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Abstract. We consider closed symplectically aspherical manifolds, i.e.

closed symplectic manifolds (M, ω) satisfying the condition [ω]|π2M = 0.

Rudyak and Oprea [15] remarked that such manifolds have nice and control-
lable homotopy properties. Now it is clear that these properties are mostly

determined by the fact that the strict category weight of [ω] equals 2. We

apply the theory of strict category weight to the problem of estimating
the number of closed orbits of charged particles in symplectic magnetic

fields. In case of symplectically aspherical manifolds our theory enables us

to improve some known estimations.

Introduction

A symplectically aspherical manifold is a symplectic manifold (M,ω) such
that ∫

S2
f∗ω = 0

for every map f : S2 → M . Such manifolds have explicitly appeared in papers
of Floer [4] and Hofer [8] in context of Lagrangian intersection theory. These au-
thors used an analytical advantage of symplectic asphericity: namely, it excludes
the appearance of non-trivial pseudo-holomorphic spheres in M .

However, it turned out that symplectically aspherical manifolds have nice and
controllable homotopy properties. Now it is clear that most of these properties
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are based on the fact that strict category weight of [ω] equals 2 (Lemma 2.1),
here [ω] is the de Rham cohomology class of the symplectic form ω. In [15]
a weak version of this result (but with the same proof!) was used in order to
prove the equality catM = dimM for every closed symplectically aspherical
manifold M . It was an important ingredient in proving of the Arnold conjecture
about symplectic fixed points [12], [15].

In this paper we continue to study symplectically aspherical manifolds and,
in particular, apply the theory of strict category weight to a special problem
in symplectic topology. We show that additional topological arguments enable
us to estimate the number of closed orbits of charged particles in symplectic
magnetic fields. This subject has been recently of substantial interest [6], [9].
In a number of recent papers several estimates appeared and it was noted that
these are probably not best possible. It follows from the results of this paper that
at least in case of symplectically aspherical closed manifolds the corresponding
estimates can indeed be sharpened (Theorem 3.4).

Notice that we don’t prove any new analytic results, we only show that our
topological observations do help to improve the existing estimates [9] in case
of symplectically aspherical manifolds. We think that the technique of cate-
gory weight potentially may have many applications to problems in symplectic
topology, and, in a broader sense, to other non-linear analytic problems.
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research of the second author was partially financed by the Polish Research
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useful discussions.

1. Topological set-up

Definition 1.1 ([10], [5]). Given a map ϕ : A → X, we say that a subset
U of A is ϕ-categorical if it is open (in A) and ϕ|U is null-homotopic. We define
the Lusternik–Schnirelmann category catϕ of ϕ as follows:

catϕ = min{k | A = U1 ∪ . . . ∪ Uk+1 where each Ui is ϕ-categorical}.

Furthermore, we define the Lusternik–Schnirelmann category catX of a space X
by setting catX := cat 1X .

Given a path connected pointed space X, let

(1.2) ε : SΩX → X
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be the map adjoint to 1ΩX , where ΩX is the loop space of X and S denotes the
(reduced) suspension, (see e.g. [18]).

Theorem 1.3 ([17, Theorems 3, 19′ and 21]). Let ϕ : A → X be a map
of connected Hausdorff paracompact spaces. Then catϕ < 2 iff there is a map
ψ : A→ SΩX such that εψ ' ϕ.

Definition 1.4 ([11]). Let X be a Hausdorff paracompact space, and let
u ∈ Hq(X;G) be an arbitrary element. We define the strict category weight of
u (denoted by swgtu) by setting

swgtu = sup{k | ϕ∗u = 0 for every map ϕ : A→ X with catϕ < k}

where A runs over all Hausdorff paracompact spaces.

We use the term “strict category weight”, since the term “category weight”
is already used (introduced) by Fadell–Husseini [2]. Concerning the relation
between category weight and strict category weight, see [11], [16].

We remark that swgtu = ∞ if u = 0.

Theorem 1.5. Let X be a path connected Hausdorff paracompact space, and
let u ∈ H∗(X) be an arbitrary cohomology class.Then the following holds:

(i) if deg u > 0 then swgtu ≥ 1;
(ii) for every map f : Y → X we have cat f ≥ swgtu provided that f∗u 6= 0;
(iii) catX ≥ swgtu provided that u 6= 0;
(iv) for every map f : Y → X we have swgt f∗u ≥ swgtu;
(v) for every v ∈ H∗(X) we have swgt(uv) ≥ swgtu+ swgt v;
(vi) swgtu ≥ 2 iff ε∗u = 0 where ε is as in (1.2).

Proof. (i)–(iv) see [11], [14]. (vi) This follows from Theorem 1.3. �

2. Strict category weight and symplectically aspherical manifolds

Given a space X and an element u ∈ H2(X;G), the notation u|π2(X) = 0
means that

〈u, h(a)〉 = 0 for every a ∈ π2(X)

where h : π2(X) → H2(X) is the Hurewicz homomorphism and 〈−,−〉 is the
Kronecker pairing.

Notice that a symplectic manifold (M,ω) is symplectically aspherical if and
only if [ω]|π2(M) = 0.
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Lemma 2.1 (cf. [15]). Let X be a finite CW -space, and let u ∈ H∗(X; R) be
a cohomology class such that u|π2(X) = 0. Then the following holds:

(i) for every map f : X → K(π1(X), 1) which induces an isomorphism of
fundamental groups,

u ∈ Im{f∗ | H2(K(π1(X); R) → H2(X; R)};

(ii) swgtu ≥ 2.

Proof. (i) Let K := K(π1(X), 1), and let f : X → K be a map such that
f∗ : π1(X) → π1(K) is an isomorphism. Recall that for every space Y the
evaluation homomorphism e : H∗(Y ; R) → Hom(H∗(Y ),R) is an isomorphism.
Furthermore, there is the Hopf exact sequence

π2(X) h−−→ H2(X) −→ H2(K) −→ 0.

So, we have the following commutative diagram with the exact row:

H2(K; R)
f∗−−−−→ H2(X; R)

∼=
y e

y∼=
Hom(H2(K),R)

Hom(f∗,1)−−−−−−→ Hom(H2(X),R)
Hom(h,1)−−−−−−→ Hom(π2(X),R).

Since Hom(h, 1)(e∗u) = 0, we conclude that u ∈ Im f∗.
(ii) Consider the commutative diagram

SΩX
SΩf−−−−→ SΩK

εX

y yεK

X
f−−−−→ K

with εX , εK as in (1.2). Because of (i), u = f∗v for some v ∈ H2(K; R). Fur-
thermore, ΩK is homotopy equivalent to the discrete space π, and so SΩK
is homotopy equivalent to a wedge of circles. Hence, H2(K; R) = 0, and, in
particular, ε∗Kv = 0. Hence, ε∗Xu = ε∗Xf

∗v = (SΩf)∗(εKv) = 0. Thus, by
Theorem 1.5(vi), swgtu ≥ 2. �

Corollary 2.2. Let (M,ω) be a symplectic manifold, and let K denote the
space K(π1(M), 1). The following three conditions are equivalent:

(i) (M,ω) is symplectically aspherical;
(ii) there exists a map f : M → K which induces an isomorphism of funda-

mental groups and such that

[ω] ∈ Im{f∗ : H2(K; R) → H2(M ; R)};
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(iii) there exists a map f : M → K such that

[ω] ∈ Im{f∗ : H2(K; R) → H2(M ; R)}

Proof. (i)⇒(ii) follows from 2.1. (ii) ⇒ (iii) is trivial.
(iii)⇒(i) If [ω] = f∗u for some u ∈ H2(K; R) then u|π2(K) = 0 since π2(K) =

0, and thus [ω]|π2(M) = 0. �

Theorem 2.3. Let (M2m, ω) be a closed symplectically aspherical manifold,
and let

CPn i−−→ E
p−−→M

be a CPn-fibration over M . Then catE ≥ 2m+ n.

Proof. Let u ∈ H2(CPn; R) be a non-zero element. It is well-known that,
for the fibration on hand, its Leray–Serre spectral sequence with real coefficients
collapses, [19]. So, there is an element v ∈ H2(E; R) such that i∗v = u. More-
over, according to the Leray–Hirsch Theorem, see e.g. [18, (15.47)]

(p∗[ω])mvn 6= 0 ∈ H∗(E; R).

Now, by Lemma 2.1, swgt[ω] ≥ 2, and so, by Theorem 1.5(ii), (iv), (v),

catE ≥ swgt((p∗[ω])mvn) ≥ swgt p∗ ([ω]m) + swgt vn ≥ swgt[ω]m + n ≥ 2m+ n,

as claimed. �

3. Application to particle dynamics in magnetic field

In this section we show how one can apply the previous topological obser-
vations to estimation of number of closed trajectories of a charged particle in
a symplectic magnetic field. Mathematically, this problem states as follows.

Let (M,ω) be a closed symplectic manifold, let p : T ∗M →M be the cotan-
gent bundle, and let ϕ be the standard 1-form on T ∗M . Consider the symplectic
form Ω := dϕ + p∗ω on T ∗M . Given a Hamiltonian H on T ∗M , consider the
dynamics

(3.1) iXΩ = dH.

The integral curves of the vector field X are the trajectories of a charged particle
in a magnetic field with the Hamiltonian H.

Choose a Riemannian metric g and an almost complex structure J on M

such that ω(Y, Z) = g(Y, JZ) for every vector fields Y,Z on M , and consider the
so-called metric Hamiltonian H : T ∗M → R, defined by H(ξ) = 〈ξ, ξ〉g for every
covector ξ on M . Kerman [9] proved that, for every ε > 0 small enough, the
energy level H−1(ε) contains at least m+cl(M) closed trajectories of the vector
field X as in (3.1); here cl denotes the cup-length. In greater detail, Kerman
proved the following
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Theorem 3.2 ([9]). For any metric Hamiltonian H and every ε small eno-
ugh, there is a fiber bundle p : Σ →M with the following properties:

(1) Σ ⊂ H−1(ε);
(2) p : Σ →M is a locally trivial bundle with the fiber S2m−1;
(3) there is a free fiberwise S1-action on Σ, and the restriction of this action

to any fiber coincides with the standard S1-action on S2m−1;
(4) the energy level H−1(ε) contains at least 1 + cat(Σ/S1) closed trajecto-

ries of the vector field X.1

Notice that the projection p : Σ →M yields a locally trivial bundle

q : Σ/S1 →M

with the fiber S2m−1/S1 = CPm−1. Because of this, Kerman obtains the esti-
mation

cat(Σ/S1) ≥ cl(Σ/S1) ≥ clM + cl(CPm−1) = clM +m− 1,

and, in particular, the following corollary.

Corollary 3.3. The set H−1(ε) contains at least m+ cl(M) closed trajec-
tories of X.

We remark that this estimation can be improved if the symplectic form ω

on M is aspherical.

Theorem 3.4. Let (M2m, ω) be a closed symplectic manifold such that
[ω]|π2(M) = 0, and let H be a metric Hamiltonian on T ∗M . Then, for every
ε small enough, the set H−1(ε) contains at least 3m closed trajectories of the
vector field X as in (3.1).

Proof. Since Σ/S1 is fibered over M with the fiber CPm−1, we conclude
that, by Theorem 2.3, cat(Σ/S1) ≥ 3m− 1. Now the result follows from Theo-
rem 3.2(4). �

Remarks 3.5. (1) Using the language of mathematical physics, Theorem 3.4
can be reformulated as follows. A charged particle on a symplectically aspherical
manifold, under the influence of the symplectic magnetic field, has at least 3m
closed trajectories on any sufficiently low kinetic energy level.

(2) Clearly, cl(M) ≤ 2m for every connected 2m-dimensional manifold M .
Furthermore, there are many examples of closed symplectic manifolds with as-
pherical symplectic form and such that clM < 2m, see Proposition 4.3 below. So,
for closed symplectically aspherical manifolds the estimation from Theorem 3.4
is stronger than this one from Corollary 3.3.

1Notice that the Lusternik–Schnirelmann category considered in our paper is one less then

the Lusternik–Schnirelmann category used in [9].
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4. Examples

In this section we present examples of symplectically aspherical closed mani-
folds. These examples give the reader a picture of the class of manifolds covered
by the results of the present paper.

To start with, notice that there are two constructions which preserve sym-
plectic asphericity. First, the Cartesian product of two symplectically aspherical
manifolds is symplectically aspherical. Second, if f : (M,ω) → (N,σ) is a map
of symplectic manifolds with f∗σ = ω, then (M,ω) is symplectically aspherical
provided (N,σ) is. This can be proved directly or deduced from Corollary 2.2.

As a special case, consider a symplectically aspherical maniflod (M,ω) and
a branched covering p : M̃ → M such that the branch locus is a symplectic
submanifold of codimension 2. Then M̃ possesses a symplectic form ω̃ with
[ω̃] = p∗[ω], [7]. Thus, (M̃, ω̃) is symplectically aspherical.

Notice that if a manifold, say, M is covered by Rn, then it is necessarily
aspherical, i.e. πiM = 0 for i > 1. Therefore, for any symplectic manifold
covered by Rn we have π2M = 0 and, in particular, the condition [ω]|π2M = 0 is
trivially satisfied. So, taking quotients of simply connected solvable Lie groups by
lattices (if there are any), we get many examples of aspherical closed manifolds.

Example 4.1 (nilmanifolds and solvmanifolds). Let N be any simply con-
nected nilpotent Lie group with the Lie algebra n satisfying the following condi-
tion: there exists a basis e1, . . . , en of n such that all the structural constants ckij
of n with respect to this basis are rational numbers. By the Malcev Theorem, N
necessarily admits a lattice, i.e. a discrete co-compact subgroup Γ. Hence we can
form a closed aspherical nilmanifold N/Γ. One can easily get a characterization
of symplecticness of such manifolds. It is known that each cohomology class in
H∗(N/Γ) contains a homogeneous representative, i.e. a differential form whose
pullback to N is an invariant differential form on Lie group N , see [20, Chap-
ter 2, Theorem 1.3]. Hence, every cohomologically symplectic manifold of the
form N/Γ is symplectic. (Recall that a closed connected smooth manifold M2n

is called cohomologically symplectic if it possesses a 2-form ω such that [ω]n 6= 0.)
One can check the cohomological symplecticness by calculating the Chevalley–
Eilenberg complex for n. So, we have the following fact.

Proposition 4.2. Any closed cohomologically symplectic nilmanifold M =
N/Γ is simplectically aspherical.

Now we present an explicit example of a symplectically aspherical closed
4-dimensional manifold K for which clK = 3 and catK = 4. Consider the
Kodaira–Thurston manifold K = (N3/Γ)× S1 defined as follows. Let N3 stand
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for the 3-dimensional Heisenberg group of all matrices of the form 1 a b

0 1 c

0 0 1


where a, b, c ∈ R and Γ denotes the subgroup of N3 consisting of all matrices with
integer entries. The cohomology of K is easy to calculate as was indicated below
(see also [20]): the Chevalley–Eilenberg complex of K is given by the formula

Λ(α, β, γ, δ), d), dα = dβ = dδ = 0, dγ = α ∧ β,

where Λ denotes the exterior algebra generated by α, β, γ, δ and these generators
have degree 1. Hence the vector space H1(K; R) ' R3 is generated by [α], [β], [δ]
and, obviously, the length of the longest product in H∗(K; R) is ≤ 3. In fact,
cl(K) = 3, the element [α][δ][βγ] gives us the product of length 3. Notice that K
is symplectic, since the cohomology class [α∧ δ+ β ∧ γ] is symplectic. However,
cat (K) = 4, since catV = dim V for any closed aspherical manifold V (see [1]).
Thus, 3 = clK < catK = 4.

The previous example can be obviously generalized to any symplectic nil-
manifold. Indeed, the Chevalley–Eilenberg complex of any nilmanifold N/Γ has
the form (Λ(x1, . . . , xn), d) with n = dim(N/Γ) = dim N and the degrees of
generators xi being 1. If N/Γ is not a torus (i.e., if Γ is not Abelian), then
Ker d 6= 0, and so dxi 6= 0 for at least one xi. Hence, any cup-product of any n
cocycles is a boundary, and we obtain the following proposition.

Proposition 4.3. For any cohomologically symplectic non-toral nilmanifold
N/Γ

cl(N/Γ) < n = dim (N/Γ) = cat(N/Γ).

In the same fashion one can analyze solvmanifolds. Here, however, it is not so
easy to prove the existence of lattices and symplectic structures (cf. [20]). Nev-
ertheless, there is a certain class of solvmanifolds where the answer is essentially
the same as that for nilmanifolds. We say that a simply connected solvable Lie
group G is completely solvable, if for the Lie algebra g of G all the operators

adV : g → g, V ∈ g,

have only real eigenvalues. Now, the following proposition can be proved simi-
larly to Proposition 4.2.

Proposition 4.4. Let Γ be a co-compact discrete subgroup of a completely
solvable Lie group G. If the manifold M = G/Γ is cohomologically symplectic,
then it is symplectically aspherical.

Notice that there are also examples of symplectically aspherical closed mani-
folds with non-trivial π2, but the corresponding explicit constructions are rather
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delicate and have very recently appeared [7]. The general description of the whole
class of symplectically aspherical manifolds is given in Corollary 2.2. However,
it seems rather difficult to use it to construct explicit examples. Recently Gompf
produced such examples as branched coverings.

Theorem 4.5 ([7]). Let p : X̃ → X be a d-fold branched covering of an
orientable 4-manifold X such that the branch locus B ⊂ X is obtained from
a generically immersed surface B∗ ⊂ X by smoothing all double points. If B∗

has k ≥ 1 double points then π2(X̃)⊗ R 6= 0.

So, if one takes any 4-dimensional closed symplectically aspherical manifold
(X,ω) (e.g. the Kodaira–Thurston manifold) and a branched covering p : X̃ → X

as in Theorem 4.5, then (X̃, ω̃) (described in the beginning of the section) is
a simplectically aspherical manifold with π2(X̃) 6= 0.

Example 4.6. We can get more aspherical closed manifolds by considering
lattices in semisimple Lie groups of non-compact type. It is known [3] that
any simply connected semisimple Lie group contains a torsion-free, discrete, co-
compact subgroup. Consequently, any symmetric space of non-compact type
is the universal covering space of a locally symmetric space M . Hence, M is
a closed and aspherical manifold.

In the same fashion, we can consider hyperbolic manifolds (examples: Rie-
mannian surfaces).
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[9] E. Kerman, Periodic orbits of Hamiltonian flows near symplectic critical submanifolds,

Preprint, 1999, Math. DG/9903100.

[10] L. A. Lusternik and L. G. Schnirelmann, Methodes Topologiques dáns le Problèmes
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