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SHARKOVSKĬI THEOREM FOR MULTIDIMENSIONAL
PERTURBATIONS OF ONE-DIMENSIONAL MAPS II

Piotr Zgliczyński

Abstract. We present a multidimensional generalization of the Sharkov-
skĭı Theorem concerning the appearance of periodic points for the self-maps

on the real line.

Introduction

Let f : X → X be a map. We say that x ∈ X is a periodic point of period
n if fn(x) = x and fk(x) 6= x for k = 1, . . . , n− 1.
We begin with recalling the Sharkovskĭı Theorem.

Theorem 1. Let the ordering of positive integers be as follows:

3 C 5 C 7 C . . . C 2 · 3 C 2 · 5 C 2 · 7 C . . . C 22 · 3 C 22 · 5 C . . .

C 23 · 3 C 23 · 5 C . . . C 23 C 22 C 2 C 1.

Let f : I → R be a continuous map of an interval into the real line. If n C k and
f has a periodic point of period n then f also has a periodic point of period k.

The ordering described in Theorem 1 is called the Sharkovskĭı ordering. We
reserve the symbol “C” for this order.
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Let f : R → R be a continuous map. Let V be a real Banach space and
let the continuous decomposition V = R ⊕ W be given. According to this
decomposition we will represent elements v ∈ V as pairs v = (x,w), where x ∈ R
and w ∈W . Let F : [0, 1]× V → V be a continuous and compact map. We will
use the notation Fλ for the partial map with the fixed λ, so Fλ(v) := F (λ, v)
for v ∈ V . Suppose that F0(x,w) = (f(x), 0). We say that the maps Fλ are
multidimensional perturbations of f . Let us recall that a continuous map is
called compact, if and only if it maps bounded sets into relatively compact sets.
The main theorem proved in this paper is stated below

Theorem 2. Let f , F be as above. Suppose f has a point of period n. For
every r > 0 there exists λ0 > 0 such that, for λ ≤ λ0, if n C m, m 6= n then Fλ
has a periodic point of period m in the set R⊕BW (r), where BW (r) is an open
ball in W of radius r.

The above theorem was proved in [9] with the additional assumption that F
is uniformly continuous.
In this paper we present only modifications to the arguments from [9] re-

quired for the proof of Theorem 2, so without referring to [9] this note is rather
unreadable.
Sections 1–5 correspond to analogous sections in [9]. In all these sections

but 3 even the header of the section is preserved.
The idea of the modifications can be explained as follows. In a study of

periodic points it is enough to consider only points which are in the image of the
map, which in our case is a compact set.
Another modification is a simpler proof of the existence of a nested sequence

of topological horseshoes for one-dimensional maps (see Section 3).
Section 6 contains some remarks concerning the relevance of the presented

results in the context of ordinary differential equations.

1. Topological theorems

This section is a modification of analogous section in [9]. We will use the
notations used there. The changes begin with a new definition of covering rela-
tions.
Let us fix an r > 0. We define N , L(N), R(N), SL(N), SR(N) as in [9].

Definition 1. Let f : (−∞,∞)×BW (r)→ V be a continuous and compact
map and A ⊂ V such that

f(N) ∩N ⊂ A, A ∩ L(Ni) 6= ∅, A ∩R(Ni) 6= ∅.

We say that Ni f-covers horizontally Nj with respect to A if and only if

(1) f(A ∩N) ⊂ (−∞,∞)×BW (r),
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and either

(2) f(L(Ni) ∩A) ⊂ SL(j) and f(R(Ni) ∩A) ⊂ SR(j),

or

(3) f(L(Ni) ∩A) ⊂ SR(j) and f(R(Ni) ∩A) ⊂ SL(j).

We will use the following graphical notation for this relation Ni
f,A
=⇒Nj . In the

case N ⊂ A we will often omit the set A (this coincides with the notation
from [9]).

Let us fix an n > 0. Let α = (α0, . . . , αn−1) ∈ {0, 1, . . . ,K − 1}n. Let

Z =
K−1⋃
i=0

Zk ⊂ V.

For an indexed family of the continuous maps

fi : (−∞,∞)×BW (r)→ V, for i = 1, . . . , n,

we define

Zα := {v ∈ Zα0 | fi ◦ . . . ◦ f1(v) ∈ Zαi , for i = 1, . . . , n− 1},

and similarly, for an indexed family of homotopies

Fi : [0, 1]× (−∞,∞)×BW (r)→ V, for i = 1, . . . , n,

and Fi,λ we set

Zλα := {v ∈ Zα0 | Fi,λ ◦ . . . ◦ F1,λ(v) ∈ Zαi , for i = 1, . . . , n− 1}.

The following theorem is a generalization of theorems about topological
horseshoes by Mischaikow and Mrozek [4, Theorem 2.3] and Zgliczyński [8].

Theorem 3. Let α = (α0, . . . , αn−1) ∈ {0, . . . ,K − 1}n. Let the maps

Fi : [0, 1]× (−∞,∞)×BW (r)→ V, for i = 1, . . . , n

be continuous and compact. Let

ImF =
⋃
i

Fi([0, 1]×N).

Suppose that we have the following relations, for every λ ∈ [0, 1],

Nαi−1
Fi,λ,ImF=⇒ Nαi , for i = 1, . . . , n− 1,

Nαn−1
Fn,λ,ImF=⇒ Nα0 ,
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then the fixed point index I(Fn,λ ◦ . . . ◦F1,λ, intNλα) is well defined and constant
(i.e. does not depend on λ).

Proof. For δ > 0 define

L(Ni, δ) := [a2i, a2i + δ]×BW (r),(4)

R(Ni, δ) := [a2i+1 − δ, a2i+1]×BW (r),(5)

V (Ni, δ) := L(Ni, δ) ∪R(Ni, δ),(6)

H(Ni, δ) := [a2i, a2i+1]× (BW (r) \BW (r − δ)),(7)

H(N, δ) := H(N0, δ) ∪H(N1, δ) ∪ . . . ∪H(NK−1, δ).(8)

For δ < a2i+1 − a2i the sets L(Ni, δ), R(Ni, δ), H(Ni, δ) are contained in Ni
and are equal to the δ-thickened left vertical, right vertical and the union of
horizontal edges in Ni, respectively.
Let Z ⊂ N . We introduce the notation

(9) Fixλ(Z) := {x ∈ Z | Fn,λ ◦ . . . ◦ F1,λ(x) = x}.

It follows from the compactness of Fi that ImF is a compact set. It is easy to
see that, for λ ∈ [0, 1],

(10) Fixλ(Nλα) ⊂ ImF.

Obviously, Fixλ(Nλα) is a compact set.
From the compactness of ImF and assumptions concerning covering relations

we easily conclude that there exists δ > 0, such that for i = 1, . . . , n and λ ∈ [0, 1]
the following conditions hold

Fi,λ(V (Nαi−1 , 2δ) ∩ ImF ) ∩Nαimodn = ∅,(11)

H(Nαi , 2δ) ∩ Fi,λ(Nαi−1 ∩ ImF ) = ∅.(12)

We define

Ci := (a2i + δ, a2i+1 − δ)×BW (r − δ),(13)

Di := (a2i + 2δ, a2i+1 − 2δ)×BW (r − 2δ).(14)

We have

(15) B(Di, δ) ⊂ Ci, B(Ci, δ) ⊂ IntNi.

Obviously the sets Dλα and C
λ
α are both open and the set N

λ
α is closed for

λ ∈ [0, 1].
We will show now that, for λ ∈ [0, 1],

(16) Fn,λ ◦ . . . ◦ F1,λ(x) 6= x, provided x ∈ Nλα \Dλα.
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Suppose that (16) does not hold. Then there exists an x ∈ Nλα \ Dλα and 0 ≤
i0 ≤ n− 1 such that

Fn,λ ◦ . . . ◦ F1,λ(x) = x,(17)

Fi0,λ ◦ . . . ◦ F1,λ(x) ∈ (Nαi0 \Dαi0 ).(18)

It follows from (12) and (14) that

(19) Fi0,λ ◦ . . . ◦ F1,λ(x) ∈ V (Nαi0 , 2δ).

It follows from this and from (11) that

(20) Fi0+1,λ ◦ . . . ◦ F1,λ(x). /∈ Nα(i0+1)modn .

So, if i0 < n − 1 then x /∈ Nλα , and if i0 = n − 1 then it follows from (20) that
x can not be a fixed point for the map Fn,λ ◦ . . . ◦ F1,λ. In both cases we get
a contradiction, so (16) holds.
From (16) it follows immediately that

(21) Fixλ(Dλα) = Fixλ(C
λ
α) = Fixλ(intN

λ
α) = Fixλ(N

λ
α).

Let λ0 ∈ [0, 1]. It follows from the uniform continuity of continuous maps on
compact sets that there exists an interval Λ open in [0, 1], λ0 ∈ Λ, such that for
every λ1, λ2 ∈ Λ, i = 1, . . . , n and x ∈ ImF holds

(22) |Fi,λ1 ◦ . . . ◦ F1,λ1(x)− Fi,λ2 ◦ . . . ◦ F1,λ2(x)| ≤ δ.

We will show now the following inclusions for λ ∈ Λ

(23) ImF ∩Dλα ⊂ ImF ∩ Cλ0α ⊂ ImF ∩ int(Nλα).

Let x ∈ ImF ∩Dλα. Then

Fi,λ ◦ . . . ◦ F1,λ(x) ∈ Dαi , for i = 1, . . . , n− 1.

However, it follows from (15), (22) that

Fi,λ0 ◦ . . . ◦ F1,λ0(x) ∈ Cαi , for i = 0, . . . , n− 1.

Thus x ∈ ImF ∩ Cλ0α . The proof of the second inclusion is analogous. Because
Fixλ(Cλ0α ) ⊂ ImF , we obtain from (21) and (23) for λ ∈ Λ

(24) Fixλ(Cλ0α ) = Fixλ(N
λ
α).

Since Fixλ(Nλ0α ) is a compact set then it follows from (21) and (24) that the
fixed point indices of the map Fn,λ ◦ . . . ◦F1,λ relatively to the sets intNλα , Cλ0α ,
Dλα are well defined and from the excision property of the fixed point index [9]
we conclude

(25) I(Fn,λ◦. . .◦F1,λ, Dλα) = I(Fn,λ◦. . .◦F1,λ, Cλ0α ) = I(Fn,λ◦. . .◦F1,λ, intNλα),



174 P. Zgliczyński

for all λ ∈ Λ. Substituting λ := λ0 we derive

(26) I(Fn,λ0 ◦ . . . ◦ F1,λ0 , Dλ0α ) = I(Fn,λ0 ◦ . . . ◦ F1,λ0 , Cλ0α ).

From (21) and (24) it follows that

FixΛ(C
λ0
α ) :=

⋃
λ∈Λ

Fixλ(Cλ0α ) ⊂ Cλ0α ,(27)

FixΛ(C
λ0
α ) =

⋃
λ∈Λ

Fixλ(Nλα).(28)

From the above condition and the compactness of the maps Fi,λ we see that
FixΛ(C

λ0
α ) is compact.

Now, from the homotopy property of the fixed point index, we obtain

(29) I(Fn,λ ◦ . . . ◦ F1,λ, Cλ0α ) = I(Fn,λ0 ◦ . . . ◦ F1,λ0 , Cλ0α ) for all λ ∈ Λ.

From (25), (26) and (29) we conclude

(30) I(Fn,λ ◦ . . . ◦ F1,λ, Dλα) = I(Fn,λ0 ◦ . . . ◦ F1,λ0 , Dλ0α ) for all λ ∈ Λ.

From the connectedness of [0, 1], (30) and (25) we get

I(Fn,λ ◦ . . . ◦ F1,λ, IntNλα) = I(Fn,0 ◦ . . . ◦ F1,0, IntN0α) for all λ ∈ [0, 1].

This finishes the proof. �

The following theorem calculates the fixed point index of the composition
Fn,λ ◦ . . . ◦ F1,λ on the set int Nλα for multidimensional perturbations of one-
dimensional maps.

Theorem 4. Let α = (α0, . . . , αn−1) ∈ {0, . . . ,K − 1}n. Let Fi : [0, 1] ×
N → V for i = 1, . . . , n be continuous and compact. Suppose that there exist the
one-dimensional maps fi : R→ R such that

Fi,0(x, y) = (fi(x), 0), for i = 1, . . . , n.

Let
ImF =

⋃
i

Fi([0, 1]×N).

Suppose that, for every λ ∈ [0, 1], we have the following relations

Nαi−1
Fi,λ,ImF=⇒ Nαi , for i = 1, . . . , n− 1,

Nαn−1
Fn,λ,ImF=⇒ Nα0 ,

then I(Fn,λ ◦ . . . ◦ F1,λ, intNλα) = ±1.

Proof. It was shown in [9, Theorem 4] that I(Fn,0 ◦ . . .◦F1,0, intN0α) = ±1.
The assertion of the theorem follows now from Theorem 3. �
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Now we are going to define notions of a topological horseshoe and a topological
prehorseshoe.
Let a0 < a1, a2 < a3, (a0, a1)∩(a2, a3) = ∅ and r > 0, N0 = [a0, a1]×BW (r),

N1 = [a2, a3]×BW (r) and N = N0 ∪N1.

Definition 2. A continuous and compact map f : N → V will be called a
topological horseshoe if and only if there exists a compact homotopy F : [0, 1]×
N → V , such that F1 = f and F0 is one-dimensional, such that for A :=
F ([0, 1]×N) and λ ∈ [0, 1] the following covering relations hold

Ni
Fλ,A=⇒Nj , for i, j = 0, 1.

Definition 3. A continuous and compact map f : N → V will be called
a topological prehorseshoe if and only if there exists a compact homotopy F :
[0, 1] × N → V , such that F1 = f and F0 is one-dimensional, such that for
A := F ([0, 1]×N) and λ ∈ [0, 1] the following covering relations hold

N0
Fλ,A=⇒N0, N0

Fλ,A=⇒N1, N1
Fλ,A=⇒N0.

With these definitions the theorems from [9] concerning the existence of
symbolic dynamics for topological (pre)horseshoes are also true.

2. Nested sequences of topological horseshoes

Definition 4. Let f : (−∞,∞)×BW (r)→ V be continuous and compact.
Let l ∈ N, k ∈ N∪ {∞}, 0 < l < k. Let Isi for i = 0, 1 and s = l, . . . , k be closed
intervals such that Isi ⊃ I

s+1
i and int I l0 ∩ intI l1 = ∅. Let Nsi := Isi × BW (r).

We say that f has an (l, k)-nested sequence of topological horseshoes (of vertical
size r), if and only if there exists a continuous and compact homotopy map
F : [0, 1]× (−∞,∞)×BW (r)→ V such that F1 = f and F0 is one-dimensional
and for A := F ([0, 1], N l0 ∪N l1) and λ ∈ [0, 1] holds

Nsi
F sλ ,A=⇒N lj , for i, j = 0, 1 and s = l, . . . , k.

Definition 5. Let f : (−∞,∞)×BW (r)→ V be continuous and compact.
Let l ∈ N, k ∈ N ∪ {∞} 1 < l < k. Let Isi for i = 0, 1 and s = l − 1, . . . , k
be closed intervals such that Isi ⊃ I

s+1
i and int I l0 ∩ int I l1 = ∅. Let Nsi :=

Isi ×BW (r). We say that f has an (l, k)-nested sequence of topological horseshoes
with a prehorseshoe (of vertical size r), if and only if there exists a continuous and
compact homotopy map F : [0, 1] × (−∞,∞) × BW (r) → V such that F1 = f
and F0 is one-dimensional and for A := F ([0, 1], N l−10 ∪N l−11 ) and λ ∈ [0, 1]
holds

Nsi
F sλ ,A=⇒N l−1j , for i, j = 0, 1 and s = l, . . . , k,
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N l−10
F l−1λ ,A
=⇒ N l−1j , for i, j = 0, 1,

N l−11
F l−1λ ,A
=⇒ N l−10 .

With these definitions the results concerning existence of all but a finite
number of periods for nested sequences of topological horseshoes from [9] are
true.

3. Nested sequences of topological horseshoes in dimension one

In this section we present a modification to the argument from [9] concern-
ing the existence of the nested sequences of the topological horseshoes for one-
dimensional maps which have a point of odd period greater than 1.
In [9] the case of period 3 was treated as follows: from the Sharkovskĭı

theorem we know that there exist a point of period 5 and then we considered
case by case all possible permutations, which can be induced by the orbit of
period 5 . This was the content of the proof of Theorem 23 in [9].
Here we consider period 3 separately. Due to this for period 5 we are left with

only one case — described by the Stefan diagram [7] and treated in Theorem 25
in [9].

Lemma 5. Let I ⊂ R be a closed segment and f : I → R be continuous.
Suppose that f has a periodic point of period 3, then f has an (4,∞)-nested
sequence of topological horseshoes.

Proof. Let x0 < x1 < x2 be an orbit of period 3 for f . Without any loss
of generality we may assume that I = [x0, x2].
Without any loss of generality we can also assume that

(31) f(x0) = x1, f(x1) = x2, f(x2) = x0,

because the case of f(x0) = x2 can be obtained from this via symmetry x 7→ −x.
Since I ⊂ f([x1, x2]) we can define

(32) y1 := inf{y | y > x1, f(y) = x1}.

It follows immediately from the Darboux theorem that

x1 < y1 < x2, f(y1) = x1, [x1, x2] ⊂ f([x1, y1]), I ⊂ f2([x1, y1]).

Observe that y1 ∈ (x1, x2) ⊂ f((x0, x1)), hence we can define

(33) y2 = sup{y | y < x1, f(y2) = y1}.

We have

(34) x0 < y2 < x1 < y1 < x2.
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We set

(35) I0 := [x1, y1], I1 := [y2, x1].

We have [x1, x2] ⊂ f(I0) and I ⊂ f2(I0). For I1 we obtain

[y1, x2] ⊂ f(I1), [x0, x1] ⊂ f2(I1), [x1, x2] ⊂ f3(I1), I ⊂ f4(I1).

We can now easily construct inductively the sets Isj for s ≥ 4 and j = 0, 1 with
the following properties

I4j ⊂ Ij , j = 0, 1,
Is+1j ⊂ Isj , j = 0, 1,
fs(Isj ) = I, j = 0, 1.

This gives us an (4,∞)-nested sequence of topological horseshoes. �

We summarize Theorems 22 and 25 from [9] and the above lemma into the
following statement.

Theorem 6. Let I ⊂ R be a closed segment. Let f : I → R be continuous.
Suppose f has a periodic point of odd period n, n > 1. Then f has a (n+1,∞)-
nested sequence of topological horseshoes with a prehorseshoe.

4. Existence of infinitely many periodic points for perturbations

Let W , V = R ⊕W be Banach spaces. Suppose that we have a continuous
and compact map F : [0, 1]×V → V such that F0(x,w) = (f(x), 0). Contrary to
the analogous section in [9] we do not require for F to be uniformly continuous.

Theorem 7. Suppose f has a periodic point of odd period n, n > 1. k > 0.
There exists p ≤ max{n, 5}, such that for every r > 0 there exists λ0 > 0 such
that for λ < λ0 Fλ has a (p+ 1, p+ k)-nested sequence of topological horseshoes
with a prehorseshoe of vertical size r.

Proof. Let p be the smallest odd period for f greater than 3. It follows from
Theorem 6 that f as a one-dimensional map has a (p+1,∞)-nested sequence of
topological horseshoes with a prehorseshoe.

Let the segments Isi , where s = p, p+1, . . . and i = 0, 1 be as in Definition 4.
Let us fix an r > 0. We define Nsi := I

s
i ×BW (r), for i = 0, 1 and s = p, p+1, . . . .

We set Ns := Ns0 ∪Ns1 . Let

A = F
(
[0, 1],

⋃
Np
)
.
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Observe that from the compactness of F it follows that the set A is compact.
From a uniform continuity of F on the compact set [0, 1] × A for sufficiently
small λ we have

(36) F sλ(N
p ∩A) ⊂ (−∞,∞)×BW (r), s = p, . . . , p+ k.

The remaining conditions of the definition of the covering relations are obtained
in the same way for sufficiently small λ. Hence Fλ is a (p + 1, p + k)-nested
sequence of topological horseshoes with prehorseshoe for λ sufficiently small λ.�

Proceeding further as in [9] we obtain the following

Theorem 8. Suppose f has a periodic point of odd period n, n > 1. There
exists an integer M(n) such that, for every r > 0, there exists λ0 > 0 such
that, for λ ≤ λ0 and m > M(n), Fλ has a periodic point of period m in the set
R⊕BW (r).

5. Continuation of individual periodic orbits

In this section we assume that W and V = R ⊕W are Banach spaces. F :
[0, 1]×V → V is a continuous and compact map, such that F0(x,w) = (f(x), 0).
Contrary to the analogous section in [9] we do not assume a uniform continuity
of F .

Suppose that f has a nontrivial periodic point x, so we can define segments
I, Ii and D(f, x) as in [9].

The aim of this section is to show that many periodic orbits, which exist for
f by the Sharkovskĭı theorem, continue for small λ. The only modification in
comparison to [9] is in the proof of the following theorem

Theorem 9. Let p ∈ N, p > 0. Suppose that there exist i0, i1, . . . , ip−1, ip
where i0 = ip such that

Dipip−1 . . . Di1i0 = −1.

Then for every r > 0 there exists λ0 > 0 such that for λ < λ0 there exists a
periodic point zλ such that

F lλ(zλ) ∈ Int Iil ×BW (r), for l = 0, . . . , p− 1,(37)

F pλ (zλ) = zλ.(38)

Before we prove the above theorem we need one technical lemma, which was
proved in [9].
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Lemma 10. Suppose that assumptions of Theorem 9 are satisfied. Then there
exists a family of segments Jl = [dl, ul] for l = 0, . . . , p− 1 such that

Jl ⊂ Int Iil ,(39)

f(Il−1) = Il,(40)

fp(d0) > d0, fp(u0) < u0.(41)

Proof of Theorem 9. Let us fix r > 0. Let

(42) ImF = F ([0, 1]× I ×BW (r)).

It follows from a uniform continuity of F on [0, 1] × ImF that for sufficiently
small λ we have

(43) F sλ((I ×BW (r)) ∩ ImF ) ⊂ (−∞,∞)×BW (r), for s = 1, . . . , p.

Let Jl = [dl, ul], for l = 0, . . . , p − 1 be a family of segments constructed in
Lemma 10. We show now that

(44) I(F p0 , Int J0 ×BW (r)) = 1.

To this end we use the homotopy property of the fixed point index (see [9],
[1], [3]). We define the homotopy H : [0, 1]× V → V by

(45) H(λ, (x, y)) = (1− λ)(fp(x), 0) + λ((d0 + u0)/2, 0).

Let us remark that it follows from (41) for λ ∈ [0, 1] and y ∈W that

x(Hλ(d0, y)) > d0, x(Hλ(u0, y)) < u0,(46)

Fix(H,J0 ×BW (r)) ∩ ∂(J0 ×BW (r)) = ∅.(47)

Therefore, by the homotopy property of the fixed point index and by the formula
for an index of affine maps [9], we obtain (44).
Let λ0 > 0 be such that for λ < λ0 holds

(48) x(F pλ (d0, y)) > d0, x(F
p
λ (u0, y)) < u0,

for |y| ≤ r, (d0, y) ∈ ImF , (u0, y) ∈ ImF . The existence of such λ0 follows from
(41) and a uniform continuity of F p on the set [0, 1]× {(J0 ×BW (r)) ∩ ImF}.
From (48) and (43) we get

(49) Fix(F pλ , J0 ×BW (r)) ∩ ∂(J0 ×BW (r)) = ∅,

for λ < λ0. Therefore, we can apply again the homotopy property to Fλ. We
obtain

(50) I(F pλ , intJi0 ×BW (r)) = 1.
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Now to obtain (37) we find λ1 ≤ λ0 such that for λ < λ1 holds

(51) F lλ({Jl ×BW (r)} ∩ ImF ) ⊂ Int Il+1 ×BW (r), for l = 1, . . . , p− 1.

Again the existence of λ1 follows from (39), (40) and the uniform continuity of
F on compacts. �

Proceeding further as in [9] we obtain the following theorem.

Theorem 11. Suppose f has a point of odd period n, n ≥ 3. Then for every
M ∈ N and every r > 0 there exists λ0 such that for λ ≤ λ0 holds

(∗) if m ≤M and n C m, m 6= n then Fλ has a periodic point of period m
in R⊕BW (r).

Proof of Theorem 2. Observe that Theorem 2 for n odd follows imme-
diately from the above theorem and Theorem 8. The proof of Theorem 2 for
even periods is exactly the same as in [9] with the similar modifications as these
presented in this section. �

6. Conclusions and outlook

Theorem 2 presented here is an example of the following prototype theorem:

Theorem 12. Let I ⊂ R be a closed segment and f : I → R be a continuous
map. Suppose that f has some interesting dynamical property A. Then there
exists δ = δ(f,A), n = n(f) such that every continuous and compact map P :
I ⊕W → R⊕W , satisfying

(52) |P i(x, y)− (f i(x), 0)| ≤ δ, (x, y) ∈ Z, i = 1, . . . , n,

where Z is a suitable compact set containing the set

P (I ⊕BW (r)) ∩ I ⊕BW (r)),

has some interesting property A’ (similar to property A).

To see that Theorem 2 is indeed an example of realization of the above
prototype theorem observe that λ0 from its conclusion is given by the following
condition

(53) |F iλ(x, y)− F i0(x, y)| ≤ δ(n, F0|I), (x, y) ∈ Z, i = 1, . . . ,M(n), λ ≤ λ0,

where n is the smallest (in the Sharkovskĭı ordering) period for F0, I is a closed
interval spanned by the periodic orbit of period n,M(n) is obtained in Theorem 8
and

Z = F ([0, λ0]× I ⊕BW (r)) ∩ I ⊕BW (r)).
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Given the map P , we define homotopy F as follows

(54) Fλ(x, y) = λP (x, y) + (1− λ)(f(x), 0).

In applications the map P can be given as a Poincaré map for an ordinary or
partial differential equation. If the map P possesses an nearly one-dimensional
attractor, then we can define a one-dimensional model map f and we can treat
P as a multidimensional perturbation of one-dimensional map f through the
homotopy (54).
In fact a direct application of Theorem 2 in this case is usually impossible,

because the bounds (53) are very hard to verify even with computer assistance.
However, the methods used in the proof of Theorem 2: topological horseshoes
and a continuation of individual orbits can be applied under much weaker con-
ditions. For an example of such approach to the studies of strange attractors
for Rössler and Lorenz equations the reader is referred to papers [10] and [2],
respectively. In those papers the existence of symbolic dynamics was proved
with computer assistance, we used computer to rigorously check assumptions of
our theorems concerning topological horseshoes.
We think that the methods developed in [9] and the present paper can be

applied to prove prototype theorem also for other dynamical properties of topo-
logical origin like: topological entropy, other forcing relations between periodic
orbits, kneading sequences.
For development concerning topological horseshoes in the case of more than

one expanding direction the reader is referred to other papers by author [11]–[13].
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