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CONCENTRATION OF SOLUTIONS
FOR A NONLINEAR ELLIPTIC PROBLEM
WITH NEARLY CRITICAL EXPONENT

JAN CHABROWSKI — SHUSEN YAN

ABSTRACT. We construct solutions of the Dirichlet problem (1.1)—(1.3)
concentrating at strict local maximum point of the coefficient @ either at
the boundary or in the interior of {2. We also prove the existence of solutions
concentrating at an interior strict local minimum point of Q.

1. Introduction

The main purpose of this paper is to investigate concentration phenomena
for the following Dirichlet problem:

(1.1) —Au=Q(y)u* ' yeq,
(1.2) u>0 y € Q,
(1.3) u=0 y € 09,

where ¢ is a small positive number, 2* = 2N /(N —2), N > 3, Q is a bounded
domain in RY with a smooth boundary 99 and Q(y) is a smooth positive function
in Q.

During the last several years, concentration phenomena for elliptic problems
involving critical or subcritical exponent have been subject of an extensive re-
search. The main problems are to examine the effect of the topology of the

1991 Mathematics Subject Classification. 35J65, 35J20.
Key words and phrases. Dirichlet problem, critical Sobolev exponent.

©1999 Juliusz Schauder Center for Nonlinear Studies

199



200 J. CHABROWSKI S. YAN

domain [3]-[5], [7]-]9], [15], [16], [21], [34], the shape of the domain [1], [2], [6],
[10], [18], [19], [22], [24], [26]-[31], [35]-[38] and the shape of the graphs of co-
efficients [11]-[14], [17], [23], [25], [32], [33] on the number of the solutions. As
far as the authors know, there are no results on the existence of solutions for
(1.1)—(1.3) concentrating at the boundary or at the interior minimum point of Q.

Problem (1.1)—(1.3) always has a least energy solution. It is easy to check
that the least energy solution concentrates at a point x, which is a maximum
point of Q(y) in Q. It is worth pointing out that z, is not necessary a critical
point of @ if x, is on the boundary.

The aim of this paper is to construct solutions for (1.1)—(1.3) concentrating
at various points of (2. We are mainly interested in constructing solutions con-
centrating at a strict local maximum point of @) either at the boundary or in
the interior of 2. We shall also construct solutions concentrating at an interior
strict local minimum point of Q.

Before we state our main results, we introduce some notation.

Let
A(N=2)/2

e () = [N(N — 2)](N-2/4 :
Uz a(y) = [N( ) (1+A2|yfx|2)(N72)/2

It is well known that U, » satisfies
AUpx=UZ", yeRN.

Let P denote the projection from H'(Q) into H!(Q); that is, if w € H(Q),
then Pw is a unique solution of the following Dirichlet problem

{Au:Aw y € Q,

u=0 y € 0.
Let
(1.4) (u,v) = / DuDw, u,v € HY(Q),

Q

1/2

sl = ([ peR) . ueni@),
Q

(1.6) E;x = {v cv € HE(Q), (v, PU,,\) = <v, PaU;’/\>

:<,U’.ZDZJ-93,>\>:O7 ]:17,N}
833‘]'

Now we state the main results of this paper.

THEOREM 1.1. Let z, € OQ be a strict local mazimum point of Q(x) satis-
fying

(1.7) Q(z) < Qo) — alx — o™ for all x € Bs(x,) N Q,
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where § >0 ,a>0anda >0 if N <4, a € [0,4/(N—4)) if N > 5. Then
there is an €, > 0, such that for each € € (0,&,], (1.1)=(1.3) has a solution of
the form

(18) Ue = Off-:PUv:rE,/\5 + Ve,

where ve € Ey_x_, and as € — 0,

e’

(1.9) o = Q(uo) VY,
(1.10) [ve]l = 0,
(1.11) Te — To,
(1.12) Ae — 00,
(1.13) Aed(ze, 002) — o0.

THEOREM 1.2. Let x, € Q be a strict local maximum point of Q(x). Then
there is an €5 > 0, such that for each e € (0,&,], (1.1)~(1.3) has a solution of
the form (1.8) satisfying (1.9)—(1.12).

It is easy to prove that if (1.1)—(1.2) has a solution of the form (1.8) with
Te — To € Q as € — 0, then z, is a critical point of Q(y). Thus a natural
question arises whether Theorems 1.1 and 1.2 hold if z, is a strict minimum
point. We will give an example in the next section, showing that, in general, it
is impossible to construct a solution concentrating at a strict minimum point of
Q(z) on the boundary. We will also prove in the next section that for a strict
local minimum point z, €  with AQ(z,) > 0, (1.1)—(1.3) has no solution of
the form (1.8) satisfying (1.1)—(1.3) if N > 5. Our next theorem shows that if
Q(z) is flat enough around ., (1.1)—(1.3) has a solution concentrating at this

point.

THEOREM 1 .3. Let xg €  be a strict local minimum point of Q(x) satisfying
(1.14) |D'Q(x)| < Clz — xo|*~", 1=1,...,N =2, for all x € Bs(x,),
(1.15) Q(x) — Q(x5)] = colw — o,

where L > N — 2 is a constant. Then there is an €, > 0, such that for each
g € (0,e0], (1.1)~(1.3) has a solution of the form (1.8) satisfying (1.9)—(1.11) and
6)\?_2 —c1 > 0.

In the case N = 3 or 4, we can get a better result.

THEOREM 1.4. Suppose that x, € € is a strict local minimum point of Q(x).
If one of the following conditions is satisfied:

(i) N=3;
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(i) N =4 and
(1.16) K3H(xo,0) — K1AQ(zo) > 0,

where K1 and Ko are the constants from Lemma Al (see Appendiz A),
and H(z,y) denotes the regular part of the Green function for Q,
then the conclusion of Theorem 1.3 holds.

REMARK 1.5. We show in Theorem 2.3 that (1.16) is nearly necessary.
Let K : H(Q) — {0} — R be a functional defined by

fQ | Du|?
(Jo Q) [l —=)27@ =)

(1.17) K(u) =

Following Bahri [3] (see also Rey [34]), in order to prove Theorems 1.1-1.4,
we only need to find a critical point of the form PU,__ + v. for K(u), with
[lve|l = 0. Let

(118) J(.’I}, )\,’U) = K(PUx7)\ + U)?

for all (z,\,v) e M ={z € Q, A > X, v € E;\}, where A is a large positive
constant. It is well known that if ||v|| is small enough, PU, » + v is a critical
point of K (u) if and only if (z,A\,v) € M is a critical point of J(x, A,v) on M,
see for example [3], [4]. [34]. On the other hand, (z, A\,v) € M is a critical point
of J(z,\,v) on M if and only if there are A € R, B € R and G; € R, such that

aJ 9?PU, » 9*PU, o
(1.19) o B< YR > ZG < P > i=1,...,N,

J 0?PU, » a 0°PUy 5
(1.20) = B<a)\2 ,u> Jr.z:Gj<axjaA ,v>,

— APU, , + B
0 Ve #8755 +ZG "oz,

(1.21)
Moreover, it is easy to prove that a critical point of the form PU,  + v for K (u)
is positive if ||v]| is small enough, see for example [34].

The proof of the main results of this paper is based on the comparison of
energy functionals. This method is very effective when we deal with problems
characterised by degeneracy, see [10], [13], [19], [32], [38].

The paper is organized as follows. In Section 2 we present proofs of Theo-
rems 1.1 and 1.2. Since the proof of Theorem 1.2 is similar to that of Theorem 1.1
and even is slightly simpler, we only point out some necessary changes in the
proof. Section 3 is devoted to the proofs of Theorems 1.3 and 1.4. Some technical
estimates needed in the proofs of our main results are given in the appendices.



CONCENTRATION OF SOLUTIONS 203

2. Proof of Theorems 1.1 and 1.2
First of all, we establish a lower bound for the functional J(z, A, v).

LEMMA 2.1. There is a p' > 0, such that for all (z,\,v) € M with ||v|
small,

1
(17/\U)>J($>\0)+p|’0||2+0< +E ln /\+()\d)N_2+2‘9>’

where d = d(x,09), 6 > 0.

PROOF. As in [3] (see also [34]) we expand J(z, A, v) in a neighbourhood of
av=0:

(2.1) I, A v) = (@, A, 0) + (fe;0) + %(quw +O(|J]**"),

where 6 is a positive constant, (f.,v) is a continuous linear form on E, )
equipped with a scalar product from H!(Q) given by

2 [ |DPU, »|?
fQ| A| /Q |PUI)\|2 —e—1,

(2'2) <f€7 > fQ |PU$ )\|2*7s)2/(2*7e )+1

and (Q¢,v) is a quadratic form on E, ) x E, ) satisfying
2
(Jo QW) |PU

DPU, 2
. Dv]? — (2" —e—1 Jo| .
[/Q| 2 R

(2.3) (Qev,v) =

2*—&)2/(2*—5)

~ / Q)[PU, 5> =202
Q

fQ |DPU,, A|2
fQ |PUI N 2*—5)2

. ( /Q Q<y>|pUm’A|2*_5_lvﬂ.

It follows from Lemma A.2 that

1 1
(24) <f5,’U> O<A+€1HA+W(N_2)/2>HU”,
Moreover, according to Appendix D in [34] and Lemma A.2, we have

(2.5) (Qev,v) > pllv]|*.

It is easy to see that Lemma 2.1 follows from (2.1)—(2.5). O

+(2*—6+2)

To proceed further we introduce some notations. For two constants § €
(0,1/2) and L > 3 > 0 we define a set

(2.6) D.={z:2 € QN B.s(x0), d(x,00) >}
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Let H(y,x) be the regular part of the Green function for . For constants
0 < co < 1 we set

I 1/(N-2)
X () = c((zx)) i=1,2

and we define the following set

(2.7)  M.s={(z,\v):2z € D, M€ [ (2),);, ()], veEn, [v| <6}

»7tcy

Constants (8, L and ¢; will be determined later. We now consider the following
minimization problem:

(2.8) inf{J(z, A\, v) : (z,\,v) € M, 5}

It is obvious that for each fixed € > 0 problem (2.8) has a minimizer (z., A, ve).
In order to prove that (zc, ¢, v.) is a critical point of J(z, A, v), we only need to
prove that (z., A, v.) is an interior point of M, 5.

ProOF OF THEOREM 1.1. We prove that if ¢ > 0 is small enough, the
minimizer (z., As,ve) of (2.8) is an interior point of M, 5. First we show that if
¢o and ¢ are suitably chosen, then

(2.9) Ae € (A5(ze), Af(ze))-
Since (z¢, Ac, V) is & minimum point of (2.8), we have
(2.10) J(@e, Aeyve) < (e, A, 0)

for all A € [AS(ze), A5 (2c)]-
In view of Lemma 2.1, we get

1 1
2.11) J(zc, A, 0 PO =+ e+ —————— ) < J(x., A, 0).
(211 e Ao 0) plecl?+O( 55+ 80P Ak i ) < (a0 0)
It follows from Lemma A.1 that
KsH
(2.12) % + Koeln A,
Az
1 E 2 2 £ 1
+O()\g+>\€+6 In® A\, + (/\ng)N72 + ()\sda)Nerze)
KsH
gwjtlggln/\
1
1 E 2 2 E 1
+O()\2+>\+s In? \ + CYALE: + (/\dE)N2+20>'

Since z. € D., we get e& < d. < 8. If we choose 3 satisfying

1 1
2.1 - —
(2.13) ﬁ>max{2 N2’O}’
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then there exists a v > 0, such that

1 c 2/(N-2)
2.14 — < _
(2.14) A2 C(H(%,%))
2/(N-2)
< C(dév_%) < Ce2P+2/(N=2) O(e'),
2 R 1/(N-2) 1 1/(N-2)

. — < —_— — < 2 — —-2).
(2.15) VR O(H(%,%)) 7S Cd.e @ Ce
Consequently, we have

1 _ 5 €

@16 GV =0E), Gt =06, =06,

On the other hand, we have

1 1
2 _ 2 _ 2 _ 1+
(2.17) ¢ ln)\—0<a lngl/(deE) —O<€ ln5L+1/(N2)) = 0(e').

Combining (2.14), (2.16) and (2.17), we see

1 € 21 2 € 1 1+
(2.18) O<)\2 + X +e“In* A + EYALE + ()\ds)N—2+29> =0().
Inserting (2.18) into (2.12), we obtain
KsH LeyTe KsH Tey, Te

(219) ?)é(v_Q)"‘KZfln)\s < %'FKQ&?IH)\-FO(EPWY).
Let

I 1/(N-2) I 1/(N-2)
(2.20) A = t5<(x;’x5)) . A= t(%’xf)) :

We then have from (2.19)

K. K.
(2.21) 5 4 K,Int. < tN—j”z + Kylnt + O(7).

=2 -

Since K3/tV=2 + KyInt, t > 0, attains its global minimum at

t* =

i

(N —2)K]" /N2
[ Ko ]

we conclude from (2.21) that as e — 0,

. 1/(N-2)
te — [(N Q)KS] .

If we choose

Co —

[(N - 2)K3} 1/(N=2) 3 [(N - z)Kg} 1/(N=2)
— ;=g
2

1
2 KQ KQ
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then, for e > 0 small, we have

(2.22) Ae € (A5 (22), AL, (2)).

) ey

Next we prove that ||v|| < ¢ and x. is an interior point of D,. Let n be the
inward unit normal of 02 at z,. Let

(2.23) Ze = To + €N
and fix A} € (A5(z¢), Af(2¢)). Since d(z.,09) =€, we have

L\ V(N-2)
A~ ( 1 2) _ o (N-1/(N-2)
get

Thus it follows from Lemma A.1 that
A1-2/(2"—¢)

B Q(ZE)2/(2*78)
AL-2/(2"—¢)

T Qzo)¥ @9
Al—2/(2"—¢)

- W(l + O(eIn(1/e))).

(2.24) K(PU., xx) (1+0(eln(1/¢)))

(1+0())(1+0(eln(1/¢)))

Hence
A1-2/(2"—¢)

(2.25) J(Tey Ae,ve) < J(26, AL, 0) = W(l + O(eln(1/¢))).

In view of Lemma 2.1 and (2.18), we have

AL-2/(2"—¢)
S W(l + 0(5 111(1/5)))
Consequently, it follows from Lemma A.1 and (2.26) that

AR K3H (2, )
Q(zs>2/(2*s)< )\éV2+K2€[ln)\s+K4]>

(226)  K(PUs. ) + pllve|® + O(e'77)

(2.27)

A1-2/(27—¢)

+pllell + 0 < S gy

14+ O(eln(1/¢))).

Since Q(z¢) < Q(z,), (2.27) implies
lve[|* = O(eIn(1/e)) < 6%/2

for € > 0 sufficiently small.
Now we prove that z. is an interior point of D.. This fact will be established
in two steps.
Step 1. z. ¢ {x : d(z,0Q) = eL'}. Suppose to the contrary that d(z.,0Q) =
el. Then L/(N—-2)
Ae 2 A, (ze) > ¢ (W) > 5%
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Hence
A1—2/(2*—5)

Qao)2/® =
Al-2/(2"—¢)

> Qe
Combining (2.27) and (2.29), we are led to

(2.29) LHS of (2.27) > (1+ Koeln A + O(e))

1+ KoLeln(1/e) 4+ O(¢)).

KyLeln(l/e) + O(e) < Celn(1/e),
where C' > 0 is a constant independent of L. So we get a contradiction if L > 0
is chosen large enough.
Step 2. x. & 0B.s (o). Again arguing indirectly suppose that z. € 0B.s(x,).
Then by the assumption on Q(y), we have

1 1 1+ a/eP+e)
> > .
T - To) — ag - T -
Q(x.)2/ (2 =2) = (Q(x,) B(2+e))2/(27—e) = Q(z,)2/(2"~2)

Hence, if we can choose § > 0 satisfying

(2.30) B2+a) <1,
then
Al-2/(2"—¢) ,
(2.31) LHS of (2.27) > W(l + a9 (1 + O(eIn(1/¢)))
Al-2/(2"—¢)

> GagEe e L+ ae ).

Combining (2.27) and (2.31), we obtain
(2.32) a'eP2F) < O(eln(1/e)),

which is impossible. Thus it remains to prove that we can choose a 8 > 0,
such that (2.13) and (2.30) hold. We distinguish two cases: (i) N > 5 and
(i) N = 3,4. In the case (i) since o € [0,4/(N —4)), we can choose § €
(1/2—=1/(N — 2),1/2) satisfying 8(2 + «) < 1. Finally, if N = 3,4, we can take
£ > 0 sufficiently small such that (2.30) holds.

From Steps 1 and 2 we deduce x. is an interior point of D.. O

ProoOF OoF THEOREM 1.2. Theorem 1.2 can be derived essentially by the
same method as used for Theorem 1.1. We only point out the necessary changes
in the proof.

We consider the minimization problem

(2.33) inf{J(z,\,v) : x € Bs(xo), A€ [eP,e7F], v E,y, |v| <0},
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in place of (2.8), where § < L are some positive constants to be determined
later. Let (z.,As,v:) be a minimizer of problem (2.33). From J(z., As,v:) <
J(xo, A, 0), we easily derive that x. — z,, ||ve|| = 0 as € — 0.
We now show that L > 0 and 3 > 0 can be chosen so that e < A\, < e L.
It follows from Lemma A.1 that
Al-1/(2"—e)

On the other hand, by Lemma A.2, we have the estimate

(2.35) / Q)| PUsr + 02—

(2.34)  J(we,e7!,0) = (1+ Kye[dn(1/e) — K4 + O(19)).

:/ Q)[PUzx + 0 ==+ 0ol =+ A7V)
Bs(xo)

SQ(%)/ |PU,» + 0> =+ O(v]|* =+ 27Y)
B

5(zq)

= o PUz

Qo) [ 1PUA+
2% _¢ (2*_5)(2*_5_1) 2% _e—2 2)

sta(Lu%@A + ZUP%A| v

2
+O<z—:ln)\+

PO AT

1
M\O+(N—=2)/2

—Q(xo)(A - (2" - s)% - €<Aln)\(N2)/2 —/ U? In U)
AN RN

2% — 2 —e—1 «
+( 6)( € )/|PU1,>\|2 —5—21]2)
Q

)|v|| Lol + A7)

2
+ O(EIHA + )\0+(]\72)/2) H’U” + O(H’UHQ*_E + )\_N).
Clearly, (2.35) implies
Al=2/(27=¢) K3H(z,x)
230 o) 2 g (1l RS

+Kﬁ%A—Kﬂ+O@“ﬂ)

- A1) KsH(z,x)
= Qo) =9 N2

+ Koe[ln A — K4| + O(€1+0)) .

Using the inequality J(z:,Ae,v:) < J(x9,e7%,0), we deduce from (2.34) and
(2.36) that

K3H(ze,x.)

(2.37) N2

1
+ Koeln \. < 4Kyeln — + O(e' ).
€
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As in the proof of the previous theorem we now proceed in two steps.
Step 1. A\ < e~ % for L > 0 sufficiently large. Suppose that A\, = e~%. Then
it follows from (2.37) that

LKseln(1/e) < 4Ksen(1/e) + O(e117),

which is impossible if L > 0 is large enough.
Step 2. A. = e P is impossible if # > 0 is small enough. Assuming that
Ae = ¢, we deduce from (2.37) that

eWN=28 < Celn(1/e).
This is a contradiction if 8 > 0 is small enough and this completes the proof. [J

Now we give an example which shows that, in general, a solution for (1.1)—
(1.3) concentrating on the minimum point of Q(y) on the boundary may not

exists.

EXAMPLE 2.2. Let ¢(y) be a continuous function which attains its global

maximum at y = 0 and ¢(y) is decreasing in every direction. For each xg € 99,
define
Qy) = C — oy — z0),

where C' > 0 is chosen large enough such that Q(y) is positive in . Then
using the moving plane method of Gidas, Ni and Nirenberg [22] in the normal
direction of 09 at x,, we see that the maximum point of every solution of (1.1)-
(1.3) is away from a neighbourhood of z,. This means that there is no solution
concentrating on x,.

To close this section we give the following nonexistence result:

THEOREM 2.3. Suppose that z, € € is a critical point of Q(y) satisfying one
of the following conditions:
(i) N >5 and AQ(z,) > 0,
(ii) N =4 and KsH(zo,2,) — K1AQ(x5) < 0, where K1 and K5 are the

constants in Lemma A.1.

Then (1.1)—(1.3) has no solution of the form (1.8) satisfying (1.9)—(1.12).

PROOF. Suppose that there exists a solution of (1.1)—(1.3) of the form (1.8)
and satisfying (1.9)—(1.12). We commence by showing that eln A\; — 0 as e — 0.
Indeed, multiplying (1.1) by PU,_ . and integrating over Q, we get

(2.38) oza/ |DPU,._ . |? :/Q(y)|aEPUx€,AE + 0¥ TFTIPU,, 5,
Q Q

— Qa)a? ! /Q U252+ o(1),
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where o(1) — 0 as € — 0. Consequently, we have
(2.39) t/ |DUP—+0O):m¥*N_”42/Q U +o(1),
RN RN

which yields )\E_(N_Q)E/Z —lase — 0. Henceeln A\, - 0 ase — 0.

Next, we estimate v.. Multiplying (1.1) by v. and integrating over Q, we get
(2.40) /WD%P:/kxmm£U%&+%F““%E
Q Q
cr [ QP
Q
H@ —e =102 2 [ QUIPUZ SR 4 O P,
Q

where 61 > 0 is a constant.
It follows from Appendix D in [34] that there exists a p > 0, such that

€

) [ Do - @ —e= 1022 [ QuIPUZTE 20 [ D0

Combining (2.40) and (2.41) we get

oot < 0( [ QP ).
Q

From this, with the aid of Lemma A.2, we obtain
D
(2.42) u%|§0<§§“”+g)
€

Suppose that N > 5. Multiplying (1.1) by 0PU,,_ x./OA and integrating
over ), we get

8PUJ; by 2* _e—1 aPUx WA
P x ) s - gP T e € . .
(PO 22— [ QU@ + 00 Drr

Arguing as in Lemma B.2 (in fact, in the proof of Lemma B.2, we only use the
assumption that v, » € E, x and the estimate such as (2.42)), we easily arrive
at the following relation

2K1AQ(z:)  Kae 1 € g2 B
(2.43) et telmra)tols) =

Since AQ(z:) >0 and eln A, — 0 as ¢ — 0, we get from (2.43) that

1 €
4+ =<0,
NS

which is impossible.
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Finally, we consider the case N = 4. As in the case N > 5 we derive the
following asymptotic relation

K1AQ(ze) — KsH(ze,x.)  Kae 1 € g2
2 ~ a e —_— =
22 N el A TOl) Y

which contradicts the assumption (ii). O

3. Proof of Theorems 1.3 and 1.4

In this section, except in the proof of Theorem 1.4 we always assume that
Q(y) satisfies the conditions in Theorem 1.3.

PROPOSITION 3.1. There exists an €, > 0, such that for each € € (0,¢&,],
there is a Ct-map v. = ve(z, ), © € {z : d(x,00Q) > do > 0} and X\ > 0 large,
such that (1.21) s satisfied. Moreover,

(3.1) [vell = O(1F/3),
where o > 0 is a constant.

PrOOF. The proof of Proposition 3.1 is standard, see [34]. Estimate (3.1)
follows from Lemma A.2. O

PROPOSITION 3.2. There exists an €, > 0, such that for each € € (0,¢&,],
there exists a C*-map A\ = A\o(x) : Bayr(zo) — R, such that (1.20) is satisfied.
Moreover, \; =t (x)e= Y/ N=2) with

(3.2) |t (x) — to(z)| = O/ N2,

where

. o 1/(N-2)
to(l‘): <(N 2)§§§H( ) )> )

PRrOOF. Using Lemma B.2 or Lemma C.2, we derive the following relation

oJ o (N - Q)KSH((L":L') KQE 1+2/(N—2)
(3.3) = o + =X 406 ).

On the other hand by virtue of Lemma E.1 we have

2 N 2
(34) B<W\,U€> +ZGJ<8 PU:E,)\ v > _ O(€1+2/(N72)).
j=1

N2 Nz, ' °

Consequently, equation (1.20) is equivalent to

N —-2)K3H(x,x) Kse _
(35 (N Hr) | Kot pervasii-ay g,

Letting

(3.6) A =t V/(N=2)
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we deduce from (3.5) that

(N -2)K3H(z,2) K>
o N—1 + -
te

(3.7) +0(eYN=2y = .

€

It is easy to see that (3.7) has a solution

to(z) € (3 ((N - 2)K3H(:c,x)>”(N‘2> 3<(N - 2)K3H(x,z)>1/(N‘2)>.

4 K2 ,2 K2

oJ 9?PU, » 0°PU, »
F(A\)=—-B . Ve ).
0= 55~ e ) - )
Then it follows from Lemma D.1 and Lemma E.1 that
(N-1(N -2)K3zH(z,z) Kse (e1+72/(N=2))

Let

(3.8) F'(\) = = -2 +0
737B 32PUI>\ . _B 33PUI7>\ . _B 82PUI7>\ %
oA ox2 oxs X2 7 OA
N
92PU, » O*PU,
Z[ < 9oz, ’”€> +Gﬂ'< IN20z, ’”€>
j=1
0?PU, » Ove
+G]< 90z, ' DA >]
(N-1(N -2)KsH(z,z) Kse 1+7+42/(N—-2
= N —74'0( +r+2/( ))>0,
for all X € (2 (%;H(m)l/wﬁ), %(%;H(W)I/(Nfﬂ). Consequently,

the equation F'(A) = 0 has a unique solution in

(3<(N — 2)K3H(a, x)>1/ S ((N - z)KgH(x,x))l/w-z))

4 KQE ’ 5 K2€
Let A¢(z) in the unique solution of (1.20) in

(i((N - 2)KK236H(:¢, z))l/(N‘2)7 Z;((N - 2)}(}(211{(1;@))1/(%2))

Since all the terms in (1.20) are of C'! with respect to z and A, we see that \.(z)
is a C! map in x.
Let

(N -2)K3H(z,2) Kj

P(t) = — N : +

We then have
(3.9) $(t(x)) = O N=), (to(x)) = 0.
Sine ¢’ (to(x)) # 0, it follows from (3.9) that
lte(x) — to(x)] = O/ N2). m
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To prove Theorems 1.3 and 1.4 we consider the maximization problem:
sup{J (2, \e (), ve (x, A (2))) : | — 20| < Y/E}.

Then the above problem has a maximiser . € {|z. — 2| < '/*}. In order to

prove that z. is a critical point, we only need to prove that |z, — .| < el/L,

PROPOSITION 3.3. Let z. be a mazimiser of (3.10). Then there exists a
oy > 0, such that |z. — xz.|" = O(e'+92). In particular, if ¢ > 0 is small enough,
Ze 18 an interior point of Boijr(xo).

Proor. It follows from Lemma A.1, Propositions 3.1 and 3.2 that

(3.11)  J(z, Ae(x),ve (2, Ao (2))) = J(2, Ae(2),0) + O(e119)
_ATYE-9 K3H(x,7)
Q)@ -9 A2 (x)

—+ Kgé‘(ln )\5(17) — K4) + O(€1+0) .
Letting
Me() = (@) VD) = (ty(z) + O/ (V-2))e=1/(V=2)

we deduce from (3.11) that

(3.12) J(x, Ae(x), ve (2, Ao (2)))
Alfl/(2*75) Ky 1
= Q(x)Q/(Q**E) |:1 + N 25111 g — Ko Kye

K3H($,.73)

e 22

( t ()
Al—l/(2*—5)

- Gare=a |1+

K3H(z,x)

Jr - 7

( t5""%(x)

+Kalite(o)) +0()]

Ky 1
N 251ng — K5 K e

+ Ko lnto(z)>

+20(t-(a) = t-(0)) + 0(c)]
Al-1/(2"—¢) K, 1
= Q(:C)Z/@*fe) N—ZEIHE —K2K4€

K2 KQH(ZL' 17) 1
K. 1 ’ +ou
+5< 2+N_2n KS +O(€ )a

P+

where o1 > 0 is a constant. Since x. is a maximum of (3.10), we have
J(:L'Ea )\E(xé)7 Us(xm )\a(ma))) > J(mm )\E(:L'O)a 'Ua(wo)v )\5(1’0))-
This, together with (3.12) and

Q(x.) > Q(xo) + Clz — zo|*



214 J. CHABROWSKI S. YAN
implies

(3.13) |z — 2o|F < Ce(ln H(xe,z.) — In H(zo,2,)) + O(e' 1)
= O(elze — o) + O(e1 ).

Hence |z — zo|F = O(e!'792), where 0o > 0 is a constant. The assertion of
Proposition 3.3 readily follows. O

PrOOF OF THEOREM 1.3. We only need to prove that
(3757 )\6(375); 'Ue(msa )\a(ws)»
satisfies (1.19). Indeed, we have by straightforward calculations that

(3.14) 0= oJ 0J oA <8J ov  Ov 8)\>

oz T onom, \ov o, T oxox,
oJ O*PU, » 9*PU, » O\
— o (TR )+ ZG< v )|

OPU,» v N JOPU,, ov
+B< o ’ax,>+JZGJ< oz, ’8xi>
OPUs\ Ov N, JOPU,, 0v\] 0A
[T ) e )]

Jj=1

o.J 92PU, \ N 92PU,
=— — B({ —=22 — (= A .
z; < Nz, ’”> ZGﬂ< 0,0z, ’”>

j=1

=

This obviously shows that (1.19) holds. O

PRrROOF OF THEOREM 1.4. Since all the estimates from Appendix C to Ap-
pendix E are valid for each z € Bs(z,) and A € [coe™ /N =2) ¢~/ (N=2)] under
the conditions of this theorem, we can prove Theorem 1.4 in exactly the same
way as Theorem 1.3. O

Appendix A

LEMMA A.1. Suppose that \ satisfies eln A — 0 as ¢ — 0. Then

(A1) K(PU, ) =

1-2/(2"—e) :
4 [ _ K180 | Kaf(z @) + Kae[ln A — K]

Q(z)Q/(%—s) Q(a:)/\2 ANV-2

N—-2 ;
|DYQ(z)| | « €
+O<Z Y AT D
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where
. 1 . N -2
A2 A= ¥ K = — 2U? =
(A2) [0 K= g PO K = S
1 . 2 .
A. Ky == -1 = 2 .
(A.3) 3= RNU , Ki =5 RNU InU

PROOF. Let ¢, = Uy n — PUy . It then follows from Proposition 1 in [34]

that
H(z,x)
0<pzn < NNz
As in [3] and [34], we have

. BH(z,x) 1
A4 DPU \|*>= | U 'PU,,=A— i
(A4) /Q‘ ,>\| /Q x,A A A\N—2 +0 (Ad)N )

where B = [, Uzz;fl. We also have (see [34]):

(A5) / Q)|PU A2 ¢ = / QW) Usr — ponl”

_ 2 —e _ (o% 2% —e—1 1
—/QQ(?J)U:E,/\ (2 5)/9@@)(]%/\ S090»/\—’_0((/\(1)N1)

ooz Baspen o 1)

_ ‘o o BQ(x)H(x, ) £ 1
—/QQ(y)UiA -5 +O((Ad)N_2 + (Ad)N_l)

and
(a0 [ QU = [ QwUZi-¢ [ QuUZAInUas+ 0 1)

=/Q(y)Ug?,*A—aQ(x)[Aln)\(N‘Q)/Q—/ U nU
Q2 R

1
(Ad)™

+o(i+ )} +O(e2In® \).

Using Taylor’s expansion we write
an [ ewuzi= [ e@uzi+ [ (pQ@.y -z,

+; /Q<chz<x><y — ).y~ U7,

Fo 1Py o 1)
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A .
—Q)A + S / 202

|D(J 1 1
@) — ).
ro X250 o G s
To estimate the integral involving DQ(z) we set Q, » = {y : y/A+z € Q}. Then

. 1
Jpewy—auzi=5 [ we@.mu?

. 1 )
= — D U2 - D U2
)\/B(OM)< Qx),y)U” + A/QM_B(M(D< Q(z),y)

~o(x [ e ™) =00 )

Using the last relation and the radial symmetry of U we deduce from (A.5) that

(AS) /Q Q)| PUL AP

:Q(x)A—EQ(x)(Aln)\(N_Q)/Q—/ U? an)
]RN
AQ(x) - .. BQ(2)H(z,x) = DYQ())|
T oNe /RN WP -2 RS +O<jz=:3 N )

€ € 1 1
of < “In® ).
+ <)\+ )2 +/\N_1 + )N +¢eln >
It is easy to see that Lemma A.1 follows from (A.4) and (A.8). O

LEMMA A.2. Let k be the biggest positive integer satisfying k < (N —2)/2.
For any v € E; \, we have

o 1
(A.9) /QQ(Z/NPUz,,\\Q o = O( — W)”””a

|DIQ( € 1
—O<Z e 3t xpapraan ) Il

« P
(A1) [ QulPU. P,
Q 8Ij

k .
D7 Q(z)] A
:0(21 v A gz ) 10l
iz

where 8 > 0 is a positive constant.
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PRrROOF. In fact, arguing as Rey [34] (see (3.20)—(3.22) there), we have

(A12) /Q@W@MW*%
Q
=AQ@WM
= [ QAP 04 O i
o 2 )P+ =22
:/\*(N*2)5/2/ Q(y +$>|U|2*81U<y +l‘>
Qux A A
1
+ O<w)e+w_z)/z> o]
- A‘<N—2)8/2/ Q(y + ac) U (Y + )
Qun \A A
1
- /\*(N*Q)E/Q/ (Q(y + x) - Q(@) |U2*1u<y + x)
Qua A A
1

kDWW
j=

v

2% —e—1 _ |Ux,)\ 2*7571)

2% —g—1 PUz
v+AQ@O R

me)”W-

Since [0PU, \/ON < CA7'U, \ and |0PU, »/0zj] < CAU, ., we can prove
(A.10) and (A.11) in a similar way. O

Appendix B

From now on, we always assume that x € Q satisfies d = d(z,99Q) > d, > 0,
and v is the function obtained in Proposition 3.1.
Let us define
[l
l u == —*0
= QW

In Lemma B.1 we establish a basic property of the functional I.

LEMMA B.1. The functional | has the following expansion in \:

N—-2

()
WPUz s +ve) = Q(lx)[HO(wl_g + |Dj;;2(x)‘ +5ln)\>}

Jj=1
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PrOOF. From Lemma A.2 and (A.8), we get

(B.1)  U(PUya +v.)
IIPUz A%+ vl

e PUf";E " —e) o Q PUf*Js tve + O(||ve]|?)
|1 PUs, 1 ID(] ( ) 2
_W 1+ 0 \n=272s +Z e’
1 { ( 1 21D (@)| )]
= 140 + Z 7+sln)\ O
o) w2

LEMMA B.2. The derivative of the functional K satisfies

OPU, »
(B.2) <DK(PUI,A+UE), D >
A9 DK AQ(x) (N - 2)K3H(z, @)
T Q@ )W*-a{ Qx >A3 - AN

Kae
)
1

IDDQ() 2 |DDQ(z)| £21n* A
+O<Z A27+1 Z oL )\2 + AN+1 - Y :

Proor. We have

(B.3) <DK(PUM +v.), OPUs \ >

oA
2
fQ |‘PUz A+ e

—l(PUx,)\-I-UE)/Q(y)|PUz,>\+U€‘
Q

OPU, »
27—c)2/(2" ~e) (<PUL/\’ O\ >

2% —e—1 aPUx,A
oA '

y (B.5) in [34], we have

OPU,»\ (N —2)BH(xz,x) 1
(B4) <PUm,)\a 9N > 2)\N—1 +O )\7N .

On the other hand it follows from Lemma A.2 and Proposition 3.1 that

(B.5) / Q| PUs i + vef2 —=1 U
o : B\

«_._10PU,
— P . 2% —e—1 Zz,
[ QuIPUL et 2

- OPUy,, <%
L e e
Q

N A
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. PU,
_ / Q)| PU, A2 =1 2Lz
Q

o\
k .
[D’Q@)]> | (eln))? 1
+O(Z 2\27+1 + Y +)\20+(N—1) :
J=1

Also, by Proposition 1 in [34], we have

—e10PU, A
B P 2% —e—1 x
R

«_._10PU, 5
_ 2 e—1 Z,
= [ Qe 2

—@—e-1) /Q QU 20,

02212 e
+ O(A Uj,A €2
Q

«_._10PU, A
o 2 e—1 x,
= [ Qv P

. e OPU,, 1
—(2 _5—1)/§2Q(y)|UI,>\\2 2<Pz,A B\ A +O(/\N_1+29>

OPU,
AT

and

«_._10PU,
2% —e—1 T,
(B.7) / QU o~ T2

_ 3Ux,\ o100z 2 1
2% —e—1 2% —e—1 o

In view of the symmetry of U, » and U, /0, we have

(B3) / QU= DA

an «_ 10U,
=QUa) [ a1 55+ [ (DQUa)y = U T
Q 12D

. 10Uz x

2 o _ 2% —e—1 x,

+2/Q<D Q) — o),y — ) Uep? 1 Lo

‘D(J)Q 1
Z )\J+1 )\N
Qz e AQz) 1 e
:2*—55/|U“’*A|2 + 21\(7 2 — 56/\/| 1zl

J [DYVQ(x)|
+O< Z )\7+1 )\N>
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~ N-2 e AQ(z) 0o
== gy @@AT - 2*N>\3/ U

\D(J)Q 1 €InA
+ O( Z oL )\Tv + A ’
Following the proof of (B.13) in [34], it is easy to show that

(B.9) /QQ(ZI)WI,A 2 e 10Pen N -2 BQ(z)H (z,x) +O<1 Eln)\)

(2 2 AN—1
Substituting (B.8) and (B.9) into (B.7), we obtain

. . ,0PU,
B.1 - 2 e—1 x,
B10) [ QUL
_ N-2 e AQ(x) 9,9+ N —=2BQ(x)H(x,x)
=~ oy @43 2*N)\3/ WPU™ + =5 AN-1
N—-2 :
|IDWDQ(z)] 1  2InA
+O<jz_:3>\j+1+>\N+)\ -

By Proposition 1 in [34], we have

OPU,
N

(B11) (@ —c-1) /Q QU =200

el OUz »
—(2* —¢—1 - 2% —e—2 - T,
@ == 1) [ QU e
o LT IN
(2 —e—1 2% —e—2 >
@ == [ Qw o 222

o 1 2" _e—2 OUq,x

1
()

U D 0T [ 0 e
RN

ANN-2)/2 B\ PR
- N2_2Q( ))\N (1 )B O(ijl\?—); + )\N—11+29>'
Combining (B.6), (B.10) and (B.11) we obtain
®.12) [ QuIPU.. %
a0 e gt

2 |DWQ(x) 1 £2In A
T O< Z M+ )\N—1+29 + A :
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Inserting (B.12) into (B.5), we get

)
®13) [ QW voem1 O
(o[ ¥ 1)
j=3
+0(§2“ﬁ§+l (diM2+Aw+a‘”)
Then Lemma B.2 follows from (B.3), (B.4), (B.13) and Lemma B.1. O
Appendix C

In this section, we will estimate ||Ov./0M||, where v, is the map obtained in
Proposition 3.1. We assume that Q(y) satisfies the assumptions of Theorem 1.3
and

(C.1) |z — 2| < VL Ne [00571/(1\[72)’61671/(1\]72)].

LEMMA C.1. Suppose that Q(y) satisfies the assumptions of Theorem 1.3.
Then

(C.2) lve|| = O +)72),
where o > 0 is a constant.
PrOOF. In view of Lemma A.2, we only need to check
DU
(C.3) PR _ 140y,
bY
Indeed, by the assumptions imposed on Q(y), we see that if o > 0 is sufficiently
small, then

|DYVQ(x)|

: J <Clz—=z ‘L(1+0) + oA LO+0)i/(Lo+i) — 0(e1+)
N = ° .

O

<C

| — @o| "~
j

LEMMA C.2. Suppose that Q(y) satisfies the assumptions of Theorem 1.3.
Then we have the following estimates:

(04) <DK(PUQC,>\ + U5)7PU3¢,>\> = 0(5170)’
(C.5) <DK(PU,C,,\ +ve), 8138(§\"L’\> - O(€l+a+1/(N—2)))

O(El—o—l/(N—Q)).

P
(C.6) <DK(PU1;,A +0.), 9 U“>

8xj
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PRrROOF. Lemma B.2, together with (C.3), gives (C.5). The relation (C.4)
follows from

(C.7) (DK (PU, » + v.), PU, )

_ e L oem
—0(IPULIP = G50+ O m1/2)

/ Q(y)lpUT,A +U5|2*7€72(PU1,>\ +’U€)PUI,>\>
Q

=0(||PUM||2 - G+ 0Em /) [ QuIPULAF 0<v5||2>)

=O(||PUM||2 — / PUZ, +O(e 1n1/g)> =0(c'77).
Q

Finally, noting |0PU, »/0z;| < CAPU,_ x, we can prove (C.6) in a similar man-
ner. O

ProprosiTION C.3. Let v. be a function from Proposition 3.1. Then

ov,
o\

(08) ‘ — O(El+a/2+1/(N_2)),

To prove Proposition C.3 we need Lemma C.4 below. We write the following
decomposition

N

dv. OPU, OPU,
(C.9) oy =W aPUss + 75 +;”J78xj :

where «, 3 and ; are chosen in such a way that w € E .

LEMMA C.4. Let o, B and v; be coefficients from (C.9). Then

a=o(lEh).s=otu. v =o(lh),

ProoF. We know that «, # and +; satisfy

N

OPU, OPU,
(C.10)  al|PU,|? + 5< I »ﬁpUM> + Zyj<af7PUM> =0,
= i

aPUac,)\ 8PU3;7)\ 2 a ] 8PU9¢7,\ 6PU95,,\
a1 P P ) 4 5 2 DRTE N

PPPU, 5 ol
() o (%)
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oPU, OPU, » OPU,
o) oof s

(C.12) a<PUm,

N
OPU, n OPU, 0?PU,
i : =) =— ——=)=0 .
3 (250, O - (o, E00E) o
Solving the above system we get the desired result. O

For a fixed wg € Ey, »,, let w(z, A) be the orthogonal projection of w, into
E,; x. Then

OPU, ., dPU, »
(C.13)  wo = m(x,A) + afz, ) PUs x +b(z, \) =3 +;gj(x,x) T

LEMMA C.5. The map w(z,\) is C1 with respect to x and )\, and

da(re ) _ o (I
(C.14) a(zo,No) =0, o\ = O( 2 )
Ob(xo, Ao
(©15) oo do) =0, PR o)
agj(xm)\o) _

(0-16) gj(l'o,)\o) =0,

PrROOF. It is clear that a(z, \), b(x, A) and g;(x, ) satisfy

OPU, 5
B

(C.17)  a||PUA|I> + b< 7PUM>

N
oPU,
+Zgj< oz, 7PU:1:,/\> = (wo, PUy »),

j=1

2

P P
(C.18) a<PUm,‘9 U“> bHa Usx

O O
N

aPU$,)\ 8PU;L»,)\ - aPUz,)\
+jz=;g]< axj ) 8)\ >_ <wo7 8)\ >7

OPUsp\ [ OPUsx OPUs

N
8PU:M aPUm’)\ o aPUm,/\
+ Zg]< 893j ’ 8961 > o <wo7 6.’5@ >

j=1

(C.lg) a<PUx,>\,

Solving the above system we easily see that a(z, \), b(z,\) and g;(x, \) are C*
with respect to x and .
On the other hand from the fact that w, € E,_ »,, we easily deduce

a(To, Ao) = b(T0, Ao) = g (%0, Ao) = 0.
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Differentiating (C.17)—(C.19) with respect to A, we get

(C.20) MHPUMOII“" 0b(@o, Ao )<8PUI°A°,PUIO,AO>

132 O OA

99;( xo, o) /OPUy, x,
+Z < O Pl O>

_ OPUsox \ _ o llwsll
(o) o151

da(zo, Ao) OPUy, x, \ . Ob(x0,N0)||OPU,, . |I?
(C.21) B <PU“’°“°’ E)) > E)) E))

+§: 99; (o, Xo) / OPUy, n, OPUs, .
O\ or; ' OA

82‘Plj'$07>\o ||on
2 of )

Oa(zo,ho) / 7 OPU,, x, +8b(xo,/\o) OPU,, », OPU,, x.
O\ TorAor T g O\ o Oz

09, ( mo, 0) /OPU,. ., OPU,.».\ | O*PU,,
+Z (20 D) _ (1, 220 — O,

Solving the above system we get the desired estimate. 0

Jj=1

(C.22)

PrOOF OF PROPOSITION C.3. In view of Lemma C.4, we only need to es-
timate ||w||. Let m(2’, ') be the orthogonal projection of w € E, x onto E, x.
By (1.21), we have

(C.23) (DK(PUy x4 ve (2, X)), m(2’, X)) = 0.
Differentiating (C.23) with respect to A’ and letting (a’, \) = (z, \), we get
OPU;, \ N Ove )

o ox

+ <DK(PU$7,\ + ve), 6‘7r((9x)\,)\)> =0.

(C.24) D?K(PU,+ ve)<

It follows from Lemmas C.2 and C.5 that

(C.25) <DK(PUM + o), 8”5;’ A >

_ Oa
)

<DK(PU AT Ua) PUx,A) + gf\<DK(PUx,)\ + Ua)a aPU%7>\>

B
OPU, 5

N
9;
Z:: a<DK PU,» +v.), .

>0<61”+1/<N2>||w||>.
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Combining (C.24) and (C.25) and taking Lemmas C.2 and C.4 into account we
obtain

(C.26) D?K(PU, \ + v.)(w,w) = —D*K(PU,» + v.)

OPU, OPU,n = OPU, .\
( ) +aPUy\+ 0 B\ +Zj ,w

Lj
+O(€170+1/(N72))Hw”

OPU,» . OPU,.\
o TPy
+O( (140)/241/(N— 2))Hw”

= — D*K(PU, » + ug)<

We now claim that
(C.27) D?*K(PU,  + v:)(w,w) > p|lw]|?,

for some constant p > 0 and

OPU, »
oA

(C.28) DQK(PUZ,,\ + Ue)( ,w> — 0(5(1+")/2+1/(N—2)||w||).

Then obviously (C.27) and (C.28) imply that |Jw| = O(e(+9)/2+1/(N=2)) "and
Proposition C.3 follows.
To prove (C.27)—(C.28), let us write

2(p,9)
fg y)|ul?"—=)2/ " =e)

fﬂ |U<2*_5)>2/(2*—s)+1/QQ(?J)luF*Elw
- Ut lé”@raﬂ/mmw%ﬂw

2 2 fQ *—e— 1@1‘9 |u|2*—5 1¢
+2*€<2*5+ ) fQ

|u|2*7e)2/(2*75)+2

(C.29) DK (u)(p,9) =

72(2* o 1 Hu”2 Q | |2 —&— 2
€= fg Y| —)2/ @ =+ u
Verification of (C.27). First, we observe that
(C.30) (PU, » + v, w) = (ve, w) = O/ 2|w]),

By Lemma A.2, we see

(C.31) / Q(y)|PUx,>\ + 06‘2*76711”
Q

:AQ@WV

P+ O(||velllwll) = O+ awl]).
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It follows from (C.30) and (C.31) that
2
(fQ Q(y)|PUx,>\ + Ve

) (||w||2 — (2" —e—-DI(PUz» + UE)/ Q)| PU,x + v5|2*_5_2w2>
Q
+O0(e"|Jw|?).

(C.32) D?K(PU,\ +v.)(w,w) = FoapE I

Thus (C.27) follows from (C.32) and Appendix D in [34].
Verification of (C.28). We have

oPU,
(©.33) < v A,w>:o, <PUx,A+va,w>:o<||v5||w||>,

OPU, _ OPU, » _ 1
(C34) <PU(E,)\ + Ve, O\ > - <PUw,)\a I\ > - O()\Nl)

Also, as in the proof of Lemma B.2, we have

. . ,0PU, ~
(C.35) /QQ(y)\pU“JrvEF 1T,A:O(51+1/(N 2))
and
* P
(C.36) /Q(y)\PUIA_q_UEF —e20PUs
Q ’ o\
« e 90PUs [[ve [[|w]
— P - 2F—e—2 5 el ™I
/chy)\ U, U w+0( I

= Oy,

Combining (C.33)—(C.33) we get (C.28) and this complete the proof of Proposi-
tion C.23. 0

Appendix D

LEMMA D.1. The derivative of the functional K satisfies

0 OPUj »
(D.1) 8}\<DK(PUL/\+”U5), Y >
_ A=2/(27=2) (N —1)(N — 2)K3H (z, ) _ Kae FO(eHor2/(N=2)y |
Q($)2/(2*—5) AN 22

PRrROOF. By straightforward calculations we have

0 8PU1.7A
(D.2) a)\<DK(PUJC,>\ + ve), B\ >

P P
:DQK(PUI)\—&-UE)(a Vo 4 Ot O U“)

X N
WP@A>

+ <DK(PU$,A +0e). ~y
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First, we estimate D?K (PU, ) + v.)(0PUy /X, dv./ON). By Proposition C.3,

we have

<PUm,)\ + v, 881;T> — (et (N=2)).
(D.3) aOPU
<PUm,A + e, z7A> = O(g(Nil)/(Nim)'
o\
As in the proof of Lemma B.2, we also have
. PU,, _
04) [ QUPUs + 0¥ 2P +0) P2 = (/02
Q
On the other hand we have
. v
D5) [ QUIPUas +0e = (P +0) 5
Q
« v v
— P 2" —e—-1-"¢€ Yl
[ awirvar =5 o |55 )

B
:Q(x)/ |PUw>\|2*—1%+O(81+U+1/(N—2))
o )

«_1 0V " B . -
:Q(gﬂ)/QUgc?,A 1 5 +O(51+ +1/(N 2)) :O(EH +1/(N 2)).

«_10v . B
:/Q(y)\PUmI2 oy O +1/(N=2))
Q

Combining (D.3)—(D.5) we obtain
aPU.r,)\ avs)

2
(D.6) DK(PUQC7)\+U5)< EINR)

_ 2 OPU, \ Ov.
T ([ QW) PU » + v ]2 —5)2/ =) ox oA

. PU, » dv.
— (2" —e - DU(PUsx + Ue)/ QW)|PUs,x + vel? B }
Q

ox  OA
+ O(€1+0+3/(N72)).

We now observe that

dv. OPU,» <~ 0OPU,,
ox =W OPUa 0TI D iy

Jj=1

OPUsr  \ o
ax )T

Consequently, it follows from Lemma A.2 and Proposition C.3 that

. L OPU,
25 —e—2 x,
v

and

— O(€1+a+2/(N72))'

/ QW)|PUs 5 + .
Q
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Hence

OPU, \ Ov OPU, »
2 x, 3 _ Z,
(D.7) D K(PUI,,\—i—vg)( Y ,m) —O<a[< o ,PUM>

OPUy,,
~a(PU+ 0) [ QIPUL+ o 2 P,
Q

N
OPU, » |I”
<o

OPU, 5

(P, A+ v.) / Q)| PUs r + 0|2 52
A o

N
apUr,)\ aPUr,)\
+Z”[< ST >

Jj=1

. OPU,  OPU,
B 2% —e—2 z,A z,A
dl(PUy \ +v.) /Q QY)|PUz x + ve| N O, D

]

+ ()(51—&-<7—§-2/(N—2))7

where d = 2* — e — 1. Since OPU, »/0\ is a solution of
—Au = (2% — 1)U§:‘;1u
it follows from Appendix F in [21], Lemma B.1 and Lemma C.4 that

GPUL)\ 61}5
N 70X

(D.8) D’K(PU,» + vJ( > = O(e!Tot?/(N=2)),

We now estimate

OPU, » OPU, 0?PU, »
2 z, z, %Y
D*K(PU, » +v5)( 5 ) T <DK(PUI,A + 0., e )

It is easy to check

OPU, » OPU, 0?PU, »
2 x, x, Z,
(D.9) D*K(PU,, +v5)< ) ) + <DK(PU;C,,\ + ve), 5

) 7]
fQ ‘PUl)\—FUEP*_E

] OPU, 5 |?

_(2*_5—1)Z(PUL>\+U5)/Q(Z/)|PU$>\+U€‘2 —e—2 7&57)\ :|

’ Q ’ O\
8 PU.

(PO o et
., 0%°PU,

— (PUq +v5)/ Q(y)|PU,, 2 612-”)‘}

Q oA

+ O(€1+0+2/(N72))

9 2/(2*—¢)
(fQ PU£>\+U6|2*_E>
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2
T A”

2% —¢
2(»2” av/Q JLERY

82PU93)\ 82 2*—8—1
+ <Usa N2 >l(PU:t)\+vs /Q vsa)\QPUﬁf,A

+ O(€1+U+2/(N 2))

9 2/(2" —¢)
(fg ‘PUIAJFUEF >

1 62 , 1 .

_ 0? _
+ S PUZTN - U(PUL + v.) /Q UEa)\2PU§>\s 1]

0?
Yeax2
+ O(€1+0+2/(N 2))

9 2/(2"—¢)
(fQ |PU37>\+UE|2*_6>

1 62 1 .
. [2a>\2||PUa:,/\||2 58)\2/@ )|PU > ]

+ O(€1+a+2/(N—2)>.

and Lemma D.1 readily follows.

LEMMA D.2. We have

0 OPU,x\ o
8)\<DK(PUQE,\—H)E) oz, > =0("79).

PRrROOF. The proof of Lemma D.2 is similar to that of Lemma D.1 and there-

fore is omitted. g

LEMMA D.3. We have

%(DK(PU;L”,\ + UE),PUI’)\> — 0(61—04_1/(]\,_2)).

PrOOF. By Lemma C.2, we have

(D.10) %<DK(PUI,A +0.), PUy»)
= D2K(PU, 5 + v.) (a];(i“ %”; PU, A)
# (PR(PUL 400, 0
=D?K(PU, » +v) (a]g“ + %, PU. > + O(ettott/(N=2),
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As in the proof of (D.8), we get

(D.11) D2K(PU, , + UE)(%”;

, PU, >\> _ O(€1+0+1/(N72)).

We also have

P
(D.12) D?K(PU, » + v.) (a ;{\“’* , PUM>

OPU, »
= 2 P
0<< S Um>
e OPU,»

— (2 —5—1)/Q|PU, =

_ O<||Us||2 +€1—0+1/(N—2)) _ 0(51—04-1/(1\/—2)).
A

PUI )\) +O( 14+1/(N— 2))

Hence, Lemma D.3 follows from (D.10)—(D.12). O

Appendix E

Let A, B and G; be the constants in (1.21), that is,

oJ OPU, »
99 _ apu, , + B2
a0 Uen + B—53

LEMMA E.1. Let A, B and G; be the constants in (1.21). Then

(E1) A=0(""7), B=0@E"YN2) G;=0("7/N=2)
E2) 24

) — O(Elfa+1/(N72)) 82 — 0(617"), % _ 0(517a+2/(]v72))‘

o)) OA

Proor. By Lemma C.2 we see that A, B and G; satisfy

OPU, » N OPU, »
E. AllP 4+ B oA P , A p
(©3) AIPUAIP + B2 PU. )+ 30 65 PP P

<g‘] PU, A> O(e'=7),

j=1

(E.4) A<PUM, aPU“> BHaPU“

oA

ZG OPU, n OPU,
833 PO
8J OPU, »
v’ oA

> O(€1+1/(N_2)),
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3PUx)\ 6PU;C,)\ aPUx,)\
z >+B< ax ' om >

N
ZG]<8PU ,\7 OPU,, ,\> <8J OPU,, A> O(El_a_l/(N_Q)).
= Oz o0x; ov’  Oz;

A<PU1: N T

Solving (E.3)—(E.5) and taking Appendix F in [21] into account, we obtain (E.1).
Differentiating (E.3)—(E.5) with respect to A, in view of Lemmas D.1-D.3, we
get

83 OPU, A
2, z,
N
% % _ 1—0+1/(N—-2)
+Z; O\ < ij 7PUw,)\> —0(6 )7
dA OPU; \ OB 0PU, A |
©1) Ga(Puen 20en) o 2000
N
a6, aPUM OPUAN -/ 1ooya/n-2)
2 < ax >_O(’3 )
Jj=1
0A OPU » B /O0PU, >\ OPU, 5
(©8) S5 (Puns 20y o SO0 Lon O
i 0G; | 9PUsr OPUsp\ _ (3 1-r)
oA 8xj ’ 8131' B c '
-1
Solving the system (E.6)—(E.8) we get (E.2). O
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