly convergent to
some continuous curve x: [0, 1] → M. Using local charts around the points of
the image of x, by the boundedness of (xk) in H1 we get that x is also in ΩP,q.

Moreover, it follows that, up to subsequences, ẋk converges to ẋ weakly
in L2, in the following sense. Given a sequence (Vk), with Vk a vector field
along xk, we say that Vk tends to a vector field V along x weakly in L2 if for
any subinterval [t0, t1] ⊂ [0, 1] and any chart whose domain contains x([t0, t1]),
the coordinates of Vk tend to the coordinates of V weakly in L2([t0, t1],Rn).
Other types of convergence of vector fields along xk to a vector field along x are
defined similarly; in particular, we will consider norm and weak convergence in
the spaces Lp and in the Sobolev spaces W k,p.

For each k, let uk ∈ Txk
ΩP,q(∆) be the gradient of E at xk and let ak = u′k

be the covariant derivative of uk along xk. Then, ak tends to 0 in L2 and

(6.3)
∫ 1

0

g(ẋk, ξ
′) dt =

∫ 1

0

g(ak, ξ
′) dt for all ξ ∈ Txk

ΩP,q(∆).
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It is not difficult to see that, for every y ∈ ΩP,q(∆), there exists a projection
operator

V ∈ TyΩP,q 7→ (V − Y ψy,V ) ∈ TyΩP,q(∆),

where ψy,V is given by (see [3]):

ψy,V (t) = −
∫ 1

t

(g(V ′, Y ) + g((∇Y )∗ẏ, V ))e
R s

t
g(∇Y Y,ẏ) dr ds.

Setting ξ = V − Y ψy,V in (6.3) and using integration by parts, we obtain the
existence of a sequence (bk) converging to 0 in L2 and such that ẋk − bk = dk,
where1

dk(t) = λkY +
∫ t

0

λk(∇Y )∗ẋk ds+ zk,(6.4)

λk(t) = −
∫ t

0

g(ẋk, Y
′)e−

R s
t

g(∇Y Y,ẋk) dr ds,(6.5)

and (zk) is a sequence such that z′k = 0.
We have the following facts:

• g(∇Y Y, ẋk) converges weakly in L2,
•

∫ s

t
g(∇Y Y, ẋk) dr converges uniformly in s for each t,

• g(ẋk, Y
′)e−

R s
t

g(∇Y Y,ẋk) dr is bounded in L1,
• from (6.5) we get that (λk) is bounded in W 1,1,
•

∫ t

0
λk(∇Y )∗ẋk ds is bounded in H1,

• from (6.4), zk is bounded in L2,
• since z′k = 0, zk is bounded in W 1,1,
• from (6.4), dk is bounded in W 1,1.

By the compact inclusion ofW 1,1 in L2 (see [2]), dk has a converging subsequence
in L2. This fact implies that (xk) has a converging subsequence in L2, and the
proposition is proved. �

Remark 6.2. Let us observe that, by classical results of Critical Point The-
ory (see e.g. [6]), Proposition 6.1 implies the existence of minimizers for E in
ΩP,q(∆).

The Global Morse Relations can be written in the following way. First recall
that, given a topological space X, an algebraic field K and a natural number
i, the i-th Betti number βi(X; K) of X relative to K is the K-dimension of the
i-th singular vector space Hi(X; K) of X with coefficients in K. The Poincaré
polynomial Pλ(X; K) of X with coefficients in K is the formal power series in
λ ∈ K given by:

Pλ(X; K) =
∑

i

βi(X; K)λi.

1the integral in (6.4) is meant as a “covariant primitive” with initial value 0, i.e.
R t
0 λk(∇Y )∗

·ẋk ds is the unique vector field W along xk such that W (0) = 0 and W ′ = λk(∇Y )∗ẋk.



290 R. Giambò — F. Giannoni — P. Piccione — D. Tausk

Thanks to the completeness of M (and therefore of ΩP,q(∆)), the Palais–
Smale condition (cf. Theorem 6.1) and the classical Morse relations (see e.g.
[11]), we have the following theorem:

Theorem 6.3. Suppose that P and q are not conjugate by sub-Riemannian
geodesics. Then for every field K there exists a formal power series QK(λ) in the
variable λ, with coefficients in N∪{∞}, such that the following identity between
formal series is satisfied:∑

z∈GP,q

λm(z) = Pλ(ΩP,q(∆); K) + (1 + λ)QK(λ),

where GP,q is the set of sub-Riemannian geodesics joining P with q and m(z) =
n−(d2Ez) is the Morse index of z as critical point of E on ΩP,q(∆).

Remark 6.4. If Y does not have closed integral lines , using the flow of Y it
is easy to prove that the inclusion of ΩP,q(∆) in ΩP,q is a homotopy equivalence.
Moreover it is well known that ΩP,q is homotopically equivalent to Ω0

P,q, the
space of continuous path joining P with q. Then, by the Morse Index Theo-
rem 4.3 we see that, if the number of P-focal points along any sub-Riemannian
geodesic is finite, the above relations can be written as∑

z∈GP,q

λµ(z) = Pλ(Ω0
P,q; K) + (1 + λ)QK(λ),

where µ(z) is the geometric index of z, which is the number of its P-focal points
counted with multiplicity.
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[2] H. Brezis, Analyse Fonctionelle, Masson, Paris, 1983.
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