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FIXED POINT THEORY AND FRAMED COBORDISM

Carlos Prieto

Abstract. The Thom–Pontryagin construction is studied from the point

of view of fixed point situations, and a very natural correspondence between

framed cobordism classes and fixed point situations is given. Since fixed
point classes integrate a cohomology theory, called FIX, which generalizes

in a natural way to an equivariant theory, this sheds light into possible
approaches to equivariant cobordism.

1. FIX-cohomology

In this paragraph we recall the definitions of [5] of the FIX functors as a co-
homology theory. All spaces we shall consider will be metric spaces. If X is a
metric space, then we say that a space over X, p:E → X, is a euclidean neigh-
bourhood retract over X, or an ENRX , if there is an embedding i:E ↪→ Rq ×X,
such that projX ◦ i = p, an open neighbourhood U of i(E) in Rq × X and a
retraction r:U → E, i.e., r ◦ i = idE , such that p ◦ r = projX |U .

Definition 1.1. Let p:E → X be an ENRX and let m,n be nonnegative
integers. An (m,n)-fixed point situation over X, or an (m,n)-FPSX , is a com-
mutative triangle
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Rn × E ⊃ V

p◦projE ((RRRRRRRRRRRRRR
f // Rm × E

p◦projEzzuuuuuuuuu

X

where f is properly fixed, that is, such that the set F = Fix(f) = {(y, e) ∈ V |
f(y, e) = (0, e) ∈ Rn ×E} lies properly over X, namely, (p ◦ projE)|F :F → X is
a proper map.

Given two (m,n)-FPSX ,

Rn × E0 ⊃ V0
f0 // Rm × E0 , Rn × E1 ⊃ V1

f1 // Rm × E1

we declare them as equivalent if there is an (m,n)-FPSX×I, I = [0, 1],

Rn × E ⊃ V

p◦projE ))RRRRRRRRRRRRRR
f // Rm × E

p◦projEyyssssssssss

X × I

such that restricted to X×{ι}, that is, taking its pullback to X×{ι} ≈ X, gives
us fι, ι = 0, 1. We denote the equivalence class of f0, simply as [f0].

Again, given two (m,n)-FPSX ,

Rn × E ⊃ V
f−→ Rm × E, Rn × E′ ⊃ V ′ f ′−→ Rm × E′,

one can take their sum as the (m,n)-FPSX

Rn × (E t E′) ⊃ V t V ′

(p,p′)◦(projEtE′ ) **TTTTTTTTTTTTTTTTTT
ftf ′ // Rm × (E t E′)

(p,p′)◦(projEtE′ )xxqqqqqqqqqqq

X

We denote its equivalence class by [f ] + [f ′].
Given an (m,n)-FPSX , and an (m′, n′)-FPSX′

Rn × E ⊃ V
f−→ Rm × E, Rn′ × E′ ⊃ V ′ f ′−→ Rm′

× E′,

one can take their exterior product as the (m+m′, n+ n′)-FPSX×X′

Rn+n′ × (E × E′) ⊃ V × V ′

(p×p′)◦(projE×E′ ) **UUUUUUUUUUUUUUUUUU

f×f ′ // Rm+m′ × (E × E′)

(p×p′)◦(projE×E′ )vvnnnnnnnnnnnn

X ×X ′

up to an obvious shuffling of coordinates; we denote its equivalence class by
[f ] × [f ′]. In particular, one may take the interior product of the situations
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above, when X = X ′ by taking the pullback of the (m+m′, n+n′)-FPSX×X to
a (m+m′, n+ n′)-FPSX over the diagonal map ∆:X → X ×X; in other words
we obtain [f ] ^ [f ′] as the class of

Rn+n′ × (E ×X E′) ⊃ V ×X V ′

(p,p′)◦(projE×X E′ )
**UUUUUUUUUUUUUUUUUUUU

f×Xf ′ // Rm+m′ × (E ×X E′)

(p,p′)◦(projE×X E′ )wwnnnnnnnnnnnn

X

where ×X denotes the fibered product over X.

Definition 1.2. The sum provides the set of equivalence classes of (m,n)-
FPSX , [f ], with a group structure. By FIXm,n(X) we denote the (bigraded)
group. Moreover, the exterior and interior product define a multiplicative struc-
ture in this bigraded group

×: FIXm,n(X)⊗ FIXm′,n′(X ′) → FIXm+m′,n+n′(X ×X ′),

^: FIXm,n(X)⊗ FIXm′,n′(X) → FIXm+m′,n+n′(X).

Remark 1.3. If µ: S1 → S1 has degree −1, then, seeing this map as a (0, 0)-
FPS∗ (∗ = a point), −[f ] = [µ]× [f ] = [µ× f ], for any (m,n)-FPSX , f .

One easily shows as in [6, 2.4], the following.

Lemma 1.4. For any natural number k, there is a natural isomorphism

FIXm,n(X) → FIXm+k,n+k(X).

Therefore, one has the following consequence.

Corollary 1.5. FIXm,n(X) depends only on the difference m− n. There-
fore, for any integer k, one can define the groups FIXk(X) as FIXk+n,n(X) for
some (any) natural number n, such that k + n ≥ 0.

Example 1.6. The map ν: R → R, such that x 7→ −x is a (0, 0)-FPS∗
representing the same element as the map µ in Remark 1.3 (one might also take
the map ν such that ν(x) = 2x). Also the map ν′: C → C (C ≈ R2), such
that ν′(z) = z (complex conjugate) is a (0, 0)-FPS∗ such that [ν′] = [ν] = [µ] ∈
FIX0,0(∗). Moreover, the map ν can also be seen as a (1, 1)-FPX∗ and ν′ as a
(2, 2)-FPX∗.

The equivalence classes which form FIXk(X) are very ample. One can al-
ways find good representatives, according to our needs. One possibility is the
following.

Let Rn × E ⊃ V
f−→ Rm × E be a representative of an arbitrary element

in FIXm−n(X). Let the embedding i:E ↪→ Rq × X, such that projX ◦ i = p,
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the open neighbourhood U of i(E) in Rq ×X and the retraction r:U → E, i.e.
r ◦ i = idE , represent E as an ENRX ; there is another (m,n)-FPS over X

Rn × E′ ⊃ V ′ f ′−→ Rm × E′

where E′ = Rq ×X, V ′ = (idRn × r)−1(V ) and f ′ = (idRm × i) ◦ f ◦ (idRn × r),
such that, as one easily checks, Fix(f ′) ≈ Fix(f). Thus, in other words, one has
an (m,n)-FPS

Rn × Rq ×X ⊃ V ′ f ′−→ Rm × Rq ×X

and one may prove (see [5, 1.15]) the following.

Lemma 1.7. [f ′] = [f ] ∈ FIXm−n(X).

The elements [f ] ∈ FIXm,n(X) depend only on the behavior of f around
Fix(f), one has the following.

Proposition 1.8. Given an (m,n)-FPS over X, f :V → Rn × E, and
Fix(f) ⊂W ⊂ V , W ⊂ Rm × E open, then [f |W ] = [f ] ∈ FIXm,n(X).

Let A ⊂ X be closed. By taking an (m,n)-FPSX , f , such that Fix(f) ∩
(Rn × p−1A) = ∅, that is, if Fix(f) lies over the difference set X −A, we obtain
what we call an (m,n)-FPS over the pair (X,A), or an (m,n)-FPS(X,A); defining
a homotopy between two (m,n)-FPS(X,A) as an (m,n)-FPS(X,A)×I, we obtain
homotopy classes [f ] which belong to a group FIXm,n(X,A) which, in turn, as
it was the case in Corollary 1.5, depends only on the difference m− n.

There are also convenient smooth representatives in FIXm,n(X,A), when
these make sense. We have the following two results, when X is an open set in
a euclidean space Rp, which are also equally valid if X is a smooth q-manifold
instead.

Proposition 1.9. Let X ⊂ Rp be open and let A ⊂ X be closed (in X).
Given an (m,n)-FPS(X,A),

Rn × Rq ×X ⊃ V
f−→ Rm × Rq ×X,

there exists a smooth (m,n)-FPS(X,A),

Rn × Rq ×X ⊃ V
f ′−→ Rm × Rq ×X,

equivalent to f , such that it is transverse to j = jV :V → Rm × Rq × X,
j(y, y′, x) = (0, y′, x).

Proposition 1.10. Let X ⊂ Rp be open and let A ⊂ X be closed (in X).
Given an (m,n)-FPS(X,A)×I,

Rn × Rq ×X × I ⊃ V
f−→ Rm × Rq ×X × I,
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such that its restrictions fι to Vι = V ∩ (Rn × Rq × X × {ι}) are smooth and
transverse to jι:Vι → Rn × Rq × X × {ι}; then there exists a smooth (m,n)-
FPS(X,A)×I ,

Rn × Rq ×X × I ⊃ V
f ′−→ Rm × Rq ×X × I

equivalent to f , such that it is transverse to j:V → Rn×Rq×X×I and f ′|Vι
= fι.

Proof of Proposition 1.9. Since Fix(f) ⊂ V lies properly over X and
maps into the open set X − A, by taking a smaller neighbourhood of Fix(f),
we may assume, without loss of generality, that the closure V itself lies properly
over X and is contained in Rn×Rq × (X −A). Let ε:X → R+ be such that the
fiberwise distance d(Fixx(f),Rm × Rq × {x} − Vx) > ε(x) > 0.

Using, for instance, [3, 1.4.4], we know that there is a smooth fiberwise
f ′′:V → Rm × Rq × X (approximate only the first two euclidean components)
such that |f ′′(y, y′, x) − f(y, y′, x)| < ε(x)/2. By perturbing f ′′ to a map f ′,
if necessary, in less than another ε(x)/2, we may assume that 0 ∈ Rn × Rq

is a regular value of projRn×Rq ◦ (j − f ′), so that we have that |f ′(y, y′, x) −
f(y, y′, x)| < ε(x)/2, and f ′ is transverse to j.

Let now g:V ×I → Rn×Rq×X×I be such that g(y, y′, x, t) = (tf ′(y, y′, x)+
(1 − t)f(y, y′, x), t). Fix(g) ⊂ V × I, therefore, it lies properly and maps into
(X −A)× I; moreover, g|V×{0} = f and g|V×{1} = f ′. �

Proof of Proposition 1.10. The proof is very similar using [3, 1.4.8]
instead. �

There is a suspension isomorphism. Namely, let

Rn × E ⊃ V
f−→ Rm × E

be an (m,n)-FPS(X,A); then let

Rn × (R× E) ⊃W
fΣ

−→ R× Rm × (R× E)

be such that W = {(y, s, e) ∈ Rn × (R × E) | (y, e) ∈ V } and fΣ(y, s, e) =
(−s,projRmf(y, e), s,projEf(y, e)). This is an (m + 1, n)-FPS over the pair
(R,R− (−1, 1))× (X,A) = (R×X, (R− (−1, 1))×X ∪R×A) and we have the
following.

Proposition 1.11. The function

Σ: FIXk(X,A) → FIXk+1((R,R− (−1, 1))× (X,A)),

such that Σ([f ]) = [fΣ], is a well defined isomorphism of groups. It is called the
suspension isomorphism.

Given an (m,n)-FPS(X,A), f , and a map ϕ: (Y,B) → (X,A), where B ⊂ Y

is closed, we can pull back f to an (m,n)-FPS(Y,B), ϕ ∗ (f). This induces a
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homomorphism

ϕ∗: FIXk(X,A) → FIXk(Y,B),

thus turning FIXk into a (contravariant) functor. We can summarize all said as
follows.

Theorem 1.12. The groups FIX∗(X,A) constitute a multiplicative coho-
mology theory in the category of pairs (X,A) of metric spaces modulo closed
subspaces.

2. Generic elements in FIX∗

In this paragraph we shall use Dold’s results in [1]. To start with, we recall
the definition of a σ-structure on a manifold.

Definition 2.1. vect be the category of smooth vector bundles π:E → X

over smooth manifolds X, with bundle maps f̃ :E′ → E covering smooth maps
f :X ′ → X, i.e. such that the diagram

E′
ef //

π′

��

E

π

��
X ′

f
// X

is a pullback diagram where, fiberwise, f̃ induces linear isomorphisms. A con-
travariant functor

σ:Vect → Set

together with a natural transformation

s:σ(E) → σ(R× E)

(where R×E → X is the obvious map) is called a structure functor if it satisfies
the following conditions:

(a) (Homotopy invariance) The projection q̃: R × E → E (viewed as a
bundle map covering the projection q: R ×X → X) induces bijections
q̃∗:σ(E) ∼= σ(R× E), for any bundle E → X.

(b) (Mayer–Vietoris property) Let E → X be a smooth vector bundle and
X = X1 ∪ X2 for X1, X2 ⊂ X open subsets. Denote by Eι → Xι,
ι = 1, 2, the restrictions of the bundle. If uι ∈ σ(Eι) are such that
u1|E1∩E2 = u2|E1∩E2, then there exists u ∈ σ(E) such that u|Eι = uι,
where the restriction means the element induced by the inclusion.

(c) (Additivity) If E → X is a bundle such that X =
∐∞

n=1Xn, then the
canonical function σ(E) →

∏∞
n=1 σ(En) is bijective.
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(d) (Stability) The transformation s is an equivalence of sets

s:σ(E) ∼= σ(R× E).

For the scope of this paper, we shall be interested in the case where σ(E) is
the set of homotopy classes of stable trivializations of the form Rm×E ∼= RN×X.

Definition 2.2. A smooth manifold X is a σ-manifold if its tangent bundle
τ(X) → X is σ-structured.

Example 2.3. Seen as a bundle over a point, Rl can always be σ-structured
(unless σ ≡ ∅), namely, one just defines one structure on R (or on a point
∗ = R0); hence, any product bundle Rl ×X → X is also σ-structured and, with
it, any trivial bundle has a σ-structure induced by the trivialization. Therefore,
also any open subset X ⊂ Rl is canonically a σ-manifold.

Remark 2.4. Given a smooth l-manifold X, then, by definition, if ν(X) →
X denotes its normal bundle, one has the direct sum ν(X) ⊕ τ(X) = Rn ×X.
Therefore, this sum has a canonical σ-structure. Now, assuming that we have a
trivialization of the normal bundle, namely, Rn−l×X ∼= ν(X), this trivialization
determines a stable trivialization of the tangent bundle as follows

Rn−l × τ(X) = (Rn−l ×X)⊕ τ(X) ∼= ν(X)⊕ τ(X) = Rn ×X,

thus, this trivialization induces on Rn−l×τ(X) a σ-structure and, by the stability
property of the σ-structure, also one on τ(X).

Now, for simplicity, we may assume X to be an open set in some euclidean
space Rl, but we could also assume it to be an l-dimensional manifold without
boundary as will be the case later. Let A ⊂ X be a (locally) closed set. Recall
that a proper σ-manifold over the pair (X,A) is a continuous proper map p:M →
X such that M is a smooth manifold, p(M) ⊂ X − A, and the bundle ν(M) ⊕
p∗(τ(X)) is σ-structured. Let E = Rq ×X and let Rn×E ⊃ V

f−→ Rm×E be
an (m,n)-FPS(X,A) representing an arbitrary element in FIXk(X,A), k = m−n.
Let j:V → Rm × E be such that j(y, e) = (0, e). We may assume f is smooth
and transverse to j, that is, the difference map j − f :V → Rm × E such that

(j − f)(y, y′, x) = (−y, y′ − projRqf(y, e), x)

is transverse to the submanifold 0×X ⊂ Rq ×E = Rq+m ×X. Then p|M :M =
Fix(f) = (j − f)−1(0 × X) → X is a proper manifold of dimension n −m + l

over X, whose image lies in X −A.
Since the normal bundle of 0 ×X in Rm × E is trivial, namely ν(0 ×X) =

Rm × Rq ×X = Rm+q ×X, it has a canonical σ-structure, which can be pulled
back to obtain a natural σ-structure on ν(M) ⊕ g∗(τ(X)). For example, the
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trivialization of the normal bundle is a universal σ-structure, determining framed
cobordism groups. In particular, pulling back the trivialization one obtains a
framing for the proper manifold g:M → X. Thus, it defines an element [M →
X] ∈ Ωm−n

σ (X,A), where Ωσ denotes the σ-cobordism functor as defined by
Dold in [1] (see also [8]) and we will have a function

I: FIXm−n(X,A) → Ωm−n
σ (X,A)

which we shall call the (fixed point) index and shall analyze in what follows. We
will prove, namely, the following.

Theorem 2.5. The assignment [f ] 7→ [Fix(f ′) → X], where f ′ ∈ [f ] is
a smooth representative, transverse to j, determines a well defined group homo-
morphism

I: FIXm−n(X,A) → Ωm−n
σ (X,A).

Moreover, this homomorphism is a natural transformation of multiplicative co-
homology theories.

In order to prove this theorem we shall proceed in steps. That the function
is well defined follows from the next result.

Lemma 2.6. [Fix(f ′) → X] is independent of the choice of the smooth map
f ′ ∈ [f ].

Proof. Let f ′0 and f ′1 be both representatives of the class. We may assume
that f ′0:V0 → Rm×Rq×X and f ′1:V1 → Rm×Rq×X are smooth and transverse
to jVι , ι = 0, 1, and that V0, V1 ⊂ Rn × Rq ×X are open. By Proposition 1.10,
we know that there is a smooth (m,n)-FPS(X,A)×I, g:V → Rm × Rq × X × I,
transverse to jV .

Therefore, W = Fix(g) ⊂ Rn × Rq × X × I → X × I is a proper σ-
structured manifold with boundary ∂W = Fix(g) ∩ (Rn × Rq × X × {0, 1}) =
Fix(f ′0) t Fix(f ′1) = M0 tM1. Moreover, the σ-structure in W restricts to the
corresponding σ-structure in M0 and, since the inner normal vector of M1 ⊂W

points downward, to the opposite structure on M1. Hence, [M0 → X] = [M1 →
X] ∈ Ωm−n

σ (X,A). �

The other results we need are the following three lemmas.

Lemma 2.7. The function I: FIXm−n(X,A) → Ωm−n
σ (X,A) is additive and

multiplicative.

Proof. By definition of the additive structure, the sum of two elements of
FIXm−n(X,A) represented by fι:Vι → Rm×Eι, ι = 1, 2, is given by taking their
disjoint union (topological sum). Therefore, if both are smooth and transverse
to (the corresponding) j, then also f1 t f2 is smooth and transverse to j, and
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Fix(f1 t f2) = Fix(f1) t Fix(f2) has the obvious (by the σ-structure on each
summand induced) σ-structure. This represents, by definition of the additive
structure in Ωm−n(X,A), the sum of I([f1]) and I([f2]). Therefore,

I([f1] + [f2]) = I([f1 t f2]) = I([f1]) + I([f2]).

By definition of the multiplicative structure, the product of two elements in
FIX∗(X,A) is given by taking the fibered product over X of their representatives
f1 and f2. Analogously to the case of addition, one has that Fix(f1 ×X f2) =
Fix(f1) ×X Fix(f2), so that, if both maps are smooth and transverse to (the
corresponding) j, then also f1 ×X f2 is smooth and transverse to j and its fixed
point set (manifold) inherits the obvious σ-structure. Therefore,

I([f1] ^ [f2]) = I([f1 ×X f2]) = I([f1]) ^ I([f2]). �

Lemma 2.8. The function I: FIXm−n(X,A) → Ωm−n
σ (X,A) is natural.

Proof. Let ϕ: (X,A) → (Y,B) be continuous and let f :V → Rm × E

represent an element in FIXm−n(X,A). Assume f is smooth and transverse
to j and deform ϕ as to make it transverse to f ; then ϕ∗: FIXm−n(X,A) →
FIXm−n(Y,B) sends the class [f ] to the class of the pullback [ϕ∗f ], which, in
turn, is sent by I to the class [Fix(ϕ∗f) → Y ] = [ϕ∗Fix(f) → Y ] = ϕ∗([Fix(f) →
X]) ∈ Ωm−n(Y,B). Therefore

ϕ∗I([f ]) = Iϕ∗([f ]). �

Finally, we need the following step.

Lemma 2.9. The function I: FIX∗(X,A) → Ω∗
σ(X,A) commutes with the

suspension isomorphism.

Proof. This assertion is immediate if one recalls that, given an element
of Ωk

σ(X,A) represented by a σ-structured manifold over (X,A), p:M l−k → X

(if X is open in Rl or is an l-manifold), its suspension Σ[M → X] ∈ Ωk+1
σ ((R,R−

(−1, 1)) × (X,A)) is represented by the map (0, p):M → R × X, such that
(0, p)(m) = (0, p(m)), with the obvious induced σ-structure (given by the stabil-
ity property of the structure σ).

Since, on the other hand, given an (n, n+ k)-FPS(X,A),

Rn × E ⊃ V
f−→ Rn+k × E,

representing an element of FIXk
σ(X,A), the fixed point set of its suspension

Fix(fΣ) ≈ Fix(f) (as it was defined just before Proposition 1.11) maps into
R×X precisely in 0 in the R-component and as the original projection of Fix(f)
into the X-component, then we have that, indeed, the index commutes with the
suspension isomorphisms. �
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We then have that the index is a natural transformation of cohomology the-
ories from FIX-cohomology to σ-cobordism.

The main result of this paper states that the index yields a natural isomor-
phism between FIX∗ and framed cobordism, Ω∗

fr, as multiplicative cohomology
theories. There are two ways of proving this. One is through a shortcut estab-
lished by two facts; on the one hand that FIX∗ and stable cohomotopy π∗st are
isomorphic ([5]), and, on the other hand, the fact that, via the Pontryagin–Thom
construction, Ω∗

fr and π∗st are isomorphic.
The other way of proving the main result is by directly defining an inverse

of the index I: FIXm−n(X,A) → Ωm−n
fr (X,A).

In the next paragraph, we follow the first way.

3. The Pontryagin–Thom construction

Let X be an l-dimensional manifold without boundary and let A ⊂ X be a
closed set. Let M l−k → X be a proper manifold over (X,A). A trivialization of
its normal bundle is an isomorphism

ϕ: ν(M)⊕ p∗(τ(X)) ∼= M × Rl+l′ ,

where ν(M) is the normal bundle of M , that is, the normal bundle of an embed-
ding e:M ↪→ Rl+l′−k, and p∗(τ(X)) is the pullback to M of the tangent bundle
of X (which is trivial for open sets X ⊂ Rl). By taking the vertical embed-
ding e′ = (e, p):M ↪→ Rl+l′−k × X (with its image inside Rl+l′−k × (X − A)),
we have that its normal bundle ν(e′) is the bundle ν(M) ⊕ p∗(τ(X)), which is
homeomorphic to a tubular neighbourhood of M in Rl+l′−k × X, so that the
Pontryagin-Thom construction for this embedding, that is the result of adding
to Rl+l′−k × (X − A) a point at infinity and then collapsing the complement
in it of the tubular neighbourhood of M (which is homeomorphic to M × Rl+l′

via ϕ), together with the projection M+ → S0, yields a map

Σl+l′−k(X/A) // Sl+l′

(Rl+l′−k × (X −A))∗ // (ν(M)⊕ p∗(τ(X)))∗ ≈ Σl+l′(M+) // Σl+l′S0

this is, namely, a representative of an element in πk
st(X,A).

If we call Ωk
fr(X,A) the cobordism group of proper manifolds over (X,A),

structured with a trivialization of their normal bundle, we obtain a function

Φ: Ωk
fr(X,A) → πk

st(X,A),

which we call the Pontryagin–Thom homomorphism.
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Conversely, given a pointed map

f : Σl+l′−k(X/A) → Sl+l′ = Rl+l′ ∪∞,

representing an element in πk
st(X,A), we may deform it to a smooth pointed

map having 0 as a regular value. Hence M = f−1(0) ⊂ Σl+l′−k(X/A) is a
manifold of dimension l − k, l = dim(X), lying, in fact, in Rl+l′−k × (X −A) =
Σl+l′−k(X/A) − {∗}. The restriction of the projection p:M → X − A ⊂ X is
proper and the canonical trivialization of the normal bundle of 0 ⊂ Rl+l′−k pulls
back to a trivialization of the normal bundle of the embeddingM ↪→ Rl+l′−k×X,
namely of ν(M)⊕ p∗τ(X). We have therefore an element in Ωk

fr(X,A) and thus
a function

Ψ:πk
st(X,A) → Ωk

fr(X,A),

which is the inverse of the Pontryagin–Thom construction.

Proposition 3.1. For any (X,A) and every k, the following triangle com-
mutes.

FIXk(X,A)
Iπ //

IΩ &&NNNNNNNNNNN
πk

st(X,A)

Ωk
fr(X,A)

Φ

88rrrrrrrrrr

Therefore, if two of the arrows are isomorphisms so is the third.

Proof. Let [f ] ∈ FIXm−n(X,A) be represented by a smooth map

Rn × Rq ×X
f−→ Rm × Rq ×X

transverse to j(y, y′, x) = (0, y′, x). Therefore, its image IΩ[f ] ∈ Ωm−n
rm fr(X,A) is

represented by the projection

p:M = Fix(f) = (j − f)−1(0× 0×X) → X,

together with the trivialization of its normal bundle ν(M)⊕p∗(τ(X)) ∼= Rm+q×
M given by the restriction of the derivative

D(j − f): Rn+q × τ(X) → Rm+q × τ(X).

Since the Pontryagin–Thom construction applied to [M → X] collapses the
complement of the tubular neighbourhood T ≈ ν(M)⊕ p∗(τ(X)) ∼= Rm+q ×M

of M in Rn+q ×X, the derivative determines a map

f̂ : Σn+q(X/A) → Σm+q(M+) → Σm+q(S0) = Sm+q.

This map represents the element [f̂ ] = Φ ◦ IΩ[f ] ∈ πm−n
st (X,A).
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On the other hand, the index of f , Iπ[f ] ∈ πm−n
st (X,A) is represented by the

following composite of maps of pairs.

(Rn+q ×X,Rn+q ×X −M)
(j−f)′ // (Rm+q,Rn+q − 0)

(Rn+q ×X, (Rn+q ×X −Bρ) ∪ Rn+q ×A)
?�

OO

_�

��
(Rn+q,Rn+q − D)× (X,A)

����

(Rm+q,Rm+q − D)
?�

OO

����
(Σn+q(X/A), ∗)

ef //___________ (Sm+q, ∗)

where all vertical arrows, except the one on the top left, are homotopy equiva-
lences, some induced by inclusions and some by identifications; here Bρ repre-
sents a neighbourhood of the zero-section in Rn+q ×X built by balls of variable
radius ρ:X → [1,∞] containing the proper manifold M , D represents the unit
ball in the corresponding euclidean space and (j − f)′ represents the euclidean
part of j−f (cf. [7]). That the classes [f̂ ] constructed before and the class [f̃ ] just
constructed coincide inside πm−n

st (X,A) follows from the fact that the derivative
D(j−f) approximates j−f aroundM . Therefore, Φ◦IΩ[f ] = [f̂ ] = [f̃ ] = Iπ[f ].�

4. The inverse of the index

In this section we prove directly that the index

I: FIXk(X,A) → Ωk
fr(X,A)

is an isomorphism by defining an inverse

J : Ωk
fr(X,A) → FIXk(X,A).

Let a proper (l−k)-manifold over an l-manifoldX, g:M l−k → X l, and a triv-
ialization ϕ: ν(M)⊕g∗(τ(X)) ∼= Rq+l×M represent an element in Ωk

fr(X,A). The
normal bundle ν(M) can be realized as a tubular neighbourhood of an embedding
e:M ↪→ RN . Making this embedding fiberwise, that is, taking e′:M ↪→ RN ×X,
such that e′(y) = (e(y), g(y)), the image e′(M) ⊂ RN ×X has a tubular neigh-
bourhood V ⊂ RN ×X, which is homeomorphic to ν(M)⊕ g∗(τ(X)); therefore,
the bundle isomorphism ϕ determines a homeomorphism ψ:V ≈ RN+k ×M .
Consider the map

RN ×X ⊃ V
f−→ RN+k ×X

such that f = (idRN+k × g) ◦ ψ. One easily verifies that f is a map over X such
that f(w, x) = (0, x) if and only if (w, x) ∈ e′(M) ⊂ RN ×X; that is, taking the
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ENRX E = X, the map f is an (N + k,N)-FPS(X,A) such that Fix(f) = e′(M).
In other words, f represents an element [f ] ∈ FIXk(X,A). Moreover, pulling
back the canonical trivialization of the normal bundle of 0 ×X ⊂ RN ×X, we
recover the given trivialization ϕ of ν(M)⊕ g∗(τ(X)).

Let now g:W → X denote a proper framed cobordism between two proper
framed (l − k)-manifolds over (X,A), g0:M0 → X and g1:M1 → X. Now,
there is an embedding e:W ↪→ RN+1 such that its image e(W ) is such that
e(W ) ⊂ RN × I, and (RN ×{ι})∩ e(W ) = e(Mι), ι = 0, 1. If we now extend this
embedding to a fiberwise one e′:W ↪→ RN × I×X = RN ×X × I, as above, it is
easy to see that this embedding has a normal bundle homeomorphic to a tubular
neighbourhood Ṽ of it. Therefore, if ψ̃: Ṽ ≈ RN+k ×W is the corresponding
trivialization of the tubular neighbourhood, we can consider the map

RN ×X × I ⊃ Ṽ
ef−→ RN+k ×X × I

such that f̃ = (idRN+k × g̃) ◦ ψ̃, where g̃:W → X × I is such that g̃(w) =
(g(w), t(w)) and t(w) ∈ I is the component of e′(w) corresponding to the factor
I. As before, Fix(f̃) = e′(W ), so that f̃ is an (N + k,N)-FPS(X,A)×I and
the restrictions f̃ |X×{ι} = f |ι, ι = 0, 1. Therefore, cobordant proper framed
manifolds over a pair (X,A) determine equivalent fixed point situations over
(X,A).

From the discussion above, we have a well defined homomorphism

J : Ωk
fr(X,A) → FIXk(X,A),

which is a (left) inverse to the index I defined in Section 2. We have the following.

Theorem 4.1. The fixed point index I: FIXk(X,A) → Ωk
fr(X,A) is an iso-

morphism with inverse J : Ωk
fr(X,A) → FIXk(X,A).

Proof. We already saw that I◦J = 1Ωk
fr(X,A). In order to verify that J ◦I =

1FIXk(X,A), we have to start with any (N + k,N)-FPS(X,A), f :V → RN+k ×E,
where, by Proposition 1.9, without loss of generality we may assume that E =
Rn ×X and that f is smooth and transverse to j:V → RN+k × E. Hence, the
derivativeD(j−f): τ(V ) = RN×Rn×τ(X) → τ(RN+k×E) = RN+k×Rn×τ(X)
induces a trivialization ϕ of ν(Fix(f))⊕ g∗(τ(X)), (where in this case g:E → X

is the projection). Now, since locally D(j−f) is a linear approximation of j−f ,
one easily verifies that j − f and (idRN+k × g) ◦ ϕ represent the same class in
FIXk(X,A). �

5. Generalizations and remarks

There is a symmetric version of the FIX-cohomology for the action of any
compact Lie group ([6], [7]); namely, an equivariant cohomology theory FIX∗

G

can be defined as follows.
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If X is a metric G-space, that is, a metric space with a continuous G-action,
then we say that a space over X, p:E → X, is a G-euclidean neighbourhood re-
tract over X, or a G-ENRX , if p is an equivariant map and there is an equivariant
embedding i:E ↪→ Q × X, where Q is a real G-module (say, Rq with a linear
orthogonal G-action), such that projX ◦ i = p, an invariant open neighbourhood
U of i(E) in Q×X and an equivariant retraction r:U → E.

Definition 5.1. Let p:E → X be a G-ENRX and let M,N be G-modules.
An (M,N)-fixed point situation over X, or an (M,N)-FPSX , is a commutative
triangle

N × E ⊃ V

p◦projE ((QQQQQQQQQQQQQQ
f // M × E

p◦projEzzvvv
vv

vv
vv

X

where the equivariant map f is properly fixed, that is, it is such that the set
F = Fix(f) = {(y, e) ∈ V | f(y, e) = (0, e) ∈ Rn × E} lies properly over X.

Using this equivariant version of a fixed point situation, one can define in
a completely analogous way groups FIX∗

G(X,A) which constitute an RO(G)-
graded equivariant cohomology theory (which is isomorphic to equivariant stable
cohomotopy).

Remark 5.2. We saw that the fixed point theory, i.e. FIX-theory, provides
an alternative approach to cobordism. In a sense, manifolds, as inverse images of
zeroes which are regular values of smooth maps, are exchanged by fixed point sets
of continuous maps. Transversality theorems are generally false when one deals
with symmetries, since, in general, one may deform a symmetric (equivariant)
map only loosing symmetry. Since FIX-theory admits a symmetric version for
the action of any compact Lie group G, our approach provides an equivariant
alternative to (framed) cobordism.

Remark 5.3. There is a dual approach to FIX∗, which produces the cor-
responding homology theory FIX∗, which happens to be isomorphic to framed
bordism; directly, cap and slant products can be defined in a natural way, thus
enriching FIX-theory. In particular, duality theorems such as Poincaré’s or
Alexander’s can be proved. This FIX-homology has its own equivariant ver-
sion too. Details will appear elsewhere.

Remark 5.4. We have worked out all theory for X either an open set of
a euclidean space or, more generally, for a smooth manifold. Departing from
the case of the open set, there is also a generalization for X a locally closed
subset of a euclidean space, in particular, for ENRs. This is done by extending
the situations considered from X to an open neighbourhood of it in which X
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is closed, in the same spirit as Dold’s construction of the geometric cobordism
groups in [1].

Remark 5.5. Dold [2] constructed the isomorphism FIX0(X) ∼= π0
st(X),

which is a special case of the one given in [5]. On the other hand Koźniewski [4]
proved the special case FIX0(X) ∼= Ω0

fr(X) of our main result Theorem 4.1.
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