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DEGREE AND SOBOLEV SPACES

Häim Brezis — Yanyan Li — Petru Mironescu — Louis Nirenberg

Dedicated to Jürgen Moser in friendship and admiration

Abstract. Let u belong (for example) to W 1,n+1(Sn×Λ, Sn)λ∈Λ where Λ
is a connected open set in Rk. For a.e. the map x 7→ u(x, λ) is continuous

from Sn into Sn and therefore its (Brouwer) degree is well defined. We

prove that this degree is independent of λ a.e. in Λ. This result is extended
to a more general setting, as well to fractional Sobolev spaces W s,p with

sp ≥ n + 1

Introduction

J. Rubinstein and P. Sternberg established in [9] the following result. Let Ω
be a solid 3-dimensional torus, i.e., Ω = S1 × Λ where Λ is the unit disc in R2.
Let u ∈ H1(Ω, S1). For a.e. λ ∈ Λ the map

x ∈ S1 7→ u(x, λ) ∈ S1

belongs to H1(S1, S1); thus it is continuous and has a degree. Conclusion:

deg(u( · , λ)) is independent of λ.

1991 Mathematics Subject Classification. 46E35, 47H11.
Key words and phrases. Degree thery, Sobolev maps.

The first author (H.B.) is partially supported by a European Grant ERB FMRX CT98
0201. The second author (Y. L.) is partially supported by NSF Grant DMS-9706887 and
a Rutgers University Research Council grant. Part of this work was done when the third
author (P. M.) was visiting Rutgers University; he thanks the Mathematics Department for

its invitation and hospitality. The visit of the fourth author (L. N.) to Paris was supported by
the Institut Universitaire de France and he thanks it for its hospitality.

c©1999 Juliusz Schauder Center for Nonlinear Studies

181



182 H. Brezis — Y. Li — P. Mironescu — L. Nirenberg

This result is somewhat surprising because H1 functions in 3-d need not be
continuous, and not even in VMO. If Ω were a 2-d annulus, Ω = S1 × (0, 1),
instead of a 3-d torus the conclusion would still be surprising; however, in this
case one can give a straightforward proof via the H1/2(S1, S1) degree theory of
L. Boutet de Monvel and O. Gabber (see [4] and also [5]). Indeed, by standard
trace theory, the map

λ ∈ (0, 1) 7→ u( · , λ) ∈ H1/2(S1, S1)

is continuous. We recall that any map ϕ ∈ H1/2(S1, S1) has a degree which
depends continuously on the H1/2 norm. Therefore deg(u( · , λ)) is well-defined
for every λ ∈ (0, 1) and is independent of λ.

By contrast, in 3-d, there is no similar argument since a general H1 function
does not have trace on every line.

In this paper we first give, in Section 1, a direct generalization with simple
proof. We then present in Section 2 a still more general result which holds in
fractional Sobolev spaces.

Section 1

Let X and Y be compact, oriented, n-dimensional smooth manifolds without
boundary, Y is connected. Let Λ be a domain in Rk. Let u be a map from
Ω = X×Λ into Y which belongs toW 1,n+1(Ω, Y ), i.e., if Y is smoothly embedded
in some RN then u is a map from Ω into RN having each component in W 1,n+1

and such that u(x, λ) ∈ Y a.e. in Ω. For a.e. λ ∈ Λ, u( · , λ) belongs to
W 1,n+1(X,Y ); so it is continuous and therefore deg(u( · , λ)) is well defined.

Theorem 1. deg(u( · , λ)) is independent of λ and we call it simply degu.
Moreover, degu is stable under convergence in W 1,n(Ω), i.e., if a sequence
(uj) in W 1,n+1(Ω) converges in the W 1,n norm to some u ∈ W 1,n+1(Ω), then
deg uj = degu for sufficiently large j.

Remark 1. The result need not hold if u is merely in W 1,p(Ω, Y ) with
p < n+ 1. Here is an example. Let X = Y = Sn and let Ω = (0, 2)k

u(x, λ) =
x− λ1e1
|x− λ1e1|

.

It is easily seen that u ∈ W 1,p(Ω, Y ) for every p < n + 1. On the other hand
deg(u( · , λ)) = 0 for λ1 > 1 and deg(u( · , λ)) = 1 for λ1 < 1.

The proof of the theorem uses a standard representation of the degree of a
C1 map ϕ as an integral. If ω is a smooth n-form on Y with∫

Y

ω = 1 then degϕ =
∫

X

ω ◦ ϕ,
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where ω ◦ϕ is the pull-back of ω by ϕ (see e.g. [8]). That formula still holds (by
density) if ϕ ∈ C0 ∩W 1,n. (In fact, it suffices that ϕ ∈ W 1,n since it is then in
VMO and VMO-maps have a degree, see [5]).

Proof of Theorem 1. It is convenient to work with a special form ω on Y
having small support. For then we can use one fixed local coordinate system
near a point. Assume 0 ∈ Y ⊂ RN ; we may also choose the embedding e of Y
into RN in such a way that, in a neighbourhood V of 0 in RN ,

e(Y ) =
{
y | yn+1 = . . . = yN = 0

}
.

Let ζ be a smooth function with support in V such that∫
ζ(y1, . . . , yn, 0, . . . , 0) dy1 . . . dyn = 1.

We consider the n-form ω̃ on RN ,

ω̃ = ζ(y1, . . . , yN ) dy1 ∧ . . . ∧ dyn

and take as ω on Y , the pull back of ω̃ under e; in our local coordinates it has
the form

ω = ζ(y1, . . . , yn, 0, . . . , 0) dy1 ∧ . . . ∧ dyn

and thus
∫

Y
ω = 1. We have to prove that

(1)
∫

X

ω ◦ u( · , λ)

is independent of λ, a.e. in Λ. The natural argument would be to differentiate the
integral with respect to the parameter λ. However, the integrand in (1) already
involves first order derivatives of u and λ-differentiation introduces second-order
derivatives. We get rid of these by integration by parts. To carry this out we
use approximation by smooth functions.

Let uε be a family of smooth maps from Ω into RN converging, as ε→ 0, to
u in W 1,n+1. Note that, in general, the uε’s do not map into Y (and not even
into a neighbourhood of Y , see [2]). Set

ψε(λ) =
∫

X

ω̃ ◦ uε( · , λ)

and differentiate ψε with respect to one of the λ’s, still denoted by λ.
We find, with ui

ελ = ∂ui
ε/∂λ,

∂

∂λ
ψε(λ) =

∫
X

N∑
1

∂ζ

∂yj
(uε)u

j
ελ du

1
ε ∧ . . . ∧ dun

ε(2)

+
∫

X

ζ(uε) du1
ελ ∧ . . . ∧ dun

ε

+ · · ·+
∫

X

ζ(uε) du1
ε ∧ · · · ∧ dun−1

ε ∧ dun
ελ.
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Now∫
X

ζ(uε) du1
ελ ∧ · · · ∧ dun

ε =
∫

X

d
[
ζ(uε)u1

ελ du
2
ε ∧ · · · ∧ dun

ε

]
−

∫
X

N∑
1

u1
ελ

∂ζ

∂yj
(uε) duj

ε ∧ du2
ε ∧ · · · ∧ dun

ε

= −
∫

X

u1
ελ

∂ζ

∂y1
(uε) du1

ε ∧ · · · ∧ dun
ε

−
∫

X

N∑
n+1

u1
ελ

∂ζ

∂yj
(uε) duj

ε ∧ du2
ε ∧ · · · ∧ dun

ε .

Similar expressions hold for the term after this one in (2). Inserting these ex-
pressions into (2), we find

∂

∂λ
ψε(λ) =

∫
X

N∑
n+1

∂ζ

∂yj
(uε)u

j
ελ du

1
ε ∧ . . . ∧ dun

ε(3)

−
∫

X

N∑
n+1

∂ζ

∂yj
(uε)[u1

ελ du
j
ε ∧ du2

ε ∧ . . . ∧ dun
ε

+ u2
ελ du

1
ε ∧ duj

ε ∧ du3
ε ∧ . . . ∧ dun

ε

+ . . .+ un
ελdu

1
ε ∧ . . . ∧ dun−1

ε ∧ duj
ε].

Next we claim that, as ε→ 0,

(4)
∫

Ω

∣∣∣∣∂ψε

∂λ

∣∣∣∣ → 0.

Indeed by (3) we have∣∣∣∣ ∂∂λψε(λ)
∣∣∣∣ ≤ C

N∑
n+1

∫
X

∣∣∣∣ ∂ζ∂yj
(uε)

∣∣∣∣ |Duj
ε||Duε|n,

where D denotes the full gradient (in x and λ). Thus∫
Λ

∣∣∣∣∂ψε

∂λ

∣∣∣∣ ≤ C
N∑

n+1

[ ∫
Ω

∣∣∣∣ ∂ζ∂yj
(uε)

∣∣∣∣n+1

|Duj
ε|n+1

]1/(n+1)

‖uε‖n
W 1,n+1(Ω).

Since uε → u in W 1,n+1(Ω) we have∫
Λ

∣∣∣∣∂ψε

∂λ

∣∣∣∣ ≤ C
N∑

n+1

[ ∫
Ω

∣∣∣∣ ∂ζ∂yj
(uε)

∣∣∣∣n+1

|Duj
ε|n+1

]1/(n+1)

.

Next observe that (passing to a subsequence)∣∣∣∣ ∂ζ∂yj
(uε)

∣∣∣∣|Duj
ε| →

∣∣∣∣ ∂ζ∂yj
(u)

∣∣∣∣|Duj | a.e. on Ω,
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and, for j > n,
(

∂ζ
∂yj (u)

)
Duj = 0 a.e. on Ω (since on the set {(x, λ) | u(x, λ) ∈

V }, uj = 0 for j = n + 1, . . . , N and hence Duj = 0). On the other hand
(passing to a subsequence) we may assume that |Duj

ε| is bounded by a fixed
function in Ln+1(Ω) and hence, by dominated convergence,∫

Ω

∣∣∣∣ ∂ζ∂yj
(uε)

∣∣∣∣n+1

|Duj
ε|n+1 → 0, for j > n,

which yields (4).
Finally we claim that

(5) ψε(λ) → ψ(λ) =
∫

X

ω̃ ◦ u( · , λ) =
∫

X

ω ◦ u( · , λ) in L(n+1)/n(Λ).

Indeed the integrand in ψε can be estimated pointwise by |ω̃◦uε| ≤ C|Duε|n and
thus (passing to a subsequence) |ω̃ ◦ uε − ω̃ ◦ u| ≤ f , where f is a fixed function
in L(n+1)/n(Ω). Therefore

|ψε(λ)− ψ(λ)|(n+1)/n ≤ C

∫
X

|f(x, λ)|(n+1)/n dx

and the right-hand side is a fixed function in L1(Λ). The claim (5) follows, again
by dominated convergence, since ψε(λ) → ψ(λ) a.e.

Combining (4) and (5) we see that ψ ∈W 1,1(Λ) and

∂ψ

∂λ
= 0.

Hence ψ is independent of λ.
The last assertion in the theorem, i.e. stability of degree under W 1,n conver-

gence follows easily from the formula

degu = �
∫

Λ

∫
X

ω ◦ u

and the fact that the integrand in the right-hand side involves n-products of
derivatives of u. �

Remark 2. The above computation for computing the λ-derivative of a
pull back can be expressed globally, and more succinctly, in terms of differential
forms. Namely, consider X and Λ as above and a smooth map u from Ω = X×Λ
into an oriented manifold Z (in the case above, Z = RN ). Let ω̃ be a smooth
n-form on Z. The λ-derivative of the pullback ω̃ ◦ u( · , λ) is simply

(6) ∂λω̃ ◦ u( · , λ) = dA+B,

where A and B are (n− 1) and n-forms respectively on X. They are expressed
using the tangent vector uλ which is defined at points of Z in the image of
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u( · , λ). A and B are given by

A = (ω̃ y uλ) ◦ u,(7)

B = (dω̃ y uλ) ◦ u.(8)

Here uλ is the λ-derivative (say with respect to one of the λ coordinates) of u.
The symbol y denotes contraction of a differential form and a vector (see [7]).

Formula (6) holds for a smooth map. It still holds for maps in W 1,n+1,
provided one interprets (6) in the distribution sense. In fact, the coefficients of
ω̃ ◦u and of A are n products of functions in Ln+1, the coefficients of B are n+1
products of functions in Ln+1. To justify (6) in such generality one smoothes
u by uε as above, mapping however into a high dimension Euclidean space in
which Z is embedded.

In the special case that dimZ = dimX (for example if Z = Y as above) then
dω̃ = 0 and thus B = 0.

Warning. The reader might think that in this case (6) holds with B = 0
assuming only that u ∈W 1,n. This is not true as the counterexample in Remark
1 shows.

When using degree theory one often considers X, the domain space with a
boundary, Y connected and open. One wishes to compute the degree of u : X →
Y at some point y ∈ Y which is not in the image of the boundary (if the map
u ∈ C(X), Theorem 1 easily extends to such a situation). Here is one form
of such a result: let X be an open subset of an n-dimensional smooth oriented
manifold X̃ with X, the closure of X, compact in X̃ and ∂X smooth. Let Y
be an open oriented, connected, n-dimensional smooth Riemannian manifold.
Let Λ be a domain in Rk. Let u be a map from Ω = X × Λ into Y which
belongs to W 1,n+1(Ω, Y ). For a.e. λ ∈ Λ, u( · , λ) belongs to W 1,n+1(X,Y ) so it
is continuous in X. Assume that y ∈ Y is such that, for some δ > 0 and for a.e.
λ as above,

dist (y, u(∂X, λ)) ≥ δ.

Then the degree of u at y, deg(u( · , λ), X, y) is well defined.

Theorem 1′. deg(u( · , λ), X, y) is independent of λ.

The proof is just the same as that of Theorem 1. We may suppose that y
is the origin in RN and that Y near 0 is flat. Then we take the forms ω̃ and ω

as above, with supp ω lying in a δ/2 neighbourhood (with respect to the metric
on Y ) of y. Then proceed as before.

Section 2

Let X,Y and Λ be as in Theorem 1 and let u be a map from Ω = X × Λ
into Y which belongs to W s,p(Ω, Y ) with s > 0 and 1 < p <∞. Recall that for
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a.e. λ ∈ Λ, u( · , λ) belongs to W s,p(X,Y ). This is clear if s is an integer; when
0 < s < 1 such property is an easy consequence of the equivalence of two W s,p

norms in Rm:

‖f‖p
W s,p = ‖f‖p

Lp +
∫

Rm

∫
Rm

|f(x)− f(y)|p

|x− y|m+sp
dx dy

and

‖|f‖|pW s,p = ‖f‖p
Lp +

m∑
i=1

∫ 1

0

∫
Rm

|f(x+ tei)− f(x)|p

t1+sp
dx dt

(see e.g. Adams [1, p. 208–214] or Triebel [10]). The case of a general s > 0
follows easily.

Assuming further that

(9) sp ≥ n+ 1

we find that for a.e. λ ∈ Λ, u( · , λ) ∈ W s,p(X,Y ) ⊂ C0(X,Y ); therefore
deg(u( · , λ)) is well defined for a.e. λ ∈ Λ.

Theorem 2. Assume that u ∈W s,p(Ω, Y ) and that (9) holds. Then

deg(u( · , λ)) is independent of λ.

Moreover, this degree is stable under convergence in any W s′,p′
norm provided

s′p′ ≥ n.

Proof. We may assume that 0 < s ≤ 1 and the case s > 1 is handled with
minor modifications. In this generality there is no integral representation for the
degree and the argument is quite different from the proof of Theorem 1. Clearly
it suffices to prove that the degree is locally constant a.e. Hence it suffices to
consider the case where Λ = (0, 1)k. We assume first that k = 1 and the
general case will be done by reduction to k = 1 as in Bethuel and Demengel [3,
Lemma A.1].

Case where Λ = (0, 1). By the standard trace theory a map u ∈ W s,p(X ×
(0, 1), Y ) can be identified with a map u ∈ C([0, 1],W s−1/p,p(X,Y ).

Since (s − 1/p)p = sp − 1 ≥ n, W s−1/p,p(X) ⊂ VMO (X) (see e.g. [5]); we
also recall that there is a degree theory on VMO(X,Y ) and that this degree is
stable under small VMO perturbation. In this case deg(u( · , λ)) is well defined
for every λ ∈ [0, 1] and it is independent of λ.

Case where Λ = (0, 1)k. We start with two lemmas.

Lemma 1. The map λ 7→ deg(u( · , λ)) = ψ(λ) is measurable.

Proof. Consider a sequence (uj) of smooth functions on X × Λ → RN (Y
is embedded in RN ) such that uj → u in W s,p(X×Λ). Passing to a subsequence
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(and using the equivalence of norms mentioned above) we may assume that for
a.e. λ ∈ Λ uj( · , λ) → u( · , λ) in W s,p(X). In particular for a.e. λ ∈ Λ,

(10) uj( · , λ) → u( · , λ) uniformly in X.

Let δ > 0 be sufficiently small so that in the closed δ-neighbourhood Nδ(Y ) of Y
in RN the projection PY onto Y is well defined.

For every j = 1, 2, . . . and every λ ∈ Λ set

γj(λ) = Sup
x∈X

dist(uj(x, λ), Y ),

(so that each γj is continuous – even Lipschitz – in λ) and

ψj(λ) =

{
deg(PY (uj( · , λ))(δ − γj(λ))/δ if γj(λ) ≤ δ,

0 if γj(λ) > δ.

In view of (10) it is clear that ψj(λ) → ψ(λ), as j → ∞, a.e. in λ ∈ Λ. On
the other hand, it is easy to check that for every j, the function λ 7→ ψj(λ) is
continuous on Λ. Thus ψ is measurable on Λ. �

The second lemma is purely measure theoretical.

Lemma 2. Let Λ = (0, 1)k and let ψ be a measurable function on Λ such
that for each 1 ≤ i ≤ k and for a.e. (λ1, . . . λi−1, λi+1, . . . λk) in (0, 1)k−1, the
function

a ∈ (0, 1) 7→ ψ(λ1, . . . λi−1, a, λi+1, . . . , λk)

is constant a.e. on (0, 1). Then ψ is constant a.e. on Λ.

Proof. We may always assume that ψ is also bounded (and thus integrable)
since otherwise we may replace ψ by Arctan ψ. By the triangle inequality, with
λ = (λ1, . . . , λk) and µ = (µ1, . . . µk), we have

|ψ(λ)− ψ(µ)| ≤ |ψ(λ1, λ2, . . . λk−1, λk)− ψ(λ1, λ2, . . . λk−1, µk)|
+ |ψ(λ1, λ2, . . . λk−1, µk)− ψ(λ1, λ2, . . . µk−1, µk)|
+ · · ·+ |ψ(λ1, µ2, . . . µk−1, µk)− ψ(µ1, µ2, . . . µk−1, µk)|.

It follows from the assumption that∫
(0,1)k

∫
(0,1)k

|ψ(λ)− ψ(µ)| dλ dµ = 0.

Consequently, ψ(λ)− ψ(µ) = 0 a.e. on (0, 1)k × (0, 1)k which implies that ψ(λ)
is constant a.e. on (0, 1)k. �

We now return to the proof of the theorem and, in view of the Λ = (0, 1)
case, apply Lemma 2 to ψ(λ) = deg (u(· , λ)) to conclude that deg (u(· , λ)) is
constant a.e. in (0, 1)k.
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To establish the stability under W s′,p′
convergence with s′p′ ≥ n we argue

as follows. Consider a sequence (uj) in W s,p converging in the W s′,p′
norm to

some u ∈ W s,p with sp ≥ n + 1. As in Lemma 1, passing to a subsequence we
may assume that, for a.e. λ ∈ Λ,

uj(· , λ) → u(· , λ) in W s′,p′
(X).

Since s′p′ ≥ n, W s′,p′
is contained in VMO, and we may infer from the result of

[5] that, for a.e. λ ∈ Λ,

deg (uj(· , λ)) → deg (u(· , λ)).

The conclusion follows by picking any λ outside a countable union of sets of
measure zero. The uniqueness of the limit implies the convergence of the full
sequence. �

Remark 3. The above argument extends to the case where X and Y need
not have the same dimension, and degree is replaced by homotopy classes. More
precisely we have

Theorem 2′. Assume that u ∈ W s,p(Ω, Y ) and that (9) holds with n =
dimX, then there is a homotopy class C in C0(X,Y ) such that

u( · , λ) ∈ C for a.e. λ ∈ Λ.

Proof. When Λ = (0, 1) we may invoke Lemma A.20 in [5] to assert that
two continuous maps which are homotopic within VMO are also homotopic in
C0(X,Y ).

In the general case we denote by (Ck), k = 1, 2, . . . , the homotopy classes of
C0(X,Y ) (the connected components of C0(X,Y ) are countable since C0(X,Y )
is separable). For every v ∈ C0(X,Y ) we set deg v = k provided v ∈ Ck and the
above argument remains unchanged. �

We conclude with a similar question in the VMO framework. Let X,Y and
Λ be as in Section 1 and let u ∈ VMO(Ω, Y ).

Open Problem. Is it true that, for a.e. λ ∈ Λ, u( · , λ) ∈ VMO(X,Y ) and
if so, is deg (u( · , λ)) constant a.e. in Λ?

This question is also related to a question of H. Amann and a result in [6,
p. 332–333].
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