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MORSE DECOMPOSITIONS
IN THE ABSENCE OF UNIQUENESS

Maria C. Carbinatto — Krzysztof P. Rybakowski

Abstract. In this paper we define attractors and Morse decompositions in
an abstract framework of curves in a metric space. We establish some basic

properties of these concepts including their stability under perturbations.

This extends results known for flows and semiflows on metric spaces to large
classes of ordinary or partial differential equations with possibly nonunique

solutions of the Cauchy problem. As an application, we first prove a Morse

equation in the context of a Conley index theory which was recently defined
in [10] for problems without uniqueness, and then apply this equation to

give an elementary proof of two multiplicity results for strongly indefinite

elliptic systems previously obtained in [1] using Morse–Floer homology.

1. Introduction

Morse decompositions (see e.g. [3], [14], [13], [5], [6]) are a useful tool in the
analysis of flows or semiflows defined by ordinary, functional and evolutionary
partial differential equations. Combined with an appropriate version of the Con-
ley index and a corresponding Morse equation, they often allow us to obtain
multiplicity results for solutions of variational problems. Through the use of
some more refined topological tools like the Conley connection matrix, Morse
decompositions can also be used to detect connections, i.e. heteroclinic orbits in
dynamical systems.
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However, in many situations of interest, e.g. in various applications to bound-
ary value problems in Hilbert spaces, the resulting differential equation does not
generate a (semi)flow simply because the nonlinearity of the equation is not
regular enough and, as a consequence, the uniqueness property of the Cauchy
problem is violated. In such cases concepts like attractors and Morse decompo-
sitions, as defined in the above mentioned works, are not applicable. Motivated
by such applications, we develop in this paper an abstract theory of attractors
and Morse decompositions, which contains as a special case the theory known
for flows or semiflows but which also applies to various classes of ordinary or
evolution equations with nonunique solutions.

Let us describe the main ideas of our approach. To this end let X be a
metric space and C = C(R → X) be the set of all continuous maps from R to
X endowed with the topology of uniform convergence on compact subsets of R.
Let π be a semiflow on X. As usual, we write xπt instead of π(t, x). Recall that
a full solution of π is a map σ:R → X such that for all t ∈ [0,∞[ and s ∈ R
we have σ(s)πt = σ(s + t). Recall also that a subset S of X is called invariant
relative to π if for every x ∈ S there is a full solution σ of π lying in S, i.e.
σ(R) ⊂ S, and such that σ(0) = x.
Now let N be an arbitrary subset of X and let T be the set of all full solutions

of π lying in N . It then follows that for every S ⊂ N , the set S is invariant
relative to π if and only if for every x ∈ S there is a σ ∈ T such that σ(R) ⊂ S
and σ(0) = x. In other words, S is invariant relative to π if and only if S is
T -invariant, by which we mean that S = InvT (S), where

InvT (S) := {y ∈ X | ∃σ ∈ T with σ(R) ⊂ S and y = σ(0)}.

Note that T is a subset of C. Moreover, note that once T is given we do not need
the semiflow π any more in order to define invariance of S ⊂ N relative to π.
Similarly, if S ⊂ N is compact and invariant relative to π, then in order to

define attractors in S (relative to π) we only need the given set T of solutions.
In fact, rewording the usual definition (see e.g. [13]) we see that A ⊂ S is an
attractor in S relative to π if and only if A is a T -attractor, by which we mean
that there is a neighbourhood Y of A such that A = ωT (Y ).

Here, ωT (Y ) is the set of all y ∈ X for which there exist sequences (σn)n∈N

in T and (tn)n∈N in [0,∞[ such that σn(0) ∈ Y for all n ∈ N, tn → ∞ and
σn(tn)→ y as n→∞.
We can now proceed abstractly and first take T to be an arbitrary subset of C.

We can then define T -invariant sets and T -attractors as above. Similarly as in
the semiflow case we can also define the dual T -repellers and T -attractor-repeller
pairs.
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As we show in Section 2, all the basic properties of attractor-repeller pairs
known for flows or semiflows hold in this abstract situation if we assume that T is
translation invariant and compact as a subset of C. Here, translation invariance
means, of course, that whenever σ is in T then so is every translate σ(· + s),
s ∈ R. In particular, if T is defined as above in the semiflow case, then T is
obviously translation invariant. Moreover, T is compact if N is π-admissible in
the sense of [13].

In the semiflow case, one can give two definitions of (totally ordered) Morse
decompositions of S (one in terms of attractor filtrations and the other in terms
of connecting orbits) and prove that these two definitions are equivalent. This
can also be done in the present abstract setting, leading to the concepts of T -
Morse decompositions of the first and second kind. In Section 3 it is proved that
these two definitions are equivalent provided that T ⊂ C is compact, translation
invariant and, in addition, cut-and-glue invariant. By cut-and-glue invariance of
T we mean that whenever σ1 and σ2 ∈ T with σ1(0) = σ2(0), then σ ∈ T , where
the map σ:R→ X is defined by

σ(t) =

{
σ1(t) if t ≤ 0,
σ2(t) if t ≥ 0.

In Sections 2 and 3 we also define convergence of sequences of subsets of C and
show that, in some sense, T -attractor-repeller pairs and T -Morse decompositions
are stable with respect to perturbations of T .
Now the concept of a (full) solution makes sense not only for flows or semi-

flows but also for large classes of ordinary differential equations or evolution
equations on a phase space X with merely continuous nonlinearities, which, in
general, do not define a semiflow. Given a subset N of X we can then define T
to be the set of all full solutions of such an equation lying in N . Then, under
very general hypotheses on the set N and the given equation, the solution set T
is compact, translation invariant and cut-and-glue invariant.

A specific application of our abstract results is given in Section 4. Using the
perturbation stability result for T -Morse decompositions we establish a Morse
equation for the Galerkin-type Conley index theory developed in the recent pa-
per [10] for problems with nonunique solutions.

In Section 5 we finally apply our theory to the strongly indefinite elliptic
system

(1.1)

−∆u = ∂vH(u, v, x) in Ω,
−∆v = ∂uH(u, v, x) in Ω,

u = 0, v = 0 in ∂Ω.
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on a smooth bounded domain Ω in RN , considered in the recent important
paper [1] by Angenent and van der Vorst.
Under the growth assumptions on H made in [1] the solutions of (1.1) turn

out to be equilibria of an abstract ordinary differential equation

(1.2) ż = f(z)

on a Hilbert space X with the nonlinearity f :X → X being merely continuous
but, in general, not differentiable nor even locally Lipschitzian. Therefore, in
general, Equation (1.2) does not generate a semiflow on X.
However, the index theory of [10] and our abstract Morse decomposition

theory are applicable in this situation. In particular, using the Morse equation
from Section 4 we give new, Conley index based proofs of two multiplicity results
for this system established in [1] by the use of Morse–Floer homology.
More applications of the abstract theory presented here will be given in the

forthcoming publications [2] and [11].
In this paper we mostly use standard notation. In particular, by R, Z, N and

N0 we denote the set of all real, all integer, all positive integer and all nonnegative
integer numbers, respectively. Given a topological space X and Y ⊂ X, we
write IntX(Y ), ClX(Y ) and ∂X(Y ) to denote the interior, the closure and the
boundary of Y in X, respectively. Given topological spaces X1 and X2 we denote
by C(X1 → X2) the set of all continuous maps from X1 to X2. Finally, for a
and b ∈ Z, we write [[a, b]] := [a, b] ∩ Z. This less common notation is used here
to replace the somewhat imprecise three dot . . . symbol. In particular, we will
write [[1, n]] instead of {1, . . . , n} and xi, i ∈ [[1, n]], instead of x1, . . . , xn.

2. T -invariance and attractor-repeller pairs

Throughout this paper, unless otherwise specified, let (X, d) be a metric
space.
Let C = C(R → X) be the set of all continuous maps from R to X. We

endow C with the metric

d(x, y) =
∑
n∈N
2−ndn(x, y)/(dn(x, y) + 1),

where

dn(x, y) = sup
t∈[−n,n]

d(x(t), y(t)), x, y ∈ C.

Note that d is indeed a metric on C inducing the topology of uniform convergence
on compact sets in R.
Let T be an arbitrary subset of C. To aid intuition, the reader may think

of X as a Hilbert or Banach space and T as a specified set of (full) solutions
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of a given ordinary differential equation or an evolution equation defined on (an
open subset of) X.

In this section we define the concepts of invariance, attractors and repellers
relative to this set T of “solutions”. We will study some properties of these
concepts under the assumption that T is compact in C and translation invari-
ant. In particular, we will establish extensions of some fundamental results on
attractor-repeller pairs known for flows or semiflows to the present more general
case (cf. Theorem 2.11). In addition, we define perturbations of the solution
sets T and show that attractor-repeller pairs have some stability properties with
respect to such perturbations (see Theorem 2.19).

We first need a number of preliminary definitions. Let σ:R → X be an
arbitrary function. The function σ−:R → X, s 7→ σ(−s), is called the time
inverse of σ. Moreover, for every t ∈ R the function tsltσ:R→ X, s 7→ σ(s+ t),
is called the t-translate of σ. Furthermore, let ω(σ) be the set of all y ∈ X for
which there exists a sequence (tn)n∈N in [0,∞[ with tn → ∞ and σ(tn) → y as
n → ∞. Set α(σ) = ω(σ−). Given Y ⊂ X, P ⊂ R, y ∈ X and t ∈ R we now
define the following sets:

ST =
⋃
σ∈T

σ(R),(2.1)

T (Y, P ) = {y ∈ X | ∃σ ∈ T ∃t ∈ P with σ(0) ∈ Y and y = σ(t)},(2.2)

T (y, P ) = T ({y}, P ),(2.3)

T (Y, t) = T (Y, {t}),(2.4)

T − = {σ− | σ ∈ T },(2.5)

ωT (Y ) =
⋂

t∈[0,∞[

ClX(T (Y, [t,∞[)),(2.6)

Y ∗T = {y ∈ X | ∃σ ∈ T with ω(σ) ⊂ X \ Y and y = σ(0)},(2.7)

InvT (Y ) = {y ∈ X | ∃σ ∈ T with σ(R) ⊂ Y and y = σ(0)}.(2.8)

A set S ⊂ X is called T -invariant if S = InvT (S), i.e. if and only if for every
y ∈ S there is a σ ∈ T such that σ(R) ⊂ S and y = σ(0).
A point x ∈ X is called a T -equilibrium if there is a σ ∈ T such that σ(t) = x

for all t ∈ R.
T is called translation invariant if tsltσ ∈ T for all σ ∈ T and all t ∈ R.
T is called gradient-like with respect to ϕ if ϕ:ST → R is a continuous

function such that for every σ ∈ T the function ϕ ◦ σ:R → R is nonincreasing
and if ϕ ◦ σ is constant, then σ:R→ X is constant.

T is called gradient-like if there exists a function ϕ such that T is gradient-
like with respect to ϕ.
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A set A ⊂ X is called a T -attractor if there is a set Y ⊂ X such that
A ⊂ IntX(Y ) and A = ωT (Y ). A is called a T -repeller if A is a T −-attractor.
In the next propositions we will establish a few elementary properties of the

sets and concepts just introduced.

Proposition 2.1. For all Y ⊂ X and y ∈ X the following conditions are
equivalent:

(2.9) y ∈ ωT (Y ).
(2.10) There exist sequences (σn)n∈N in T and (tn)n∈N in [0,∞[ such that

σn(0) ∈ Y for all n ∈ N, tn →∞ and σn(tn)→ y as n→∞.

Proof. Suppose y ∈ ωT (Y ). Then by (2.6) for every n ∈ N there is a
yn ∈ T (Y, [n,∞[) such that d(y, yn) < 1/n. Hence there is a σn ∈ T and a
tn ≥ n with σn(0) ∈ Y and yn = σn(tn). Thus (2.10) is satisfied.
Now assume (2.10) and let (σn)n∈N and (tn)n∈N be as in (2.10). Let t ∈

[0,∞[ be arbitrary. Then tn ≥ t for some n0 ∈ N and all n ≥ n0. It follows
that σn(tn) ∈ T (Y, [t,∞[) for all n ≥ n0 and so y ∈ ClXT (Y, [t,∞[). This
proves (2.9). �

Let σ ∈ C be arbitrary. For T := {σ} and Y := X we see that T (Y, [t,∞[) =
σ([t,∞[) for all t ∈ R and so, using Proposition 2.1, we obtain

(2.11) ω(σ) =
⋂

t∈[0,∞[

ClX(σ([t,∞[)).

Proposition 2.2. If T is compact and translation invariant, then ST is
compact and T -invariant. Moreover, for every σ ∈ T the sets α(σ) and ω(σ) are
nonempty, compact, connected and T -invariant. In addition, if T is gradient-
like, then α(σ) and ω(σ) consist only of T -equilibria. Finally, if T is gradient-
like with respect to a function ϕ and σ ∈ T is not a constant map, then for all
x ∈ α(σ) and y ∈ ω(σ)

ϕ(x) = sup
t∈R

ϕ(σ(t)) > inf
t∈R

ϕ(σ(t)) = ϕ(y)

so, in particular, α(σ) ∩ ω(σ) = ∅.

Proof. Let (xn)n∈N be any sequence in ST . Then there are sequences
(σn)n∈N in T and (tn)n∈N in R such that σn(tn) = xn for every n ∈ N. Let
τn = tsltnσn. Since T is translation invariant, it follows that τn ∈ T for all
n ∈ N. Since T is compact, we may assume, taking a subsequence if necessary,
that there is a τ ∈ T such that τn → τ in C as n → ∞. Setting x = τ(0) we
see that xn = σn(tn) = τn(0) → τ(0) = x as n → ∞. This proves compactness
of ST . Now let x ∈ ST be arbitrary. Then there is a σ ∈ T and a t ∈ R with
σ(t) = x. Setting τ = tsltσ we have that τ ∈ T and τ(0) = x. This proves that
ST is T -invariant.
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Now let σ ∈ T be arbitrary and set τn := tslnσ, n ∈ N. Then by the
compactness and translation invariance of T we have that τn ∈ T for all n ∈ N
and there is a subsequence (τnm)m∈N of (τn)n∈N converging in C to some τ ∈ T .
In particular, σ(nm) = τnm(0) → x := τ(0) as m → ∞, so x ∈ ω(σ) and thus
ω(σ) is nonempty.

To prove that ω(σ) is compact and connected, note that, by (2.11), the
set ω(σ) is the intersection of the family ClX(σ([t,∞[)), t ∈ [0,∞[, of closed
subsets of ST which is directed by the relation ⊃. Since ST is compact and
σ is continuous it follows that ClX(σ([t,∞[)) is compact and connected for all
t ∈ [0,∞[. Now general topological results (e.g. Theorem 6.1.18 in [4]) imply
that ω(σ) is compact and connected.

Now let y ∈ ω(σ) be arbitrary. Then there is a sequence (tn)n∈N such that
tn →∞ and σ(tn)→ y as n→∞. Set τn = tsltnσ, n ∈ N. Taking a subsequence,
if necessary, we may assume that τn → τ as n→∞, for some τ ∈ T . It follows
that for every t ∈ R we have tn + t→∞ and σ(tn + t) = τn(t)→ τ(t) as n ∈ N,
so τ(t) ∈ ω(σ). Thus τ(R) ⊂ ω(σ) and y = τ(0), which shows that ω(σ) is
T -invariant. Now suppose, in addition, that ϕ:ST → R and T is gradient-like
with respect to ϕ. Since ϕ is continuous and ϕ ◦ σ is nonincreasing, we obtain
that

ϕ(τ(t)) ≡ sup
s∈R
(ϕ(σ(s))), t ∈ R.

It follows that ϕ ◦ τ is constant, so τ is constant, i.e. y is a T -equilibrium.
The analogous statements concerning α(σ) follow from the fact that the map

C → C, σ 7→ σ−, is continuous so T − is compact and translation invariant. Since
σ− ∈ T − we thus obtain, from what we have proved so far, that α(σ) = ω(σ−) is
nonempty, compact, connected and T -invariant. Moreover, if T is gradient-like
with respect to ϕ then T − is gradient-like with respect to −ϕ and so α(σ) =
ω(σ−) consists only of T −-equilibria, i.e. only of T -equilibria.
The last statement of the proposition is obvious. �

Proposition 2.3. If T is translation invariant and Y ⊂ X, then InvT (Y )
is T -invariant and InvT (Y ) is the largest T -invariant set included in Y .

Proof. Let x ∈ InvT (Y ) be arbitrary. Then, by (2.8), there is a σ ∈ T
with x = σ(0) and σ(R) ⊂ Y . Let s ∈ R be arbitrary and τ = tslsσ. Then, by
our hypothesis, τ ∈ T and τ(R) = σ(R) ⊂ Y . Thus σ(s) = τ(0) ∈ InvT (Y ), so
InvT (Y ) is T -invariant.
Now let S ⊂ Y be T -invariant. Then, for every x ∈ S, there is a σ ∈ T such

that x = σ(0) and σ(R) ⊂ S ⊂ Y . It follows that x ∈ InvT (Y ). This proves that
S ⊂ InvT (Y ) so InvT (Y ) is the largest T -invariant set included in Y . �
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Proposition 2.4. If T is translation invariant and Y ⊂ X, then InvT (Y ) ⊂
ωT (Y ).

Proof. Let y ∈ InvT (Y ) be arbitrary. Then there is a σ ∈ T such that
σ(R) ⊂ Y and σ(0) = y. For n ∈ N let τn = tsl−nσ. Then τn ∈ T , τn(0) =
σ(−n) ∈ Y and τn(n) = y. Proposition 2.1 implies that y ∈ ωT (Y ). �

Corollary 2.5. ωT (∅) = ∅. Moreover, if T is compact and translation
invariant, then ωT (X) = ST .

Proof. It is clear that ωT (∅) = ∅. Assume that T is compact and transla-
tion invariant. Then ST ⊂ X and so by Propositions 2.2, 2.3 and 2.4 we obtain
that

ST ⊂ InvT (X) ⊂ ωT (X).

On the other hand, let y ∈ ωT (X) be arbitrary. Then there is a sequence
(σn)n∈N in T and a sequence (tn)n∈N such that tn → ∞ and σn(tn) → y. Let
τn := tsltnσn for all n ∈ N. Then τn ∈ T for all n ∈ N and, taking a subsequence,
if necessary, we may assume that τn → τ in C for some τ ∈ T . It follows that
τ(R) ⊂ ST so y = τ(0) ∈ ST . Consequently, ωT (X) ⊂ ST and the corollary is
proved. �

Proposition 2.6. If T is compact and translation invariant, then for every
Y ⊂ X the set ωT (Y ) is compact and T -invariant.

Proof. Let Y ⊂ X and y ∈ ωT (Y ) be arbitrary. Let (σn)n∈N and (tn)n∈N

be as in (2.10). By the compactness of T we may assume that there is a τ ∈ T
such that τn := tsltnσn → τ in C as n → ∞. It follows that for every t ∈ R
we have σn(tn + t) = τn(t) → τ(t) and tn + t → ∞ as n → ∞. Moreover,
σn(0) ∈ Y for all n ∈ N. By Proposition 2.1 we now obtain that τ(t) ∈ ωT (Y )
for all t ∈ R. This proves that ωT (Y ) is T -invariant and so ωT (Y ) ⊂ ST . Since
ST is compact by Proposition 2.2 and ωT (Y ) is closed by (2.6), it follows that
ωT (Y ) is compact. �

Proposition 2.7. If T is compact and translation invariant and if Y ⊂
Y ′ ⊂ X and ωT (Y ′) ⊂ Y then ωT (Y ) = ωT (Y ′).

Proof. Since Y ⊂ Y ′ we have ωT (Y ) ⊂ ωT (Y ′), by (2.6). By Proposi-
tion 2.6 ωT (Y ′) ⊂ InvT (Y ) and by Proposition 2.4 InvT (Y ) ⊂ ωT (Y ). �

The following result gives a useful characterization of T -attractors:

Theorem 2.8. Let T be compact and translation invariant and Y ⊂ X be
closed. Then, for every A ⊂ X, the following conditions are equivalent:

(2.12) A = ωT (Y ) ⊂ IntX(Y ),
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(2.13) A = InvT (Y ) and there is a t ∈ ]0,∞[ such that T (Y, t) ⊂ IntX(Y ).

Proof. Assume (2.12) and suppose that there is no t ∈ ]0,∞[ such that
T (Y, t) ⊂ IntX(Y ). Then there are sequences (tn)n∈N in ]0,∞[ and (yn)n∈N such
that tn →∞ as n→∞ and yn ∈ T (Y, tn)\IntX(Y ) for all n ∈ N. Thus, for every
n ∈ N, there is a σn ∈ T with σn(0) ∈ Y and yn = σn(tn). By the compactness
of T we may assume that there is a τ ∈ T such that τn := tsltnσn → τ in C as
n→∞. It follows that yn = σn(tn)→ τ(0) as n→∞ so τ(0) ∈ ωT (Y )\IntX(Y ),
a contradiction.
By Proposition 2.6 the set A = ωT (Y ) is T -invariant, so by (2.12) and

Proposition 2.3 we have that A ⊂ InvT (Y ). On the other hand, InvT (Y ) ⊂
ωT (Y ) by Proposition 2.4. This proves (2.13).
Now assume (2.13). First we claim that

(2.14) there is an ε ∈ ]0,∞[ such that T (Y, [t− ε, t+ ε]) ⊂ IntX(Y ).

In fact, if the claim is not true, then we obtain a sequence (tn)n∈N in R with
tn → t as n → ∞ and a sequence (σn)n∈N in T with σn(0) ∈ Y and σn(tn) /∈
IntX(Y ) for every n ∈ N. We may assume that σn → σ as n → ∞ for some
σ ∈ T . Thus σn(tn) → σ(t) as n → ∞, so σ(t) /∈ IntX(Y ) and σn(0) → σ(0)
as n → ∞, so σ(0) ∈ Y as Y is closed. Thus σ(t) ∈ T (Y, t) \ IntX(Y ) which
contradicts our assumption. This proves (2.14).
We also claim that

(2.15) the set T (Y, [t− ε, t+ ε]) is compact.

In fact, if (xn)n∈N is a sequence in T (Y, [t− ε, t+ ε]) then for every n ∈ N there
is a σn ∈ T and tn ∈ [t− ε, t+ ε] such that σn(tn) = xn. We may assume,
taking a subsequence if necessary, that σn → σ and tn → t0 as n→∞, for some
σ ∈ T and some t0 ∈ [t− ε, t+ ε]. It follows that xn → x0 := σ(t0). This proves
compactness of T (Y, [t− ε, t+ ε]).
By (2.14) and (2.15) we see that there is an open set U such that

(2.16) T (Y, [t− ε, t+ ε]) ⊂ U ⊂ ClX(U) ⊂ IntX(Y ) ⊂ Y.

It easily follows that whenever σ ∈ T satisfies σ(0) ∈ Y then σ(nr) ∈ U for all
n ∈ N and r ∈ [t− ε, t+ ε].
Now let s ∈ [t2/ε,∞[ be arbitrary. Proposition 2.9 below implies that there

is an n ∈ N and an r ∈ ]t− ε, t[ such that s = nr. Thus, whenever σ ∈ T satisfies
σ(0) ∈ Y we obtain σ(s) = σ(nr) ∈ U . It follows that T (Y, [t2/ε,∞[) ⊂ U which
implies that

(2.17) ωT (Y ) ⊂ ClX(T (Y, [t2/ε,∞[)) ⊂ ClX(U) ⊂ IntX(Y ).

In particular, by (2.17) and Propositions 2.4 and 2.6 we have

A = InvT (Y ) ⊂ ωT (Y ) ⊂ InvT (Y )
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so

(2.18) A = ωT (Y ).

(2.17) and (2.18) imply that (2.12) holds and the proof is complete. �

Proposition 2.9. For all ε and t ∈ ]0,∞[ and all s ∈ [t2/ε,∞[ there is an
n ∈ N and an r ∈ ]t− ε, t[ such that s = nr.

Proof. Given ε, t ∈ ]0,∞[ and s ∈ [t2/ε,∞[ there is an n ∈ N such that

(n− 1)t ≤ s < nt.

It follows that t2/ε ≤ s < nt so t/ε < n i.e. t < εn. Moreover, r := s/n < t.
Since (n − 1)t ≤ s we also have nt ≤ t + s < εn + s so n(t − ε) < s, i.e.
r = s/n > t− ε. �

Let A ⊂ X be a T -attractor and let Y ⊂ X be such that A ⊂ IntX(Y ) and
A = ωT (Y ). If T is compact and translation invariant then A is compact by
Proposition 2.6 and so we may choose an open set U such that

A ⊂ U ⊂ ClX(U) ⊂ IntX(Y ).

Proposition 2.7 implies that A = ωT (ClX(U)) and so we can always assume that
Y is closed. We will use this remark implicitly in the sequel.

Proposition 2.10. Suppose that T is compact and translation invariant.
Let Y ⊂ X be arbitrary with A := ωT (Y ) ⊂ IntX(Y ). Then, for every σ ∈ T ,
the following statements are equivalent:

ω(σ) ∩A 6= ∅ ⇔ σ(R) ∩ IntXY 6= ∅ ⇔ σ(R) ∩ Y 6= ∅ ⇔ ω(σ) ⊂ A.

Proof. Suppose ω(σ) ∩ A 6= ∅. Since A ⊂ IntX(Y ), the definition of ω(σ)
implies that σ(R)∩ IntXY 6= ∅. Now assume that σ(R)∩Y 6= ∅. Then ω(σ) ⊂ A
by the definition of ω(σ) and the translation invariance of T . Since ω(σ) 6= ∅
by the compactness and translation invariance of T , we conclude that ω(σ) ⊂ A
implies that ω(σ) ∩A 6= ∅. �

The following result defines T -attractor-repeller pairs and establishes their
main properties:

Theorem 2.11. Let T be compact and translation invariant and let A be a
T -attractor. Then the set A∗ := A∗T is a T -repeller. The sets A and A∗ are
compact, disjoint and T -invariant. Moreover, for every σ ∈ T , the following
alternatives hold:

(2.19) if σ(R) 6⊂ A∗ then ω(σ) ⊂ A,

(2.20) if σ(R) 6⊂ A then α(σ) ⊂ A∗.
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In particular, either σ(R) ⊂ A, or σ(R) ⊂ A∗ or else α(σ) ⊂ A∗ and ω(σ) ⊂ A.
Finally, A = (A∗T )

∗
T − .

We call the set A∗T the dual T -repeller of A and the pair (A,A∗) a T -
attractor-repeller pair .

Proof. Let y ∈ A∗ be arbitrary. It follows from the definition of A∗ that
there is a σ ∈ T such that σ(0) = y and ω(σ) ∩A = ∅. For every t ∈ R we have
σt := tsltσ ∈ T and ω(σt) = ω(σ) so ω(σt) ∩ A = ∅. Hence σ(t) = σt(0) ∈ A∗,
so σ(R) ⊂ A∗. It follows that A∗ is T -invariant.
There is a closed set Y ⊂ X such that A = ωT (Y ) ⊂ IntX(Y ). It follows

from Proposition 2.10 that

(2.21) whenever σ ∈ T then ω(σ) ∩A = ∅ ⇔ σ(R) ⊂ Y ∗ := X \ IntX(Y ).

(2.21) and the compactness of T easily imply that A∗ is compact.
We now show that A∗ = InvT −(Y ∗). In fact, obviously InvT −(Y ∗) =

InvT (Y ∗). Since A∗ is T -invariant and A∗ ⊂ Y ∗ by (2.21), we obtain A∗ ⊂
InvT (Y ∗). If y ∈ InvT (Y ∗) then there is a σ ∈ T with σ(0) = y and σ(R) ⊂ Y ∗.
Thus from (2.21) we conclude that y ∈ A∗.
We finally claim that there is a t ∈ [0,∞[ with T −(Y ∗, t) ⊂ X \ Y ⊂

IntX(Y ∗). Suppose this claim is not true. Then, since T (Y ∗, t) = T −(Y ∗,−t),
we obtain the existence of a sequence (tn)n∈N in ]0,∞[ with tn →∞ as n→∞,
and a sequence (σn)n∈N in T such that σn(0) ∈ Y ∗ and σn(−tn) ∈ Y for all
n ∈ N. Taking a subsequence if necessary we may assume that σn → σ in C.
Let τn = tsl−tnσn, n ∈ N. Then τn(0) = σn(−tn) ∈ Y for all n ∈ N and
τn(tn) = σn(0)→ σ(0). Since Y ∗ is closed, we see that

σ(0) ∈ Y ∗ ∩ ωT (Y ) = Y ∗ ∩A = ∅,

a contradiction, which proves the claim. Altogether, we obtain from Theorem 2.8
that

(2.22) A∗ = ωT −(Y
∗) ⊂ IntX(Y ∗)

so A∗ is a T −-attractor, i.e. a T -repeller. It also follows that A ∩A∗ = ∅.
Now let σ ∈ T be arbitrary. If σ(R) 6⊂ A = InvT (Y ) then there is a t ∈ R

with σ(t) /∈ Y , so σ(t) ∈ Y ∗. This implies that α(σ) ⊂ ωT −(Y ∗) = A∗.
On the other hand, if σ(R) 6⊂ A∗ = InvT (Y ∗) then there is a t ∈ R with

σ(t) /∈ Y ∗, i.e. σ(t) ∈ IntX(Y ). This implies that ω(σ) ⊂ A.
Finally, y ∈ (A∗T )∗T − if and only if there is a τ ∈ T

− with τ(0) = y and
ω(τ)∩A∗T = ∅ if and only if there is a σ ∈ T with σ(0) = y and α(σ)∩A∗T = ∅.
Here, σ = τ−. Now, by what we have proved so far, α(σ) ∩ A∗T = ∅ if and only
if σ(R) ⊂ A. This clearly implies that (A∗T )∗T − = A. The theorem is proved. �

Theorem 2.11 clearly implies the following corollary:
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Corollary 2.12. Let T be compact and translation invariant. A pair
(A1, A2) of subsets of X is a T -attractor-repeller pair if and only if the pair
(A2, A1) is a T −-attractor-repeller pair.

We will now discuss perturbations of attractor-repeller pairs with respect to
the set T ⊂ C. To this end we need the following convergence concept on the set
of all subsets of C.

Definition 2.13. Let (Tκ)κ∈N be a sequence of subsets of C and T ⊂ C
be arbitrary. We say that (Tκ)κ∈N converges to T , and we write Tκ → T (as
κ → ∞), if for every sequence (κn)n∈N in N with κn → ∞ as n → ∞ and
every sequence (σn)n∈N such that σn ∈ Tκn for all n ∈ N there is a subsequence
(σnm)m∈N and a σ ∈ T such that σnm → σ in C as m→∞.

The next propositions contain some elementary consequences of the above
definition.

Proposition 2.14. Suppose N is closed in X, Tκ → T and InvT (N) ⊂
IntX(N). Assume also that each Tκ is translation invariant. Then there is a
κ0 ∈ N such that InvTκ(N) ⊂ IntX(N) for all κ ≥ κ0.

Proof. If the proposition is not true then, by Definition 2.13 and the trans-
lation invariance of Tκ, there is a sequence (κn)n∈N with κn → ∞ as n → ∞,
a sequence (σn)n∈N such that σn ∈ Tκn for all n ∈ N and a σ ∈ T such that
σn → σ as n→∞, σn(R) ⊂ N and σn(0) ∈ ∂X(N) for every n ∈ N. Since N is
closed it follows that σ(R) ⊂ N and σ(0) ∈ ∂X(N), a contradiction. �

Proposition 2.15. Suppose N is closed and U is open in X, Tκ → T and
InvT (N) ⊂ InvT (U). Assume also that each Tκ is translation invariant. Then
there is a κ0 ∈ N such that InvTκ(N) ⊂ InvTκ(U) for all κ ≥ κ0.

Proof. If the proposition is not true, then, by Definition 2.13 and the trans-
lation invariance of Tκ, there is a sequence (κn)n∈N with κn → ∞ as n → ∞,
a sequence (σn)n∈N such that σn ∈ Tκn for all n ∈ N and a σ ∈ T such that
σn → σ as n → ∞, σn(R) ⊂ N and σn(0) ∈ X \ U for every n ∈ N. We thus
obtain that σ(0) ∈ X \ U . However, since N is closed it follows that σ(R) ⊂ N
and so σ(0) ∈ InvT (N) ⊂ InvT (U) ⊂ U , a contradiction. �

Proposition 2.16. Suppose N is closed in X, N ′ ⊂ X is arbitrary, Tκ → T
and InvT (N) ⊂ InvT (N ′) ⊂ IntX(N ′). Assume also that each Tκ is translation
invariant. Then there is a κ0 ∈ N such that InvTκ(N) ⊂ InvTκ(N ′) for all
κ ≥ κ0.

Proof. Let U := IntX(N ′). Since InvT (N ′) ⊂ U we obtain that InvT (U) =
InvT (N ′) so the proposition follows from Proposition 2.15. �
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Proposition 2.17. Suppose N and N ′ are closed in X, Tκ → T ,

InvT (N) ⊂ IntX(N), InvT (N ′) ⊂ IntX(N ′) and InvT (N) = InvT (N ′).

Assume also that each Tκ is translation invariant.
Then there is a κ0 ∈ N such that InvTκ(N) = InvTκ(N ′) for all κ ≥ κ0.

Proof. This is an immediate consequence of Proposition 2.16. �

Proposition 2.18. Suppose N is closed in X, Tκ → T , t ∈ ]0,∞[ and
T (N, t) ⊂ IntX(N). Then there is a κ0 ∈ N such that Tκ(N, t) ⊂ IntX(N) for
all κ ≥ κ0.

Proof. If the proposition is not true then, by Definition 2.13, there is a
sequence (κn)n∈N with κn → ∞ as n → ∞, a sequence (σn)n∈N such that
σn ∈ Tκn for all n ∈ N and a σ ∈ T such that σn → σ as n → ∞, σn(0) ∈ N
and σn(t) 6∈ IntX(N) for every n ∈ N. Since N is closed it follows that σ(0) ∈ N
and σ(t) 6∈ IntX(N), a contradiction. �

We can now state a basic perturbation stability result for attractor-repeller
pairs:

Theorem 2.19. Let (Tκ)κ∈N be a sequence of compact and translation in-
variant subsets of C and T ⊂ C be compact and translation invariant. Suppose
Tκ → T and let (A,A∗) be a T -attractor-repeller pair. Let V (resp. V ∗) be
closed in X and such that A = InvT (V ) ⊂ IntX(V ) (resp. A∗ = InvT −(V ∗) ⊂
IntX(V ∗)). Then there is a κ0 ∈ N such that (InvTκ(V ), InvTκ(V ∗)) is a Tκ-
attractor-repeller pair for all κ ≥ κ0.

Proof. Let N and N∗ be closed and such that A = ωT (N) ⊂ IntX(N)
and A∗ = ωT −(N∗) ⊂ IntX(N∗). Since A and A∗ are disjoint and closed
by Theorem 2.11 we may use Proposition 2.7 and choose N and N∗ smaller,
if necessary, to ensure that N and N∗ are disjoint. For κ ∈ N set Aκ =
InvTκ(N) and Ãκ = InvTκ(N

∗). By Theorem 2.8 there is a t0 ∈ ]0,∞[ such
that T (N, t0) ⊂ IntX(N). Consequently, by Proposition 2.18 there is a κ0 ∈ N
such that Tκ(N, t0) ⊂ IntX(N) for all κ ≥ κ0. Thus Theorem 2.8 implies that

(2.23) Aκ = ωTκ(N) ⊂ IntX(N), κ ≥ κ0,

so Aκ is a Tκ-attractor for all κ ≥ κ0. Set A∗κ = A∗Tκ . If κ ≥ κ0 and x ∈ Ãκ
then there is a σ ∈ Tκ with σ(0) = x and σ(R) ⊂ N∗. Since N∗ is closed, we
conclude that ω(σ) ⊂ N∗ ⊂ X \N , so ω(σ)∩Aκ = ∅. Hence x ∈ A∗κ which proves
that Ãκ ⊂ A∗κ. Now suppose that A

∗
κ 6⊂ Ãκ for infinitely many κ ∈ N. Then

there are sequences (κn)n∈N with κn → ∞ as n → ∞ and (xn)n∈N such that
xn ∈ A∗κn \ Ãκn for all n ∈ N. Thus there is a sequence (σn)n∈N with σn ∈ Tκn ,
xn = σn(0) and ω(σn) ∩ Aκn = ∅ for all n ∈ N. Proposition 2.10 and (2.23)
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imply that σn(R) ∩ N = ∅ for all n ∈ N large enough. On the other hand, for
every n ∈ N we have σn(R) 6⊂ N∗ since otherwise xn ∈ InvTκn (N

∗) = Ãκn , a
contradiction. It follows that for every n ∈ N there is a tn ∈ R with σn(tn) 6∈ N∗.
Let τn = tsltnσn, n ∈ N. Taking subsequences if necessary we may assume that
there is a τ ∈ T such that τn → τ in C. It follows that τ(0) 6∈ IntX(N∗).
By Theorem 2.11 this implies that ω(τ) ⊂ A so τ(t) ∈ IntX(N) for some t ∈
R. But τn(R) = σn(R) ⊂ X \ N for all n ∈ N so τ(R) ⊂ X \ IntX(N), a
contradiction. This proves that A∗κ ⊂ Ãκ so A∗κ = Ãκ for all κ large enough.
Thus, for all such κ, the pair (Aκ, Ãκ) is a Tκ-attractor-repeller pair. Now,
since A = InvT (V ) ⊂ IntX(V ) and A = InvT (N) ⊂ IntX(N), Proposition 2.17
implies that InvTκ(V ) = InvTκ(N) = Aκ for all κ ∈ N large enough. Similarly,
InvT −κ (V

∗) = InvT −κ (N
∗) = Ãκ for all κ ∈ N large enough. This completes the

proof. �

3. T -Morse decompositions

In this section we again assume that we have a fixed subset T of C. We will
define attractor filtrations relative to T (Definitions 3.1) and we will present two
definitions of a Morse decomposition relative to T (Definitions 3.2 and 3.3). If T
is compact, translation invariant and satisfies a so-called cut-and-glue invariance
property, then, as we will show in Theorems 3.8 and 3.10 these two definitions are
equivalent. Finally, we establish perturbation stability properties for attractor
filtrations and Morse decompositions (Theorems 3.14 and 3.15).
We begin with the following definitions.

Definition 3.1. A T -attractor filtration (of length m) is a sequence (Ar)mr=0
of T -attractors such that A0 = ∅, Am = ST and Ar ⊂ Ar+1 for r ∈ [[0,m− 1]].
If (Ar)mr=0 is a T -attractor filtration then the sequence ((Ar)∗T )mr=0 is called

the dual T -repeller filtration of (Ar)mr=0.

Definition 3.2. A finite sequence (Mr)mr=1 is called a T -Morse decomp-
osition of the first kind if there is a T -attractor filtration (Ar)mr=0 such that
Mr = Ar ∩ (Ar−1)∗T for r ∈ [[1,m]].

Definition 3.3. A finite sequence (Mr)mr=1 is called a T -Morse decomp-
osition of the second kind if the following properties hold:

(3.1) The sets Mr, r ∈ [[1,m]], are closed, T -invariant and pairwise disjoint.
(3.2) For every σ ∈ T either σ(R) ⊂Mk for some k ∈ [[1,m]] or else there are

k, l ∈ [[1,m]] with k < l, α(σ) ⊂Ml and ω(σ) ⊂Mk.

The following simple result is important for applications:

Proposition 3.4. Let T be compact, translation invariant and gradient-like
with respect to a function ϕ:ST → R. Suppose that the set E of T -equilibria has
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m elements for some m ∈ N. Put all the elements of E in a sequence (xr)mr=1
with ϕ(xr) ≤ ϕ(xr+1) for all r ∈ [[1,m− 1]]. Then ({xr})mr=1 is a T -Morse
decomposition of the second kind.

Proof. Clearly the sets {xr}, r ∈ [[1,m]], are closed and pairwise disjoint.
Moreover, the definition of T -equilibria implies that for every r ∈ [[1,m]] the set
{xr} is T -invariant.
Let σ ∈ T be arbitrary. Either σ is a constant map so σ(t) ≡ xi for some

i ∈ [[1,m]] and all t ∈ R, or else σ is not constant and so, by Proposition 2.2
the sets α(σ) and ω(σ) are connected and contain only T -equilibria. Moreover,
φ(x) > φ(y) for x ∈ α(σ) and y ∈ ω(σ). It follows that α(σ) = {xl} and
ω(σ) = {xk} for some k and l ∈ [[1,m]] with k < l. �

We have the following simple result.

Proposition 3.5. Let T be compact and translation invariant and (Mr)mr=1
be a T -Morse decomposition of the second kind. Moreover, let k1, k2 ∈ [[1,m]],
k1 ≤ k2 and σ ∈ T be arbitrary with α(σ) ⊂Mk1 and ω(σ) ⊂Mk2 . Then k1 = k2
and σ(R) ⊂Mk1 =Mk2 .

Proof. Since T is compact and translation invariant, it follows that both
ω(σ) and α(σ) are nonempty. By Definition 3.3 two possible cases can occur:
Case 1. There is a k ∈ [[1,m]] with σ(R) ⊂Mk.
Since Mk is closed we obtain

∅ 6= α(σ) ⊂Mk ∩Mk1 and ∅ 6= ω(σ) ⊂Mk ∩Mk2 .

Since the sets Mr, r ∈ [[1,m]], are pairwise disjoint, we obtain k = k1 = k2 and
so the conclusion follows in this case.
Case 2. There are k, l ∈ [[1,m]] with k < l, α(σ) ⊂Ml and ω(σ) ⊂Mk.
However, this implies

∅ 6= α(σ) ⊂Ml ∩Mk1 and ∅ 6= ω(σ) ⊂Mk ∩Mk2 ,

so k1 = l > k = k2 ≥ k1, a contradiction. �

We now introduce the following basic concept:

Definition 3.6. Given σ1 and σ2 ∈ C with σ1(0) = σ2(0) the map

σ1 . σ2:R→ X, (σ1 . σ2)(t) :=

{
σ1(t) if t ≤ 0,
σ2(t) if t ≥ 0,

is called the cut-and-glue of (σ1, σ2).

Intuitively, we cut σk, k = 1, 2, into the “left” and “right” parts and glue
the left part of σ1 to the right part of σ2.
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A subset T of C is called cut-and-glue invariant if for all σ1, σ2 ∈ T with
σ1(0) = σ2(0) it follows that σ1 . σ2 ∈ T .

Proposition 3.7. Suppose that T is translation and cut-and-glue invariant,
s ∈ R is arbitrary and σ1, σ2 ∈ T are arbitrary such that σ1(s) = σ2(s). Then
σ1 .s σ2 ∈ T , where

σ1 .s σ2:R→ X, (σ1 .s σ2)(t) :=

{
σ1(t) if t ≤ s,
σ2(t) if t ≥ s.

Proof. Set τk = tslsσk, k = 1, 2. Then τk ∈ T for k = 1, 2 and τ1(0) =
τ2(0), so τ := τ1 . τ2 ∈ T . Hence σ := tsl−sτ ∈ T . Now

σ(t) = τ(−s+ t) =

{
τ1(−s+ t) = σ1(t) if −s+ t ≤ 0,
τ2(−s+ t) = σ2(t) if −s+ t ≥ 0.

Hence σ = σ1 .s σ2. �

We can now state the following theorem.

Theorem 3.8. Suppose T is compact, translation and cut-and-glue invari-
ant. Moreover, let (Mr)mr=1 be a T -Morse-decomposition of the first kind. Then
(Mr)mr=1 is a T -Morse-decomposition of the second kind.

Proof. Let (Ar)mr=0 be a T -attractor filtration with Mr = Ar ∩ (Ar−1)∗T
for r ∈ [[1,m]]. Since Ar and (Ar−1)∗T are closed it follows that Mr is closed, for
all r ∈ [[1,m]]. Let r ∈ [[1,m]] and x ∈Mr be arbitrary. Since Ar is T -invariant,
there is a σ1 ∈ T such that σ1(0) = x and σ1(R) ⊂ Ar. By the definition of
(Ar−1)∗T , there is a σ2 ∈ T such that σ2(0) = x and ω(σ2) ⊂ X \ Ar−1. Let
σ := σ1 . σ2. Then σ ∈ T . Let t ∈ R be arbitrary and σt := tsltσ. Then
σt ∈ T , α(σt) = α(σ) = α(σ1) ⊂ Ar and ω(σt) = ω(σ) = ω(σ2) ⊂ X \ Ar−1
so σ(t) = σt(0) ∈ Ar ∩ (Ar−1)∗T . Since t ∈ R is arbitrary, we conclude that
σ(R) ⊂ Ar ∩ (Ar−1)∗T . Since x ∈ Mr is arbitrary, this implies that Mr is T -
invariant.

Now let k and l ∈ [[1,m]] be arbitrary with k 6= l. We may assume that k < l.
Hence k ≤ l − 1 so (Al−1)∗T ⊂ (Ak)∗T so

Mk ∩Ml = Ak ∩ (Ak−1)∗T ∩Al ∩ (Al−1)∗T ⊂ Ak ∩ (Ak)∗T = ∅.

This concludes the proof of property (3.1).

Now let σ ∈ T be arbitrary. Since ω(σ) ⊂ ST = Am and α(σ) ⊂ ST = (A0)∗T
it follows that there is a smallest k ∈ [[0,m]] and a largest l ∈ [[0,m]] such that
ω(σ) ⊂ Ak and α(σ) ⊂ (Al)∗T . Since ST is compact by Proposition 2.2, it follows
that ω(σ) and α(σ) are both nonempty so, in particular, k 6= 0 and l 6= m (as
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A0 = ∅ = (Am)∗T ). We thus have ω(σ) 6⊂ Ak−1 and α(σ) 6⊂ (Al+1)∗T which, by
Theorem 2.11, implies that σ(R) ⊂ (Ak−1)∗T and σ(R) ⊂ Al+1. Thus

(3.3) σ(R) ⊂ Al+1 ∩ (Ak−1)∗T .

If l + 1 = k then (3.3) implies that

(3.4) σ(R) ⊂Mk.

Suppose that l+ 1 6= k. We claim that k < l+ 1. In fact, otherwise l+ 1 < k so
l + 1 ≤ k − 1 so (3.3) shows that

σ(R) ⊂ Al+1 ∩ (Ak−1)∗T ⊂ Ak−1 ∩ (Ak−1)∗T = ∅,

a contradiction, which proves the claim. Using (3.3) and the definition of k and
l we also have

ω(σ) ⊂ Ak ∩ (Ak−1)∗T =Mk,(3.5)

α(σ) ⊂ Al+1 ∩ (Al)∗T =Ml+1.(3.6)

The above claim together with (3.4), (3.5) and (3.6) implies property (3.2). �

The next result shows that a T -Morse decomposition of the first kind unique-
ly determines its T -attractor filtration.

Proposition 3.9. Suppose T is compact, translation and cut-and-glue in-
variant. Let (Ar)mr=0 be a T -attractor filtration and set Mr := Ar ∩ (Ar−1)∗T for
r ∈ [[1,m]].
Then, for every k ∈ [[0,m]],

(3.7) Ak =
{
x

∣∣∣∣ ∃σ ∈ T with σ(0) = x and α(σ) ⊂ k⋃
r=1

Mr

}
.

Proof. Note that, if k = 0 then
⋃0
r=1Mr = ∅ so the right hand side of (3.7)

is the empty set. Since A0 = ∅, Formula (3.7) holds in this case.
Let k ∈ [[1,m]] and x ∈ Ak be arbitrary. Since Ak is T -invariant by Theo-

rem 2.11, there is a σ ∈ T with σ(0) = x and σ(R) ⊂ Ak. Thus there is a smallest
i ∈ [[1, k]] with σ(R) ⊂ Ai. Hence σ(R) 6⊂ Ai−1 so α(σ) ⊂ Ai ∩ (Ai−1)∗T = Mi.
It follows that α(σ) ⊂

⋃k
r=1Mr. Conversely, if x is such that there is a σ ∈ T

with σ(0) = x and α(σ) ⊂
⋃k
r=1Mr, then, for some i ∈ [[1, k]], α(σ) ⊂ Mi =

Ai ∩ (Ai−1)∗T , so α(σ) ⊂ Ai ⊂ Ak and so, by Theorem 2.11, σ(R) ⊂ Ak. Hence
x ∈ Ak. �

Proposition 3.9 suggests the following converse of Theorem 3.8:
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Theorem 3.10. Suppose T is compact, translation and cut-and-glue invari-
ant. Moreover, let (Mr)mr=1 be a T -Morse-decomposition of the second kind. For
k ∈ [[0,m]] define the sets

(3.8) Ak =
{
x

∣∣∣∣ ∃σ ∈ T with σ(0) = x and α(σ) ⊂ k⋃
r=1

Mr

}
.

Then (Ak)mk=0 is a T -attractor filtration and Mk = Ak ∩ (Ak−1)∗T for k ∈ [[1,m]].
In particular, (Mr)mr=1 is a T -Morse-decomposition of the first kind.

Proof. Note that, by (3.8) and the translation invariance of T , the set Ak
is T -invariant for every k ∈ [[0,m]]. We first claim that for k, l ∈ [[1,m]],

(3.9) Mk ⊂ Al if k ≤ l and Mk ⊂ X \Al if k > l.

In fact, suppose first that k ≤ l and let x ∈ Mk be arbitrary. Since Mk is T -
invariant, there is a σ ∈ T with σ(0) = x and σ(R) ⊂ Mk. Since Mk is closed
and k ≤ l we see that α(σ) ⊂Mk ⊂

⋃l
r=1Ml and so x ∈ Al, as claimed.

Now assume that k > l and suppose that there is an x ∈ Mk ∩ Al. Using
the definition of Al and the T -invariance of Mk we obtain the existence of σ1,
σ2 ∈ T with σ1(0) = x = σ2(0) such that α(σ1) ⊂

⋃l
r=1Mr and σ2(R) ⊂ Mk.

Set σ = σ1 . σ2. Thus there is an r ∈ [[1, l]] with α(σ) = α(σ1) ⊂ Mr and, since
Mk is closed, we also have that ω(σ) = ω(σ2) ⊂ Mk. Now Proposition 3.5 and
the fact that r < k immediately lead to a contradiction, proving the claim.
By (3.2) and (3.8) we have that A0 = ∅ and Am = ST . Thus Corollary 2.5

implies that A0 and Am are T -attractors. Let l ∈ [[1,m− 1]] be arbitrary and
assume that Al+1 is a T -attractor. We will prove that Al is a T -attractor. This
will imply that Ak is a T -attractor for all k ∈ [[0,m]].
We require three lemmas.

Lemma 3.11. Let V be an open set with Ml+1 ⊂ V and Mk ⊂ X \ V for all
k 6= l + 1. Let x ∈ X, (τν)ν∈N be a sequence in T with τν(0) → x as ν → ∞
and (sν)ν∈N be a sequence in [0,∞[ such that τν(t) ∈ ClX(V ) for all ν ∈ N and
all t ∈ [0, sν ]. Assume that there is a z ∈Ml+1 such that τν(sν)→ z as ν →∞.
Then there is a τ ∈ T with

(3.10) τ(0) = x and ω(τ) ⊂Ml+1.

Proof. Taking subsequences if necessary, we may assume that τν → τ ′ for
some τ ′ ∈ T . We have two possible cases to consider:
Case 1. The sequence (sν)ν∈N is unbounded. Then, taking subsequences, we

may assume that sν → ∞ as ν → ∞. It then follows that for every t ∈ [0,∞[
there is a ν(t) ∈ N such that t ∈ [0, sν ] (and so τν(t) ∈ ClX(V )) for ν ≥ ν(t).
Hence τ ′(t) ∈ ClX(V ) for all t ∈ [0,∞[ and so our choice of V imply that τ := τ ′

satisfies (3.10).



Morse Decompositions in the Absence of Uniqueness 223

Case 2. The sequence (sν)ν∈N is bounded. Then, taking subsequences, we
may assume that sν → s as ν → ∞, for some s ∈ [0,∞[. Then τν(sν) → τ ′(s)
so τ ′(s) = z ∈ Ml+1. Since T is translation invariant and Ml+1 is T -invariant,
we see that there is a τ ′′ ∈ T with τ ′′(s) = τ ′(s) and τ ′′(R) ⊂ Ml+1. Let
τ := τ ′ .s τ

′′. Then τ ∈ T and since 0 ≤ s we have τ(0) = τ ′(0) = x and so τ
satisfies (3.10). �

Lemma 3.12. Al is closed.

Proof. In fact, let (yn)n∈N be an arbitrary sequence in Al such that yn → y

as n→∞, for some y ∈ X. We want to prove that y ∈ Al. From the definition
of Al we obtain a sequence (σn)n∈N in T such that σn(0) = yn and

(3.11) α(σn) ⊂
l⋃
r=1

Mr for all n ∈ N.

It clearly follows that

(3.12) σn(R) ⊂ Al ⊂ Al+1, n ∈ N.

By taking subsequences if necessary we may suppose that σn → σ in C for some
σ ∈ T . Since Al+1 is closed, (3.12) implies that σ(R) ⊂ Al+1 and α(σ) ⊂ Al+1.
There is an r ∈ [[1,m]] with α(σ) ⊂Mr. Hence α(σ) ⊂Mr ∩Al+1 which in view
of (3.9) implies that r ≤ l + 1. If r ≤ l then the fact that σ(0) = y implies that
y ∈ Al and we are done. Therefore, suppose that r = l + 1. We will show that
this leads to a contradiction, proving the lemma.
Since the sets Mk, k ∈ [[1,m]], are closed and pairwise disjoint, there is an

open set V with Ml+1 ⊂ V and Mk ⊂ X \ V for all k 6= l + 1. It follows
that there is a sequence (tν)ν∈N with tν → ∞ and σ(−tν) → z as ν → ∞, for
some z ∈Ml+1. We can choose a strictly increasing sequence (nν)ν∈N such that
d(σnν (−tν), σ(−tν)) → 0 as ν → ∞. It follows that σnν (−tν) → z as ν → ∞.
Since z ∈ V and V is open we may also assume that σnν (−tν) ∈ V for all ν ∈ N.
Now (3.11) implies that for every ν ∈ N there is a t′ν ∈ R with −t′ν < −tν ,
such that σnν (−t′ν) ∈ ∂X(V ) and σnν (t) ∈ ClX(V ) for all t ∈ [−t′ν ,−tν ]. Set
sν := t′ν − tν and τν := tsl−t′νσnν , ν ∈ N. It follows that, for all ν ∈ N, τν ∈ T
and, moreover, that

(3.13) τν(0) ∈ ∂X(V ) and τν(t) ∈ ClX(V ) for all ν ∈ N and all t ∈ [0, sν ].

Taking subsequences if necessary we may assume that τν → τ ′ as ν → ∞, for
some τ ′ ∈ T . Using (3.12) we obtain τν(R) = σnν (R) ⊂ Al+1 so τ ′(R) ⊂ Al+1
and thus α(τ ′) ⊂ Al+1, i.e. α(τ ′) ⊂ Mr for some r ∈ [[1, l + 1]]. Let x = τ ′(0).
Since τν(sν) → z ∈ Ml+1 as ν → ∞, Lemma 3.11 implies that there is a
τ ∈ T with τ(0) = x and ω(τ) ⊂ Ml+1. Let τ ′′ = τ ′ . τ . Then τ ′′ ∈ T ,
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α(τ ′′) = α(τ ′) ⊂ Al+1 and ω(τ ′′) = ω(τ) ⊂ Ml+1. Now Proposition 3.5 implies
that τ ′′(R) ⊂Ml+1 so x = τ(0) ∈ ∂X(V )∩Ml+1 = ∅ by (3.13), a contradiction.�

Lemma 3.13. Al is a T -attractor.

Proof. Given Y ⊂ X and δ ∈ ]0,∞[ we denote by Vδ(Y ) the closed δ-
neighbourhood of Y , i.e.

Vδ(Y ) = {x ∈ X | inf
y∈Y

d(x, y) ≤ δ}.

Since Al+1 is a T -attractor, there is a closed set N such that Al+1 = ωT (N) ⊂
IntX(N). Since Al+1 is T -invariant we have Al+1 ⊂ ST and since Al+1 is closed
and ST is compact we conclude that Al+1 is compact. Thus there is a δ ∈ ]0,∞[
such that

Vδ(Al+1) ⊂ IntX(N), δ ∈ ]0, δ].
Now the T -invariance of Al implies that

(3.14) Al ⊂ InvT (Vδ(Al)) ⊂ ωT (Vδ(Al)), δ ∈ ]0, δ].

We claim that

(3.15) ωT (Vδ(Al)) ⊂ Al, for some δ ∈ ]0, δ].

This claim, together with (3.14) and the fact that Al ⊂ IntX(Vδ(Al)) implies the
lemma.
Suppose (3.15) is not true and let (δν)ν∈N be a sequence in ]0, δ] with δν → 0

as ν → ∞. Let ν ∈ N be arbitrary. Then there is a yν ∈ ωT (Vδν (Al)) \ Al.
Hence there is a sequence (σnν )n∈N in T and a sequence (tnν )n∈N in R such that
σnν (0) ∈ Vδν (Al) for all n ∈ N while tnν →∞ and σnν (tnν )→ yν as n→∞. Taking
subsequences if necessary we may assume that tsltnν σ

n
ν → σν for some σν ∈ T .

Then, for every t ∈ R, it follows that tnν + t → ∞ and σnν (tnν + t) → σν(t) as
n→∞, so

σν(t) ∈ ωT (Vδν (Al)) ⊂ ωT (Vδν (Al+1)) ⊂ ωT (N) = Al+1.

It follows that σν(R) ⊂ Al+1, so, as Al+1 is closed, we conclude that α(σν) ⊂
Al+1. Hence, by (3.9), there is an r ∈ [[1, l + 1]] such that α(σν) ⊂ Mr. If r ≤ l
then it follows that yν = σν(0) ∈ Al, a contradiction. Therefore,

(3.16) α(σν) ⊂Ml+1, ν ∈ N.

Let V be as in the proof of Lemma 3.12. Since Al is closed by Lemma 3.12 and
disjoint from Ml+1, we may assume, by taking V and δ smaller, if necessary,
that

(3.17) ClX(V ) ∩ Vδ(Al) = ∅, δ ∈ ]0, δ].
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Now (3.16) implies that, for every ν ∈ N, there is a zν ∈ Ml+1 and a sequence
(rµν )µ∈N in R with rµν →∞ as µ→∞ and d(σν(−rµν ), zν) < (1/µ) for all µ ∈ N.
In particular, d(σν(−rνν ), zν) < (1/ν). Taking subsequences if necessary we may
also assume that there is a z ∈Ml+1 such that d(zν , z) < (1/ν) for all ν ∈ N.
Thus for every ν ∈ N there is an n(ν) ∈ N with n(ν) ≥ ν, sν := tn(ν)ν −rνν > 0

and d(σn(ν)ν (sν), σν(−rνν )) < (1/ν). Putting things together, we thus obtain that

d(σn(ν)ν (sν), z) < (3/ν) for all ν ∈ N.

Since z ∈ V we may thus assume that σn(ν)ν (sν) ∈ V and σn(ν)ν (0) /∈ V for all
ν ∈ N. Therefore for every ν ∈ N there is a s̃ν ∈ ]0, sν [ such that σn(ν)ν (s̃ν) ∈
∂X(V ) and σ

n(ν)
ν (t) ∈ ClX(V ) for all t ∈ [s̃ν , sν ]. Let τν := tslesνσ

n(ν)
ν , ν ∈ N.

Then, for all ν ∈ N, τν(0) ∈ ∂X(V ) and τν(t) ∈ ClX(V ) for all t ∈ [0, sν − s̃ν ].
Taking subsequences, if necessary, we may assume that τν(0) → x as ν → ∞,
for some x ∈ ∂X(V ). Since τν(sν − s̃ν)→ z ∈Ml+1 as ν →∞, an application of
Lemma 3.11 shows that there is a τ ∈ T with τ(0) = x and ω(τ) ⊂Ml+1.
Now we have two possible cases:
Case 1. The sequence (s̃ν)ν∈N is unbounded. We may then assume that

s̃ν → ∞ as ν → ∞. Since σn(ν)ν (0) ∈ N for all ν ∈ N, it follows that x ∈
ωT (N) = Al+1, so there is a τ ′ ∈ T with τ ′(0) = x and α(τ ′) ⊂ Mr for some
r ∈ [[1, l + 1]]. Defining τ ′′ := τ ′ . τ we see that τ ′′ ∈ T , α(τ ′′) ⊂ Mr and
ω(τ ′′) ⊂Ml+1, which by Proposition 3.5 implies that τ ′′(R) ⊂Ml+1, and this is
a contradiction since τ ′′(0) = x ∈ ∂X(V ).
Case 2. The sequence (s̃ν)ν∈N is bounded. We may then assume that s̃ν → s

for some s ∈ [0,∞[, τν → τ ′ and σn(ν)ν (0) → w as ν → ∞, for some τ ′ ∈ T and
w ∈ Al. Thus τν(−s̃ν) → w so τ ′(−s) = w and τ ′(0) = x. The definition
of Al and the translation invariance of T imply that there is a τ ′′ ∈ T with
τ ′′(−s) = w and α(τ ′′) ⊂ Mr for some r ∈ [[1, l]]. Set τ ′′′ = τ ′′ .−s τ

′. Then
τ ′′′ ∈ T , α(τ ′′′) ⊂ Mr and, since −s ≤ 0, we also have that τ ′′′(0) = τ ′(0) = x.
Set τ ′′′′ = τ ′′′ . τ . Then τ ′′′′ ∈ T , α(τ ′′′′) ⊂ Mr and ω(τ ′′′′) ⊂ Ml+1, which
contradicts Proposition 3.5, as r < l + 1. The lemma is proved. �

Lemma 3.13 and obvious induction shows that Ak is a T -attractor for all
k ∈ [[0,m]].
Now let k ∈ [[1,m]] be arbitrary. Let x ∈ Mk be arbitrary. Since Mk is

T -invariant, there is a σ ∈ T with σ(0) = x and σ(R) ⊂Mk. Since Mk is closed
we have α(σ) ⊂ Mk so by the definition of Ak we have x ∈ Ak. If σ(R) 6⊂
(Ak−1)∗T then (3.9) and Theorem 2.11 imply that ∅ 6= ω(σ) ⊂ Mk ∩ Ak−1 = ∅,
a contradiction. Thus σ(R) ⊂ (Ak−1)∗T so x ∈ Ak ∩ (Ak−1)∗T . This proves that
Mk ⊂ Ak ∩ (Ak−1)∗T . Conversely, let x ∈ Ak ∩ (Ak−1)∗T be arbitrary. Then,
by the definition of Ak and Definition 3.3 there is a σ1 ∈ T with σ1(0) = x

and an r ∈ [[1, k]] such that α(σ1) ⊂ Mr. Moreover, there is a σ2 ∈ T such
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that σ2(0) = x and ω(σ2) ∩ Ak−1 = ∅, which, in view of (3.9) implies that
ω(σ2) ∩ Ml = ∅ for all l ∈ [[1, k − 1]]. It follows that ω(σ2) ⊂ Mn for some
n ∈ [[k,m]]. Setting σ = σ1 . σ2 ∈ T we see that α(σ) ⊂ Mr, ω(σ) ⊂ Mn and
r ≤ n. Proposition 3.5 implies r = n = k and σ(R) ⊂ Mk, so x ∈ Mk. This
proves that Ak ∩ (Ak−1)∗T ⊂Mk and completes the proof of the theorem. �

In the sequel, if T is compact, translation and cut-and-glue invariant, then,
in view of Theorems 3.8 and 3.10 we have a well-defined concept of a T -Morse de-
composition, meaning a T -Morse decomposition of the first kind or, equivalently,
of the second kind.

We will now state and prove two perturbation stability results for attractor
filtrations and Morse decompositions.

Theorem 3.14. Suppose that Tκ → T , where T and Tκ, κ ∈ N, are compact,
translation and cut-and-glue invariant subsets of C. Let (Ar)mr=0 be a T -attractor
filtration. For every r ∈ [[0,m]] let Vr and V ∗r be closed sets with Ar = InvT (Vr) ⊂
IntX(Vr) and (Ar)∗T = InvT −(V

∗
r ) ⊂ IntX(V ∗r ).

For κ ∈ N and r ∈ [[0,m]] set

Aκr = InvTκ(Vr), Ãκr = InvT −κ (V
∗
r ).

Then there is a κ0 ∈ N such that, for all κ ∈ N with κ ≥ κ0, the sequence
(Aκr )

m
r=0 is a Tκ-attractor filtration and (Ãκr )mr=0 is its dual Tκ-repeller filtration.

Proof. An application of Theorem 2.19 shows that (Aκr , Ã
κ
r ) is a Tκ-attr-

actor-repeller pair for all r ∈ [[0,m]] and all κ ∈ N large enough. Furthermore,
we conclude from Proposition 2.16 that Aκr ⊂ Aκr+1 for all r ∈ [[0,m− 1]] and all
κ ∈ N large enough. Thus we only have to show that Aκ0 = ∅ and Aκm = STκ for
all κ ∈ N large enough. If there is a sequence (κn)n∈N in N with κn → ∞ and
Aκn0 6= ∅, then there is a sequence (σn)n∈N such that σn ∈ Tκn and σn(R) ⊂ V0 for
all n ∈ N. Then, taking a subsequence if necessary, we may assume that σn → σ

for some σ ∈ T . Hence σ(R) ⊂ V0 so A0 = InvT (V0) 6= ∅, a contradiction. Now
clearly Aκ ⊂ STκ for every κ ∈ N. Consequently, if there is a sequence (κn)n∈N

in N with κn → ∞ and Aκnm 6= STκ , then there is a sequence (σn)n∈N such that
σn ∈ Tκn and σn(0) /∈ Vm for all n ∈ N. Taking a subsequence if necessary, we
may assume that σn → σ for some σ ∈ T . Hence σ(0) /∈ IntX(Vm) so σ(R) 6⊂ Am
and thus Am 6= ST , a contradiction. �

Theorem 3.15. Suppose that Tκ → T , where T and Tκ, κ ∈ N, are compact,
translation and cut-and-glue invariant subsets of C. Let (Mr)mr=1 be a T -Morse
decomposition. Let (Wr)mr=1 be a finite sequence of closed sets such that

Mr = InvT (Wr) ⊂ IntX(Wr), r ∈ [[1,m]].
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For κ ∈ N and r ∈ [[1,m]] set

(3.18) Mκr = InvTκ(Wr).

Then there is a κ1 ∈ N such that for all κ ∈ N with κ ≥ κ1 the sequence (Mκr )mr=1
is a Tκ-Morse decomposition.

Proof. Choose a T -attractor filtration (Ar)mr=0 such that

Mr = Ar ∩ (Ar−1)∗T , r ∈ [[1,m]].

For every r ∈ [[0,m]] let Vr and V ∗r be closed sets with Ar = InvT (Vr) ⊂ IntX(Vr)
and (Ar)∗T = InvT −(V

∗
r ) ⊂ IntX(V ∗r ). Let r ∈ [[1,m]] be arbitrary. Since Mr is

T -invariant and Mr ⊂ Vr ∩ V ∗r−1, we see that

Mr ⊂ InvT (Vr ∩ V ∗r−1) ⊂ InvT (Vr) ∩ InvT (V ∗r−1)
= InvT (Vr) ∩ InvT −(V ∗r−1) = Ar ∩ (Ar−1)∗T =Mr

so

(3.19)
Mr = InvT (Vr ∩ V ∗r−1) = InvT (Vr) ∩ InvT −(V ∗r−1)
⊂ IntX(Vr) ∩ IntX(V ∗r−1) ⊂ IntX(Vr ∩ V ∗r−1).

For r ∈ [[0,m]] and κ ∈ N define Aκr = InvTκ(Vr), Ãκr = InvT −κ (V
∗
r ). By Theo-

rem 3.14 there is a κ0 ∈ N such that, for all κ ∈ N with κ ≥ κ0, the sequence
(Aκr )

m
r=0 is a Tκ-attractor filtration and (Ãκr )mr=0 is its dual Tκ-repeller filtration.

It follows that, for all κ ∈ N with κ ≥ κ0, the sequence (M̃κr )mr=1 is a Tκ-Morse
decomposition, where M̃κr = A

κ
r ∩ Ãκr−1, r ∈ [[1,m]]. Proceeding as in the proof

of Formula (3.19) we see that

M̃κr = InvTκ(Vr ∩ V ∗r−1) = InvTκ(Vr) ∩ InvT −κ (V
∗
r−1)

⊂ IntX(Vr) ∩ IntX(V ∗r−1) ⊂ IntX(Vr ∩ V ∗r−1).

Now (3.18), (3.19), and Proposition 2.17 imply that there is a κ1 ∈ N, κ1 ≥ κ0,
such that

M̃κr = InvTκ(Vr ∩ V ∗r−1) = InvTκ(Wr) =Mκr , r ∈ [[1,m]], κ ≥ κ1. �

4. Applications to a Galerkin-type Conley index

In this section we will apply the abstract results obtained before to certain
classes of ordinary differential equations on Banach spaces, considered in the
paper [10], which do not necessarily satisfy the uniqueness property of the Cauchy
problem. In [10] a Galerkin-type Conley index is defined for such equations,
generalizing an index previously defined in [7].
We will establish a Morse equation for this Conley index theory (Theo-

rems 4.7 and 4.16). This Morse equation can be used to prove multiplicity



228 M. C. Carbinatto — K. P. Rybakowski

results for strongly indefinite problems in Hilbert spaces. An example of such
an application will be given in the next section.
We assume the reader’s familiarity with the paper [10] and only review some

basic notation and those results from that paper which we require to prove the
results of this section.
In this section let (E, ‖ · ‖) be a Banach space and we set X = E and

d(x, y) = ‖x − y‖ for x, y ∈ X. Given N ⊂ U ⊂ E and f :U → E an arbitrary
function, we set

|f |N = sup
x∈N
‖f(x)‖ ∈ [0,∞].

If U ⊂ X is open and f ∈ C(U → X) then by a solution of f we mean a
differentiable function σ:R→ E with σ(R) ⊂ U and such that

σ′(t) = f(σ(t)), for all t ∈ R.

Note that any translate of a solution of f is again a solution of f . Furthermore,
if σ1 and σ2 are two solutions of f with σ1(0) = σ2(0), then σ := σ1 .σ2 is easily
seen to be a solution of f .
By Sol(f) we denote the set of all solutions of f . Moreover, given Y ⊂ U we

denote by Sol(f, Y ) the set of all solutions σ of f such that σ(R) ⊂ Y . It follows
that Sol(f, Y ) is translation and cut-and-glue invariant.
Define Inv(f, Y ) to be the set of all y ∈ E for which there is a σ ∈ Sol(f, Y )

with σ(0) = y. Note that Inv(f, Y ) = InvT (Y ), where T = Sol(f). A set S ⊂ U
is called invariant relative to f if Inv(f, S) = S. Thus S is invariant relative to f
if and only if S is T -invariant, where T = Sol(f).
Now let S ⊂ U be invariant relative to f . Set T(f,S) = Sol(f, S). Since S is

invariant relative to f it follows that S = ST(f,S) .
We say that a set A is an attractor (resp. a repeller) in S if A is a T(f,S)-

attractor (resp. a T(f,S)-repeller). Analogously, attractor filtrations in S, resp.
Morse decompositions of the first (resp. the second) kind of S are simply T(f,S)-
attractor filtrations, resp. T(f,S)-Morse decompositions of the first (resp. the
second) kind. If T(f,S) is compact then in view of Theorems 3.8 and 3.10 we may
simply speak of Morse-decompositions of S.
A bounded set N ⊂ U is called an isolating neighbourhood relative to f if

N is closed in X and Inv(f,N) ⊂ IntX(N). The set Inv(f,N) is then called an
isolated invariant set relative to f .
The following result is obvious:

Proposition 4.1. If U ⊂ E is open, f :U → E is continuous, and Y ⊂
Y ′ ⊂ U then

Sol(f, Y ) = Sol(f, S), where S = Inv(f, Y ),

Inv(f, Y ) = InvT (Y ), where T = Sol(f, Y ′).
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We also have the following result:

Proposition 4.2. Suppose E is finite dimensional, U is open in E, N is
bounded and closed in E and |fκ − f |N → 0 as κ → ∞ where (fκ)κ∈N is a
sequence in C(U → E) and f ∈ C(U → E) is arbitrary. Define T := Sol(f,N)
and Tκ := Sol(fκ, N), κ ∈ N. Then the sets T , Tκ, κ ∈ N, are compact and
Tκ → T .

Proof. This follows from Proposition 3.10 in [10]. The proof is an applica-
tion of Kamke’s Theorem for finite dimensional ordinary differential equations.�

We now obtain the following

Proposition 4.3. Suppose E is finite dimensional, U is open in E, N is
bounded and closed in E and |fκ − f |N → 0 as κ → ∞ where (fκ)κ∈N is a
sequence in C(U → E) and f ∈ C(U → E) is arbitrary. Suppose that N is an
isolating neighbourhood relative to f . Then there is a κ0 ∈ N such that for every
κ ∈ N with κ ≥ κ0, N is an isolating neighbourhood relative to fκ.

Proof. Using Proposition 4.1 we obtain Inv(f,N) = InvT (N) and

Inv(fκ, N) = InvTκ(N), κ ∈ N,

where T := Sol(f,N) and Tκ := Sol(fκ, N), κ ∈ N. Our hypothesis is that
Inv(f,N) ⊂ IntX(N). Thus InvT (N) ⊂ IntX(N) and so, by Proposition 2.14,
InvTκ(N) ⊂ IntX(N) for some κ0 ∈ N and all κ ≥ κ0. Thus

Inv(fκ, N) ⊂ IntX(N), κ ≥ κ0. �

The last result obviously implies the following corollary.

Corollary 4.4. Suppose E is finite dimensional, U is open in E, N is
bounded and closed in E and f ∈ C(U → E) is arbitrary. If N is an isolating
neighbourhood relative to f then there is an ε > 0 such that whenever g ∈
C(U → E) is such that |g − f |N < ε then N is an isolating neighbourhood
relative to g. We define ε(f,N) > 0 to be the supremum of such numbers ε.

In the situation of the above corollary, if f is locally Lipschitzian, then the
classical Conley index of Sf := Inv(f,N) relative to the local flow πf generated
by the ordinary differential equation

ẋ = f(x)

is defined, and we write h(f, Sf ) to denote this index. Actually, since the set N
uniquely determines the invariant set Sf we also write h(f,N) instead of Sf and
call h(f,N) the Conley index of the isolating neighbourhood N relative to f . If
f is merely continuous, then there is a locally Lipschitzian map g with

|g − f |N < ε(f,N).
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Following [10] we now define the Conley index h(f,N) of the isolating neighbour-
hood N relative to f as

h(f,N) := h(g,N).

It is shown in [10] that the index just defined only depends on the isolated
invariant set Sf and not on the particular choice of the isolating neighbourhood.
Moreover, this index enjoys all the properties of the classical Conley index like
nontriviality or homotopy invariance.
We can now specialize the perturbation stability result for Morse decompo-

sitions, Theorem 3.15, to the present finite dimensional situation:

Theorem 4.5. Suppose E is finite dimensional, U is open in E, N is boun-
ded and closed in E and |fκ − f |N → 0 as κ → ∞ where (fκ)κ∈N is a sequence
in C(U → E) and f ∈ C(U → E) is arbitrary. Suppose that N is an isolat-
ing neighbourhood relative to f . Moreover, for every r ∈ [[1,m]] let Wr ⊂ N be
a closed set which is an isolating neighbourhood relative to f and suppose that
(Inv(f,Wr))mr=1 is a Morse decomposition of Inv(f,N) relative to f . Then there
is a κ0 ∈ N such that for all κ ∈ N with κ ≥ κ0, the set N is an isolating
neighbourhood relative to fκ, for every r ∈ [[1,m]] the set Wr ⊂ N is an isolating
neighbourhood relative to fκ and (Inv(fκ,Wr))mr=1 is a Morse decomposition of
Inv(fκ, N) relative to fκ.

Proof. Let T and Tκ, κ ∈ N be as in of Proposition 4.2. By Proposition 4.1
we have Inv(f,N) = InvT (N) ⊂ IntX(N), Inv(f,Wr) = InvT (Wr) ⊂ IntX(Wr),
Inv(fκ, N) = InvTκ(N) and Inv(fκ,Wr) = InvTκ(Wr), r ∈ [[1,m]], κ ∈ N.
Since T and Tκ, κ ∈ N are compact, translation and cut-and-glue invariant,

an application of Proposition 4.2, Proposition 2.14 and Theorem 3.15 shows that
there is a κ0 ∈ N such that for all κ ≥ κ0, Inv(fκ, N) = InvTκ(N) ⊂ IntX(N)
and Inv(fκ,Wr) = InvTκ(Wr) ⊂ IntX(Wr), r ∈ [[1,m]], and (Inv(fκ,Wr))mr=1
is a Tκ-Morse decomposition, i.e. (Inv(fκ,Wr))mr=1 is a Morse decomposition of
Inv(fκ, N) relative to fκ. �

The last result clearly implies the following theorem.

Theorem 4.6. Suppose that E is finite dimensional, U ⊂ E is open, N ⊂ E
is bounded and closed and N ⊂ U , f :U → E is continuous. Suppose that
N is an isolating neighbourhood relative to f . Moreover, for every r ∈ [[1,m]]
let Wr ⊂ N be a closed set which is an isolating neighbourhood relative to f
and suppose that (Inv(f,Wr))mr=1 is a Morse decomposition of Inv(f,N) relative
to f . Then there is an ε ∈ ]0,∞[ such that whenever g:U → E is continuous
and |f − g|N < ε then N is an isolating neighbourhood relative to g, Wr is
an isolating neighbourhood relative to g, r ∈ [[1,m]], and (Inv(g,Wr))mr=1 is a
Morse decomposition of Inv(g,N) relative to g. By ε(f,N, (Wr)mr=1) we denote
the supremum of all such numbers ε.
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We will now state and prove the Morse equation for the version of the Conley
index defined above. To this end, let (Hq)q∈Z (resp. (Hq)q∈Z) be an arbitrary
homology (resp. cohomology) theory with coefficients in an R-moduleM , where
R is an integral domain. If (Y, y0) is a pointed space then we define the Betti
numbers

βq(Y, y0) := rankHq(Y, {y0}) ∈ N0 ∪ {∞}, q ∈ Z,
resp.

βq(Y, y0) := rankHq(Y, {y0}) ∈ N0 ∪ {∞}, q ∈ Z.
We also define the formal Poincaré polynomial

p(t, (Y, y0)) =
∞∑
q=0

βq(Y, y0)tq, t ∈ R,

resp.

p(t, (Y, y0)) =
∞∑
q=0

βq(Y, y0)tq, t ∈ R.

In particular, whenever defined, the Conley index h(f,N) is an equivalence class
of homotopy equivalent pointed spaces, so the polynomial p(t, h(f,N)) is defined.
We now obtain the following Morse equation:

Theorem 4.7. Let U , f , N and (Wr)mr=1 be as in Theorem 4.6. Then
m∑
r=1

p(t, h(f,Wr)) = p(t, h(f,N)) + (1 + t)Q(t), t ∈ R,

where Q(t) =
∑∞
k=0 akt

k, t ∈ R, is a formal power series with coefficients ak ∈
N0 ∪ {∞}, k ∈ N0.

Proof. Let g ∈ C(U → E) be a locally Lipschitzian map such that

|g − f |N < ε(f,N, (Wr)mr=1).

Then from Theorem III.3.5 in [13] we obtain the usual Morse equation

(4.1) ,
m∑
r=1

p(t, h(g,Wr)) = p(t, h(g,N)) + (1 + t)Q(t), t ∈ R

where Q(t) =
∑∞
k=0 akt

k, t ∈ R, is a formal power series with coefficients ak ∈
N0 ∪ {∞}, k ∈ N0.
Since, clearly, ε(f,N, (Wr)mr=1) ≤ ε(f,N) and ε(f,N, (Wr)mr=1) ≤ ε(f,Wr)

for all r ∈ [[1,m]] we see that h(f,N) = h(g,N) and h(f,Wr) = h(g,Wr) for all
r ∈ [[1,m]]. This together with (4.1) implies the assertion of the theorem. �

We will now treat certain classes of ordinary differential equations on infinite
dimensional Banach space.
We begin with the following useful definition.



232 M. C. Carbinatto — K. P. Rybakowski

Definition 4.8. The quadruple (L,E−1, E0, E1) is called a trichotomy on
the Banach space E if the following properties are satisfied:

(1) L:E → E is a bounded linear operator.
(2) Ej , j ∈ [[−1, 1]], are closed L-invariant subspaces of E with E = E−1 ⊕

E0 ⊕ E1 and E0 is finite dimensional. For j ∈ [[−1, 1]] we denote by
Lj :Ej → Ej the restriction of L to Ej .

(3) There are constants M ∈ [0,∞[ and α ∈ ]0,∞[ such that

‖eL−1t‖L(E−1,E−1) ≤Me−αt, t ∈ [0,∞[,
‖eL1t‖L(E1,E1) ≤Meαt, t ∈ ]−∞, 0].

The triple (L,E−1, E1) is called a dichotomy on E if (L,E−1, {0}, E1) is a
trichotomy on E.

For the rest of this section assume that (E, ‖ · ‖) is an infinite dimensional
Banach space.
Assume the following hypothesis:

Hypothesis 4.9.

(1) (L,E−1, E0, E1) is a given trichotomy on E.
(2) (P `)`∈N is a sequence of bounded linear operators on E such that, for
all x ∈ E, P `(x)→ x as `→∞.

(3) For every ` ∈ N the subspace E` := P `(E) is finite dimensional (hence
closed in E) and L-invariant. By L`:E` → E` we denote the restriction
of L to E` for ` ∈ N.

Remark 4.10. In view of the Uniform Boundedness Principle, item (2) of
the above hypothesis is equivalent to the requirement that P ` → IdE as `→∞,
uniformly on compact subsets of E.

We have the following result:

Proposition 4.11. Suppose U is open in E, N is bounded and closed in E
with N ⊂ U , and K ∈ C(U → E) is such that K(N) is relatively compact in E.
Define

f :U → E, x 7→ Lx+K(x),

and
f `:U ∩ E` → E`, x 7→ L`x+ P `K(x), ` ∈ N.

Let
T := Sol(f,N) ⊂ C(R→ E)

and
T` := Sol(f `, N ∩ E`) ⊂ C(R→ E`) ⊂ C(R→ E), ` ∈ N.
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Then T and T`, ` ∈ N are compact in C := C(R → E) and T` → T in C, as
`→∞.

Proof. The proof follows from [10, Proposition 4.3 and the proof of Propo-
sition 4.7]. �

Now we obtain the following

Corollary 4.12. Assume the hypotheses of Proposition 4.11. In addition,
suppose that N is an isolating neighbourhood relative to f . Then there is an `0 ∈
N such that for all ` ∈ N with ` ≥ `0 the set N ∩E` is an isolating neighbourhood
relative to f `. By `0(K,N) we denote the smallest of such numbers `0.

Proof. Note that, by Proposition 4.1, Inv(f,N) = InvT (N) and Inv(f `, N∩
E`) = InvT`(N), ` ∈ N. Now Proposition 4.11 together with Proposition 2.14
imply the existence of an `0 ∈ N such that whenever ` ≥ `0, then InvT`(N) ⊂
IntX(N). Since X = E and InvT`(N) ⊂ E` for all ` ∈ N it follows that
InvT`(N) ⊂ IntE`(N ∩ E`) for all ` ∈ N with ` ≥ `0. �

Now assume all hypotheses of Corollary 4.12. Following [10] we define the
LS-Conley index h(f,N) of the isolating neighbourhood N relative to f as

h(f,N) := (h(f,N)`)`≥`0(K,N),

where h(f,N)` = h(f `, N ∩E`), ` ≥ `0(K,N). Here, of course, h(f `, N ∩E`) is
the finite dimensional Conley index defined earlier in this section.
It is proved in [10] that whenever N and N ′ are two isolating neighbour-

hoods of the same isolated invariant set S (relative to f) with K(N) and K(N ′)
relatively compact in E then

h(f,N)` = h(f,N ′)`, for all ` ∈ N large enough.

Consequently, given an isolated invariant set relative to f we may write h(f, S)
instead of h(f,N), where N is an arbitrary isolating neighbourhood of S relative
to f with K(N) relatively compact in E.
As it is shown in [10] this version of Conley index again satisfies all the

properties of the classical Conley index.
Now consider the following additional hypothesis.

Hypothesis 4.13. For every sufficiently large ` ∈ N there are linear L-
invariant subspaces F `, F `−1 and F

`
1 of E such that E

`+1 = F ` ⊕ E` and the
triple

(L|F ` , F `−1, F `1 )
is a dichotomy on F `. By i` we denote the dimension of F `1 .

We now have the following
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Proposition 4.14. Assume Hypothesis 4.13 in addition to the hypotheses
of Corollary 4.12. Then there is an `1 ≥ `0(K,N) such that

h(f,N)`+1 = Σi` ∧ h(f,N)`, ` ≥ `1.

Here, of course, Σk is the homotopy type of a pointed k-dimensional sphere,
k ∈ N0.

Proof. This is just Proposition 4.18 in [10]. �

We can now state the following perturbation stability result for Morse de-
compositions:

Theorem 4.15. Assume the hypotheses of Corollary 4.12. In addition, for
every r ∈ [[1,m]] let Wr ⊂ N be closed with Inv(f,Wr) ⊂ IntE(Wr) and suppose
that (Inv(f,Wr))mr=1 is a Morse decomposition of Inv(f,N) relative to f . Let f

`

be as in Proposition 4.11. Then there is an `0 ∈ N0 such that whenever ` ≥ `0
then

Inv(f `, N ∩ E`) ⊂ IntE`(N ∩ E`),
Inv(f `,Wr ∩ E`) ⊂ IntE`(Wr ∩ E`) for all r ∈ [[1,m]],

and (Inv(f `,Wr ∩ E`))mr=1 is a Morse decomposition of Inv(f `, N ∩ E`) relative
to f `.
By `0(f,N, (Wr)mr=1) we denote the minimum of all such numbers `0.

Proof. Let T and T`, ` ∈ N be as in Proposition 4.11. By Proposition 4.1
we have Inv(f,N) = InvT (N) ⊂ IntX(N), Inv(f,Wr) = InvT (Wr) ⊂ IntX(Wr),
Inv(f `, N) = InvT`(N) and Inv(f

`,Wr) = InvT`(Wr), r ∈ [[1,m]], ` ∈ N.
Since T and T`, ` ∈ N are compact, translation and cut-and-glue invariant, an

application of Proposition 2.14 and Theorem 3.15 shows that there is an `0 ∈ N
such that for all ` ≥ `0, Inv(f `, N) = InvT`(N) ⊂ IntX(N) and Inv(f `,Wr) =
InvT`(Wr) ⊂ IntX(Wr), r ∈ [[1,m]], and (Inv(f `,Wr))mr=1 is a T`-Morse decom-
position, i.e. (Inv(f `,Wr))mr=1 is a Morse decomposition of Inv(f

`, N) relative
to f `. Since InvT`(N) ⊂ E` and InvT`(Wr) ⊂ E`, ` ∈ N, r ∈ [[1,m]], it follows
that Inv(f `, N) = InvT`(N) ⊂ IntE`(N ∩ E`) and Inv(f `,Wr) = InvT`(Wr) ⊂
IntE`(Wr ∩ E`), r ∈ [[1,m]], ` ≥ `0. �

We now obtain the following Morse equation:

Theorem 4.16. Assume all the hypotheses of Theorem 4.15. Then, for every
` ≥ `0(f,N, (Wr)mr=1),

m∑
r=1

p(t, h(f,Wr)`) = p(t, h(f,N)`) + (1 + t)Q`(t), t ∈ R,
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where Q`(t) =
∑∞
k=0 a`,kt

k, t ∈ R, is a formal power series with coefficients
a`,k ∈ N0 ∪ {∞}, k ∈ N0.

Proof. This is an application of Theorems 4.7 and 4.15. �

5. An indefinite elliptic system

We will now apply the results of the preceding section to give Conley in-
dex proofs of two multiplicity results for a strongly indefinite elliptic system
previously proved in [1] using the Morse–Floer homology.
Let Ω be a bounded domain in RN with smooth boundary. Consider the

following elliptic system

(5.1)

−∆u = ∂vH(u, v, x) in Ω,
−∆v = ∂uH(u, v, x) in Ω,

u = 0, v = 0 in ∂Ω.

Throughout this section we make the following assumptions:

(5.2) p and q ∈ ]1,∞[ are such that

(1/p) > (1/2)− (2/N),
(1/q) > (1/2)− (2/N),

(1/p) + (1/q) > 1− (2/N).

(5.3) The function H:R× R× Ω→ R, (ξ, η, x) 7→ H(ξ, η, x), is of class C2.

(5.4) There is a constant c1 ∈ ]0,∞[ such that for all (ξ, η, x) ∈ R× R× Ω

|∂ξH(ξ, η, x)| ≤ c1(|ξ|p−1 + |η|(p−1)q/p + 1),

|∂ηH(ξ, η, x)| ≤ c1(|η|q−1 + |ξ|(q−1)p/q + 1).

(5.5) There are constants c2 and δ ∈ ]0,∞[ such that for all (ξ, η, x) ∈ R×R×Ω

∂ξH(ξ, η, x)ξ − ∂ηH(ξ, η, x)η ≥ −c2 + δ(|ξ|p + |η|q).

Following [11] we will now briefly describe how to use Conley index to ob-
tain solutions of (5.1). For more details, the reader is referred to [11] and the
references contained there.
First of all, it is well-known that the linear operator

B:W 2,2(Ω) ∩W 1,20 (Ω)→ L2(Ω), u 7→ −∆u,

is positive self-adjoint and, consequently, sectorial in X = L2(Ω). Thus B gen-
erates a family Xα, α ∈ [0,∞[, of fractional power spaces (cf e.g. [8]). We write
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A := B1/2. Moreover, for α ∈ [0,∞[ let Eα := Xα/2 and E−α := Eα∗ be the
dual of Eα. Note that for α ∈ [0,∞[ the formula

〈u, v〉α := 〈Aαu,Aαv〉L2 , u, v ∈ Eα

defines a Hilbert product in Eα and Aα is an isometry between the Hilbert spaces
Eα and L2(Ω). Endow E−α := Eα∗ with the dual product. We write

A−α := (Aα)−1:L2(Ω)→ Eα.

Whenever λ > 0 and Bφ = λφ then Aβφ = λβ/2φ for every β ∈ R.
It is also well-known that for every β ∈ R the operator Aβ can be uniquely

extended to a map

Aβ :
⋃
α∈R

Eα →
⋃
α∈R

Eα

such that whenever α ∈ R then Aβ(Eα) = Eα−β and Aβ|Eα :E
α → Eα−β is an

isometry.
Moreover, Hypothesis (5.2) is easily seen to be equivalent to the following

condition:

(5.6) p and q ∈ ]1,∞[ and there are s, t ∈ ]0,∞[ such that s+ t = 2 and

(1/p) > (1/2)− (s/N),
(1/q) > (1/2)− (t/N).

From now on choose s and t as in (5.6).
Define the product Hilbert space E := Es × Et with the Hilbert product

〈z, z′〉 := 〈u, u′〉s + 〈v, v′〉t, z = (u, v), z′ = (u′, v′) ∈ E.

We write | · |E to denote the Hilbert space norm on E. Moreover, given z = (u, v)
we write z := (u,−v). Now set

L(u, v) := (A−sAtv,A−tAsu), (u, v) ∈ E.

This defines a bounded (E, 〈 · , · 〉)-symmetric linear operator L:E → E which
has two eigenvalues, λ = −1 and λ = 1 with the corresponding eigenspaces
denoted by E−1 and E1, respectively. The spaces E−1 and E1 are E-orthogonal
complements to each other, and so, in particular, E = E−1⊕E1. Thus the triple
(L,E−1, E1) is a dichotomy on E. Let (λk)k∈N be the repeated nondecreasing
sequence of eigenvalues of B and (φk)k∈N, be a corresponding L2-orthogonal
sequence of eigenvectors such that |φk|2L2 = 1/2 for every k ∈ N. For every
k ∈ N let

χk = (A−sφk, A−tφk).

Then (χk)k∈N, is an E-orthonormal basis of E1, while (χk)k∈N, is an E-orthonor-
mal basis of E−1.
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For every ` ∈ N let E` be the linear subspace spanned by
⋃`
k=1{χk, χk}.

Moreover, let F `−1, resp. F
`
1 , be the one-dimensional linear subspace of E spanned

by χ`+1, resp. χ`+1 and set F
` = F `−1⊕F `1 . Let P `:E → E be the E-orthogonal

projector of E onto E`. It follows that P `x→ x as `→∞, for every x ∈ E.
Altogether, we see that Hypotheses 4.9 and 4.13 are satisfied with i` = 1 for

all ` ∈ N.
Now let us note that, in view of (5.4), for u ∈ Lp(Ω) and v ∈ Lq(Ω) the func-

tion ∂ξH(u( · ), v( · ), · ) lies in Lp/(p−1)(Ω) so we may regard ∂ξH(u( · ), v( · ), · )
as an element of the dual space of Lp(Ω). Since our choice of s implies that Es ⊂
Lp(Ω) with compact inclusion induced map, we can regard ∂ξH(u( · ), v( · ), · ) as
an element of E−s. Hence A−2s∂ξH(u( · ), v( · ), · ) is a well-defined element of
Es. Similarly, we may regard the function ∂ηH(u( · ), v( · ), · ) as an element of
E−t so A−2t∂ηH(u( · ), v( · ), · ) is a well-defined element of Et. We thus obtain
a well-defined map

(5.7) K:E → E, (u, v) 7→ (K1(u, v),K2(u, v))

where

(5.8)
K1(u, v) = −A−2s∂ξH(u( · ), v( · ), · ),
K2(u, v) = −A−2t∂ηH(u( · ), v( · ), · ).

Set f = fK = L +K. The map K:E → E is continuous and whenever N ⊂ E
is bounded, then the set K(N) is relatively compact in E. Moreover, K = −∇ψ
where

ψ:E → R, (u, v) 7→
∫
Ω
H(u(x), v(x), x) dx.

Here, and in the sequel, the symbol ∇ denotes the gradient (of a given function
on E) with respect to the inner product on E.
Since L is E-symmetric, we thus obtain

(5.9) f = fK = ∇Φ

where
Φ:E → R, z 7→ (1/2)〈Lz, z〉 − ψ(z).

By using important bootstrapping arguments established in [1] it is proved that
z = (u, v) is a classical solution of (5.1) if and only if z ∈ E and fK(z) = 0.
Thus the study of solutions of system (5.1) is reduced to the study of equilibria
of the gradient-like ordinary differential equation

(5.10) ż = fK(z)

on E.
However, note that we do not impose any growth restrictions on the sec-

ond partial derivatives of H with respect to the variables (ξ, η). Therefore,
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no matter how smooth the function H is, the map fK :E → E, in general, is
not differentiable nor even locally Lipschitzian, and so the Cauchy problem for
Equation (5.10) may have nonunique solutions. This is where the Conley index
developed in [10] and the results on Morse decompositions presented in the first
part of this paper come into play.
We first need the following useful

Definition 5.1. Suppose z0 = (u0, v0) ∈ E is an equilibrium of (5.10), i.e.

fK(z0) = 0.

Define the linear map Klin,z0 :E → E by

Klin,z0(u, v) = (A
−2s(−a( · )u+ c( · )v), A−2t(c( · )u− b( · )v)).

Here, the continuous functions a, b and c: Ω→ R are defined, for x ∈ Ω, by

a(x) = ∂ξξH(z0(x), x),

b(x) = ∂ηηH(z0(x), x),

−c(x) = ∂ξηH(z0(x), x) = ∂ηξH(z0(x), x).

We call the equilibrium z0 hyperbolic if the linear operator L+Klin,z0 is injective.

Remark. Note that the operator L+Klin,z0 is the ‘formal’ Fréchet derivative
of fK at z0. In general, the true Fréchet derivative DfK(z0) does not exist.

We now state the following fundamental Linearization Principle.

Theorem 5.2. Let z0 = (u0, v0) ∈ E be a hyperbolic equilibrium of (5.10).
Then {z0} is an isolated invariant set for fK and there is an integer γ = γ(z0),
called the renormalized Morse index of z0, and there is an `1 ∈ N such that

(5.11) h(fK , {z0})` = h(L+Klin,z0 , {0})` = Σγ+`, ` ≥ `1.

Proof. This is Theorem 2.8 in [11] and its corollary. The proof that

h(fK , {z0})` = h(L+Klin,z0 , {0})`, for all ` ∈ N large enough

is technically involved since, in general, the map fK = L+K:E → E is merely
continuous but not differentiable. To prove that

h(L+Klin,z0 , {0}) = Σγ+`, for all ` ∈ N large enough,

note that, for all ` ∈ N large enough, 0 is a hyperbolic equilibrium of the linear
finite dimensional ODE

ẋ = g`(x), x ∈ E`
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where g`:E` → E` is the linear map g` = P ` ◦ (L+Klin,z0)|E` . Thus, for every
` large enough there is a k` ∈ N0 such that

(5.12) h(g`, {0}) = Σk` .

Since in our case Hypothesis 4.13 holds with i` ≡ 1, formula (5.12) together with
Proposition 4.14 immediately implies the existence of γ ∈ Z such that

h(L+Klin,z0 , {0})` = Σγ+`,

for all ` ∈ N large enough. �

The following result was proved in [10] using an important a-priori estimate
established in [1].

Theorem 5.3. Define S to be the set of all points z0 ∈ E for which there is
a bounded solution z:R → E of fK such that z(0) = z0. Then S is compact in
E and the Conley index h(fK , S) is defined and

h(fK , S)` = Σ` for all ` sufficiently large.

We say that the function Φ is a Morse function if every equilibrium of (5.10)
is hyperbolic. It is proved in Section 7 of [1] that the property of being a Morse
function is generic in a certain sense.
We can now state the main result of this section.

Theorem 5.4. Suppose that Φ is a Morse function. Moreover, assume that
0 is a hyperbolic equilibrium of (5.10) with γ(0) 6= 0. Then system (5.1) has at
least two nontrivial solutions. Furthermore, if γ(0) > 0 and H is even, i.e.

H(u, v, x) = H(−u,−v, x), (u, v, x) ∈ R× R× Ω,

then for every γ ∈ [[0, γ(0)− 1]] equation (5.10) has at least two different equilibria
with renormalized Morse index γ. In particular, system (5.1) has at least 2γ(0)
nontrivial solutions.

Remark 5.5. This result was proved in sections 9.2.1 and 9.2.2 of [1] using
a version of Morse–Floer homology.

Proof. By Theorem 5.3 there is a bounded and closed set N ⊂ E such
that N is an isolating neighbourhood of S relative to fK . Let T := Sol(fK , N).
Then T is compact in C = C(R → E), translation and cut-and-glue invariant.
Moreover, z0 ∈ E is a T -equilibrium if and only if z0 is an equilibrium of (5.10).
Every equilibrium z0 of (5.10) is hyperbolic and so we conclude, by Theorem 5.2,
that {z0} is an isolated invariant set for fK . It follows that the set E of equilibria
of (5.10) is finite and (as 0 ∈ E) this set has m elements zr, r ∈ [[1,m]], for some
m ∈ N. Since by (5.9) the set T is gradient-like with respect to the function
−Φ it follows from Proposition 3.4 that, after a possible reordering, the family
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({zr})mr=1 is a T -Morse decomposition, i.e ({zr})mr=1 is a Morse decomposition
of S = InvT (N), relative to fK .
Now, for every r ∈ [[1,m]] let Wr ⊂ N be a bounded isolating neighbourhood

of {zr} (relative to fK). Let γr = γ(zr), r ∈ [[1,m]]. Then we obtain, using
Theorems 5.2 and 5.3, that, for all ` ∈ N large enough,

p(t, h(fK , {zr})`) = tγr+`, r ∈ [[1,m]],
p(t, h(fK , S))`) = t`.

In view of Theorem 4.16 this implies that there is an `1 ∈ N such that, for every
` ∈ N with ` ≥ `1, there is a formal power series

Q`(t) =
∞∑
k=0

a`,kt
k, t ∈ R

with coefficients a`,k, k ∈ N0 lying in N0 ∪ {∞} and such that

(5.13)
m∑
r=1

p(t, h(fK , {zr})`) = p(t, h(fK , S))`) + (1 + t)Q`(t), ` ≥ `1, t ∈ R.

Setting a`,−1 ≡ 0 we see that

(1 + t)Q`(t) =
∞∑
k=0

b`,kt
k, ` ≥ `1, t ∈ R

where

(5.14) b`,k := a`,k + a`,k−1, k ∈ N0

so

(5.15)
m∑
r=1

tγr+` = t` +
∞∑
k=0

b`,kt
k, ` ≥ `1, t ∈ R.

For γ ∈ Z let cγ ∈ N0 be the number of r ∈ [[1,m]] such that γr = γ. Since
γr + ` ≥ 0 for all ` ≥ `1 and r ∈ [[1,m]] we see that

m∑
r=1

tγr+` =
∑
γ∈Z

cγt
γ+` =

∞∑
k=0

ck−`t
k, ` ≥ `1, t ∈ R.

We can thus rewrite (5.13) in the form

(5.16)
∞∑
k=0

ck−`t
k = t` +

∞∑
k=0

b`,kt
k, ` ≥ `1, t ∈ R.

Fix ` ≥ `1 arbitrarily. If m = 1, then γ1 = γ(0) 6= 0. However, (5.15) implies
γ1 = 0, a contradiction.
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If m = 2, then (5.15) implies that γ1 = 0 or γ2 = 0 and so there is a γ ∈ Z
such that

(5.17) tγ+` =
∞∑
k=0

b`,kt
k, t ∈ R.

This means that b`,k0 6= 0 for some k0 ∈ N0. But then (5.14) implies that
b`,k0−1 6= 0 or else b`,k0+1 6= 0. However, this contradicts (5.17) and proves that
m ≥ 3. This proves the first part of the theorem.
Now assume that γ(0) > 0 and thatH is even. This implies, in particular that

whenever z0 6= 0 is an equilibrium of (5.10) then −z0 6= z0 but Klin,−z0 = Klin,z0
and so by Theorem 5.3 we have that

h(fK , {−z0})` = h(fK , {z0})`, for all ` ∈ N large enough.

It follows that cγ is odd for γ = γ(0) and cγ is even otherwise. Hence it follows
from (5.16) that b`,k is odd if k = ` or k = γ(0) + ` and even otherwise. It now
follows from (5.14) that a`,k is even if −1 ≤ k < ` and so a`,` is odd. This implies
by simple induction that a`,k is odd for all k ∈ [[`, γ(0) + `− 1]]. By comparing
coefficients in (5.16) we thus see that ck−` ≥ 2 for all k ∈ [[`, γ(0) + `− 1]].
Hence, for every γ ∈ [[0, γ(0)− 1]] we have at least two equilibria of (5.10) with
renormalized Morse index γ. This proves the second part of the theorem. �

References

[1] S. Angenent and R. van der Vorst, A superquadratic indefinite elliptic system and
its Morse–Conley–Floer homology, Math. Z. 231 (1999), 203–248.

[2] M. C. Carbinatto and K. P. Rybakowski, Conley index and singular perturbation

problems in the absence of uniqueness, in preparation.

[3] C. C. Conley, Isolated Invariant Sets and the Morse Index, CBMS 38, Amer. Math.

Soc., Providence, 1978.

[4] R. Engelking, Topologia Ogólna, PWN, Warszawa, 1989.

[5] R. Franzosa, The connection matrix theory for Morse decompositions, Trans. Amer.

Math. Soc. 311 (1989), 561–592.

[6] R. Franzosa and K. Mischaikow, The connection matrix theory for semiflows on (not

necessarily locally compact) metric spaces, J. Differential Equations 71 (1988), 270–287.

[7] K. Gęba, M. Izydorek and A. Pruszko, The Conley index in Hilbert spaces, Studia

Math. 134 (1999), 217–233.

[8] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lect. Notes in Math.
840, Springer–Verlag, New York, 1981.

[9] M. Izydorek, A cohomological Conley index in Hilbert spaces and applications to

strongly indefinite problems, J. Differential Equations 170 (2001), 22–50.

[10] M. Izydorek and K. P. Rybakowski, On the Conley index in Hilbert spaces in the

absence of uniqueness, Fund. Math. (to appear).

[11] , The Conley index in Hilbert spaces and a problem of Angenent and van der

Vorst, Fund. Math. (to appear).



242 M. C. Carbinatto — K. P. Rybakowski

[12] , Multiple solutions of indefinite elliptic systems via a Galerkin-type Conley

index theory, in preparation.

[13] K. P. Rybakowski, The Homotopy Index and Partial Differential Equations, Springer–

Verlag, Berlin, 1987.

[14] K. P. Rybakowski and E. Zehnder, On a Morse equation in Conley’s index theory

for semiflows on metric spaces, Ergodic Theory Dynam. Systems 5 (1985), 123–143.

Manuscript received October 30, 2001

Maria C. Carbinatto
Departamento de Matemática
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