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LERAY–SCHAUDER TYPE ALTERNATIVES
AND THE SOLVABILITY

OF COMPLEMENTARITY PROBLEMS

George Isac

Abstract. We present in this paper several existence theorems for non-

linear complementarity problems in Hilbert spaces. Our results are based

on the concept of “exceptional family of elements” and on Leray–Schauder
type altrenatives.

1. Introduction

The study of complementarity problems is a relatively new domain of ap-
plied mathematics. The complementarity theory has deep relations with several
chapters of fundamental mathematics as for example, fixed-point theory, theory
of variational inequalities, topological degree, functional analysis and theory of
topological ordered vector spaces, among others [4], [7], [14], [15], [25].

Each complementarity problem is a mathematical model for several kinds of
practical problems from economics, optimization, game theory, engineering and
mechanics [4], [7], [13]–[15], [23], [25], [29].

Recently in [19] (see also [5]), we introduced a new topological method in the
study of solvability of complementarity problems in Hilbert spaces. Our method
is based on the concept of exceptional family of elements (denoted shortly by
(EFE)). The notion of (EFE) is based on the topological degree and in more
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general situations on the concept of “zero-epi mappings” ([15], [16]) and because
this aspect, it is different of the notion of exceptional sequence of elements intro-
duced in [29], which is strongly dependent of the Euclidean structure in Rn and
of the ordering defined by Rn

+.
Applying the notion of (EFE) it was recently obtained the solvability of

complementarity problems for several classes of mappings, [5], [6], [13]–[23], [31]–
[35]. In our papers [17] and [22] it is shown that, in the method of (EFE), we
can replace the topological degree by the Leray–Schauder alternative.

Now, in this paper, we will develop this idea and we will obtain new existence
theorems for complementarity problems. By this way we will put also in evidence
several new classes of mappings for which the complementarity problem has a
solution.

2. Preliminaries

Let (H, 〈 · , · 〉) be a Hilbert space and K ⊂ H a closed pointed convex cone,
i.e. K is a non-empty closed set satisfying the following properties:

(k1) K + K ⊆ K,
(k2) λK ⊆ K for all λ ∈ R+,
(k3) K ∩ (−K) = {0}.

The dual of K, by definition, is K∗ = {y ∈ H | 〈x, y〉 ≥ 0 for all x ∈ K}.
Obviously, K∗ is a closed convex cone. If K ⊂ H is a closed convex cone, then
the projection onto K, denoted by PK , is well defined for every x ∈ H, i.e.
for every x ∈ H, we have that PK(x) is the unique element in K such that
‖x− PK(x)‖ = miny∈K ‖x− y‖.

A classical result says that, the projection operator PK is characterized by
the following properties.

For every x ∈ H, PK(x) is the unique element in K satisfying the following
conditions:

(i) 〈PK(x)− x, y〉 ≥ 0 for all y ∈ K,
(ii) 〈PK(x)− x, PK(x)〉 = 0.

3. Complementarity problems

There exist several types of complementarity problems as the reader can see
in [15]. In this paper we will consider only the general nonlinear complementarity
problem in Hilbert spaces.

Let (H, 〈 · , · 〉) be a Hilbert space, K ⊂ H a closed pointed convex cone and
f : H → H an arbitrary mapping. The nonlinear complementarity problem
defined by the mapping f and the cone K is:

(NCP(f,K)) find x∗ ∈ K such that f(x∗) ∈ K∗ and 〈x∗, f(x∗)〉 = 0.
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The problem NCP(f,K) has many applications and generally, it is related to
equilibrium problems in physical sense and also in economical sense [4], [7], [13]–
[15], [23], [25], [29]. If the mapping f is an affine mapping, i.e. f(x) = A(x) + b,
where A : H → H is a continuous linear mapping and b is an arbitrary element
in H, we have that NCP(f,K) is the linear complementarity problem, denoted
by LCP(A, b,K).

The problem LCP(A, b,K) has been very much studied, but generally, only
in the Euclidean space (Rn, 〈 · , · 〉). In Complementarity Theory, the study of
solvability of the problem NCP(f,K) is the first important problem, because the
solvability of this problem is not evident, [4], [7], [13]–[5].

Now, in this paper we will present several existence results for the problem
NCP(f,K) based on Leray–Schauder type alternatives.

4. Leray–Schauder type alternatives

One of the most important theorem of nonlinear functional analysis is the
Leray–Schauder alternative, proved in 1934 by the topological degree [24]. Now,
there exist several kinds of Leray–Schauder type alternatives proved by different
methods, not based on topological degree [2], [3], [9], [26]–[28]. We note that,
the classical Leray–Schauder Alternative has many applications to ordinary dif-
ferential equations too.

Our applications of Leray–Schauder type alternatives to the study of com-
plementarity problems represent a new direction of applications of this classical
result. In this paper we will apply the following Leray–Schauder type alterna-
tives.

Let (H, 〈 · , · 〉) be a Hilbert space and X ⊂ H a non-empty subset. Let
f : H → H be a mapping. We say that f is compact on X if f(X) is relatively
compact and we say that f is completely continuous if f is continuous and for
any bounded set B ⊂ H, f(B) is relatively compact. We will denote by X the
closure of X and by ∂X the boundary of X. We will use also the following classical
notion. We say that f is a completely continuous field, if f has a representation
of the form f(x) = x−T (x), for every x ∈ H, where T : H → H is a completely
continuous mapping.

Theorem 1 (Leray–Schauder alternative). Let D ⊆ H be a convex set, U a
subset open in D and such that 0 ∈ U . Then each continuous compact mapping
f : U → D has at least one of the following properties:

(1) f has a fixed-point,
(2) there is (x∗, λ∗) ∈ ∂U × ]0, 1[ such that x∗ = λ∗f(x∗).

Proof. A proof of this classical result is given in [9] and it is based on
transversality theory. �
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Let K ⊂ H be a closed pointed convex cone. For any r > 0 (r ∈ R) we
denote by Kr = {x ∈ K | ‖x‖ ≤ r}. Let α be the Kuratowski measure of
noncompactness. For this notion the reader is referred to [1], [8], [9], [13]. We
say that a mapping f : Kr → H is α-condensing if f is continuous bounded and
α(f(B)) < α(B), for all B ⊂ Kr such that α(B) > 0.

The next Leray–Schauder type alternative is based on the following fixed-
point theorem.

Theorem 2 (Deimling, [8]). Let (E, ‖·‖) be a Banach space, K ⊂ E a closed
pointed convex cone and f : Kr → E an α-condensing mapping. If the following
assumptions are satisfied:

(1) if x ∈ ∂K, ‖x‖ ≤ r, x∗ ∈ K∗ and x∗(x) = 0, then x∗(f(x)) ≥ 0,
(2) f(x) 6= λx for all λ > 1 and all x with ‖x‖ = r,

then f has a fixed-point (in Kr).

Proof. For a proof of this result the reader is referred to [8]. �

A consequence of Theorem 2 is the following Leray–Schauder type alterna-
tive.

Theorem 3. Let (H, 〈 · , · 〉) be a Hilbert space, K ⊂ H a closed pointed
convex cone and h : H → H a mapping such that h(x) = x − T (x), for all
x ∈ H, where T : H → H is an α-condensing mapping. Then, for any r > 0, for
the mapping f(x) = PK [x− h(x)], at least one of the following two situations is
satisfied:

(1) f has a fixed-point in Kr,
(2) there exist x∗ with ‖x∗‖ = r and λ ∗ ∈ ]0, 1[ such that x∗ = λ∗f(x∗).

Proof. Since α(PK [T (B)]) ≤ α(T (B)) < α(B) for all B ⊂ Kr with α(B) >

0, and f is continuous and bounded we deduce that f is α-condensing. The
theorem is now a consequence of Theorem 2. �

We recall that a mapping T : H → H is demi-continuous if for any sequence
{xn}n∈N ⊂ H, norm-convergent to an element x∗ ∈ H, we have that the sequence
{T (xn)}n∈N is weakly-convergent to T (x∗). A mapping f : H → H is said to be
monotone if for any x, y ∈ H we have 〈x−y, f(x)−f(y)〉 ≥ 0. We recall also that
a mapping T : H → H is pseudo-contractante if the mapping f(x) = x−T (x) is
monotone.

For Complementarity Theory, it is interesting to know under what condition
the mapping Ψ(x) = Pk[x − f(x)] is pseudo-contractante, where K ⊆ H is a
closed convex cone and f : H → H is a given mapping. In this sense we have
the following result.
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Proposition 4. Let (H, 〈 · , · 〉) be a Hilbert space, K ⊂ H a closed pointed
convex cone and f : H → H a mapping. If f(x) = x−ϕ(x), where ϕ : H → H is
non-expansive, then the mapping Φ(x) = PK [x− f(x)], is pseudo-contractante.

Proof. Indeed, Ψ(x) = x−Φ(x) is monotone if for any x1, x2 ∈ H, we have

〈x1 − x2,Ψ(x1)−Ψ(x2)〉 = 〈x1 − x2, x1 − x2〉
− 〈x1 − x2, PK [x1 − f(x1)]− PK [x2 − f(x2)]〉 ≥ 0,

which is equivalent to

(1) 〈x1 − x2, PK [x1 − f(x1)]− PK [x2 − f(x2)]〉 ≤ ‖x1 − x2‖2.

From our assumption, we have

〈x1 − x2, PK [x1 − f(x1)]− PK [x2 − f(x2)]〉
≤ ‖x1 − x2‖‖ϕ(x1)− ϕ(x2)‖ ≤ ‖x1 − x2‖2,

which implies that (1) is true and the proof is complete. �

Theorem 5 (Willem). Let (H, 〈 · , · 〉) be a Hilbert space, Ω ⊂ H a bounded
open set such that 0 ∈ Ω and T : H → H a demi-continuous pseudo-contractante
mapping. If for all (λ, x) ∈ ]0, 1[ × ∂Ω, we have x 6= λT (x), then T has a fixed
point in Ω.

Proof. For a proof of this theorem, the reader is referred to [30]. �

From Theorem 5 we deduce the following alternative.

Theorem 6. Let (H, 〈 · , · 〉) be a Hilbert space, Ω ⊂ H a bounded open
set such that 0 ∈ Ω. If T : H → H is a demicontinuous pseudo-contractante
mapping, then at least one of the following situations is true:

(1) T has a fixed-point in Ω,
(2) there exist λ∗ ∈ ]0, 1[ and x∗ ∈ ∂Ω such that x∗ = λ∗T (x∗).

5. On the solvability of complementarity
problem for quasi-bounded fields

Let (H, 〈 · , · 〉) be a Hilbert space and T : H → H a mapping. We say that
T is a quasi-bounded mapping, if and only if

|T |qb := inf
r>0

sup
‖x‖≥r

‖T (x)‖/‖x‖ < ∞.

When T is quasi-bounded, the real number |T |qb is called the quasi-norm
of T . The notion of quasi-bounded mapping, was introduced by A. Granas.
(See [9] and its references).
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Definition 1. We say that a mapping f : H → H is a quasi-bounded field
if f has a representation of the form f(x) = x − T (x) for all x ∈ H, where
T : H → H is a completely continuous quasi-bounded mapping.

Remark. If β = lim‖x‖→∞ ‖T (x)‖/‖x‖ < ∞ for a mapping T : H → H

then we have that |T |qb = β.

Theorem 7. Let (H, 〈 · , · 〉) be a Hilbert space, K ⊂ H a closed pointed
convex cone and f : H → H a quasi-bounded field with the representation f(x) =
x−T (x) for all x ∈ H. If |T |qb < 1, then the problem NCP(f,K) has a solution.

Proof. It is well known that the problem NCP(f,K) has a solution, if and
only if the mapping Φ(x) = PK [x − f(x)] has a fixed-point (see [15]). We have
that

|Φ|qb = inf
r>0

sup
‖x‖≥r

‖Φ‖
‖x‖

= inf
r>0

sup
‖x‖≥r

‖PK [T (x)]‖
‖x‖

= inf
r>0

sup
‖x‖≥r

‖T (x)‖
‖x‖

= |Tqb| < 1.

Hence, there exists r > 0 such that

(2)
‖Φ(x)‖
‖x‖

< 1 for all x with ‖x‖ ≥ r.

We take D = H and U = {x ∈ H | ‖x‖ < r}. We obtain that there are no
x∗ ∈ ∂U and 0 < λ∗ < 1 such that x∗ = λ∗Φ(x∗). Indeed, if such x∗ and λ∗
exist then we have

‖x∗‖ = λ∗‖Φ(x∗)‖ < ‖Φ(x∗)‖,
which is a contradiction of (2).

The assumptions of Theorem 1 are satisfied for Φ. Therefore, by Theorem 1,
the mapping Φ has a fixed-point in U , which implies that the problem NCP(f,K)
has a solution. �

The following result is an interesting consequence of Theorem 7, since it is
an existence result for nonlinear complementarity problems depending of a real
parameter.

Theorem 8. Let (H, 〈 · , · 〉) be a Hilbert space, K ⊂ H a closed pointed
convex cone. Consider the mapping f(x) = x − T1(x) − εT2(x), for all x ∈
H, where T1 and T2 are quasi-bounded completely continuous mappings, with
|T1|qb < 1 and ε ∈ R+ \ {0}. Then, there exists ε0 > 0 such that for every
ε ∈ ]0, ε0[, the problem NCP(fε,K) has a solution x∗(ε).

Proof. The mapping T1 + εT2 is completely continuous for every ε > 0.
Since |T1|qb < 1, there exists ε0 > 0 such that for all ε ∈ ]0, ε0[, we have
ε|T2|qb < 1 − |T1|qb. Since |T1 + εT2|qb ≤ |T1|qb + ε|T2|qb < 1 for all ε ∈ ]0, ε0[,
by Theorem 7 we have that for each ε ∈ ]0, ε0[, the problem NCP(fε,K) has a
solution x∗(ε). �
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Remark. The mapping fε, considered in Theorem 8, is a generalization of
the Von Kárman operator f(x) = x − λL(x) + T (x), used in the study of the
post critical equilibrium state of thin elastic plates. In this practical problem
the mathematical model is the problem NCP(f,K) (see [14], [15]).

6. Exceptional family of elements
and the solvability of complementarity problems

Let (H, 〈 · , · 〉) be a Hilbert space, K ⊂ H a closed pointed convex cone and
f : H → H a mapping. Consider the problem NCP(f,K) defined by f and K.

Definition 2. We say that a family of elements {xr}r>0 is an exceptional
family of elements for f , with respect to K, if for every real number r > 0, there
exists a real number µr > 0 such that the vector ur = µrxr + f(xr) satisfies the
following conditions:

(1) ur ∈ K∗,
(2) 〈ur, xr〉 = 0,
(3) ‖xr‖ → ∞ as r →∞.

Similarly, as the notion of completely continuous field (see Section 4), we can
introduce the notion of α-condensing field. Indeed, we say that f : H → H is an
α-condensing field if f has a representation of the form f(x) = x− T (x), where
T : H → H is an α-condensing mapping. Also we say that f : H → H is a
non-expansive field if f has a representation of the form f(x) = x−T (x), where
T : H → H is a non-expansive mapping. Finally, we say that f : H → H is a
projectionally pseudo-contractant field with respect to K if the mapping Φ(x) =
PK [x − f(x)] is pseudo-contractant. By Proposition 4, we have that if f is a
non-expansive field, then f is projectionally pseudo-contractant with respect to
any closed convex cone K.

We have the following alternative theorem for complementarity problems.

Theorem 9. Let (H, 〈 · , · 〉) be a Hilbert space, K ⊂ H a closed pointed
convex cone and f : H → H a continuous mapping. If f satisfies one of the
following conditions:

(1) f is a completely continuous field,
(2) f is an α-condensing field,
(3) f is a projectionally pseudo-contractant field,

then there exists either a solution to the problem NCP(f,K) or f has an excep-
tional family of elements with respect to K.

Proof. We suppose that f satisfies one of assumptions (1)–(3) and it has a
representation of the form f(x) = x− T (x), for any x ∈ H, and we consider the
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mapping
Φ(x) = PK [x− f(x)] = PK [T (x)] for any x ∈ H.

From the complementarity theory, we know that the problem NCP(f,K) has a
solution if and only if the mapping Φ has a fixed-point in K ([13]–[15]). There-
fore, if the mapping Φ has a fixed-point, this fixed-point must be in K and the
problem NCP(f,K) has a solution.

If the problem NCP(f,K) has a solution, then the proof is finished. Suppose
that the problem NCP(f,K) is without solution. Obviously, in this case, the
mapping Φ is fixed-point free. Because f satisfies one of condition (1)–(3), we
observe that the assumptions of Theorem 1 are satisfied with respect to each set
Br = {x ∈ H | ‖x‖ < r} with r > 0, or the assumptions of Theorem 3, or the
assumptions of Theorem 6. Then, for any r > 0 there exist xr with |xr| = r and
λr ∈ ]0, 1[, such that xr = λrPK [T (x)]. We have

(3)
(

1
λr

)
xr = PK [xr − f(xr)].

Applying the properties of operatorPK we obtain{
〈xr/λr − (xr − f(xr)), y〉 ≥ 0 for all y ∈ K,

〈xr/λr − (xr − f(xr)), xr/λr〉 = 0,

which implies

(4)

{
〈(1/λr − 1)xr + f(xr), y〉 ≥ 0 for all y ∈ K,

〈(1/λr − 1)xr + f(xr), xr〉 = 0.

If in (4) we put µr = 1/(λr − 1) it follows that µrxr + f(xr) ∈ K∗, 〈µrxr +
f(xr), xr〉 = 0 and, since |xr| = r for any r > 0, we have (because xr ∈ K) that
{xr}r>0 is an exceptional family of elements for f with respect to K and the
proof is complete. �

Corollary 10. Let (H, 〈 · , · 〉) be a Hilbert space, K ⊂ H a closed pointed
convex cone. If f : H → H is a completely continuous field, or an α-condensing
field, or a projectionally pseudo-contractant field without exceptional family of
elements with respect to K, then the problem NCP(f,K) has a solution.

A consequence of Corollary 10 is the fact that it is important to know what
functions are without exceptional family of elements, with respect to a given
closed convex cone. The reader can find in our papers [16]–[18], [20]–[22], [33]–
[34] and in our book [15] several classes of functions without exceptional family of
elements. It is known (see [19]) that any coercive function is without exceptional
family of elements, but there exists non-coercive functions without exceptional
family of elements. The property to be without exceptional family of elements
can be considered, as a very general coercivity condition because this fact.
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7. Condition (θ-S) and the solvability of complementarity problems

In our papers [16] and [20] we introduced condition (θ) and we proved that,
if a function f satisfies condition (θ), then f is without exceptional family of
elements. We recall this condition.

Definition 3 ([16], [20]). We say that a mapping f : H → H satisfies
condition (θ) with respect to a convex cone K ⊂ H if there exists a real number
% > 0 such that for each x ∈ K with ‖x‖ > %, there exists y ∈ K with ‖y‖ < ‖x‖
such that 〈x− y, f(x)〉 ≥ 0.

By several results proved in [15]–[18], [20] we can see that several classes of
mappings considered in Complementarity Theory satisfy condition (θ). In this
section we will introduce another variant of condition (θ) and we will show that
this variant has also interesting consequences. Let (H, 〈 · , · 〉 be a Hilbert space,
K ⊂ H a closed pointed convex cone.

Definition 4. We say that a mapping f : H → H satisfies condition (θ-S)
with respect to K, if for any family {xr}r>0, such that ‖xr‖ → ∞ as r → ∞,
there exists y∗ ∈ K such that 〈xr − y∗, f(xr)〉 ≥ 0 for some r > 0 such that
‖xr‖ > ‖y∗‖.

Remark. We observe that condition (θ) implies condition (θ-S). If f is pos-
itive homogeneous then condition (θ-S) implies condition (θ). (In this case we
take for any r > 0, xr = rx if x ∈ K).

We have the following result.

Theorem 11. Let (H, 〈 · , · 〉) be a Hilbert space, K ⊂ H a closed pointed
convex cone and f : H → H a mapping. If f satisfies condition (θ-S) with
respect to K, then f is without exceptional family of elements. Moreover, if
f is a completely continuous field, or an α-condensing field or a projectionally
pseudo-contractant field then the problem NCP(f,K) has a solution.

Proof. Suppose that f has an exceptional family {xr}r>0. Since f satisfies
condition (θ-S) there exists y∗ ∈ K such that 〈xr−y∗, f(x1)〉 ≥ 0 for some r > 0,
for which we have ‖y∗‖ < ‖xr‖. In this case we have

0 ≤〈xr − y∗, f(xr)〉 = 〈xr − y∗, ur − µrxr〉
= 〈xr, ur〉 − 〈y∗, ur〉 − µr〈xr, xr〉+ µr〈y∗, xr〉
≤µr[〈y∗, xr〉 − ‖xr‖2] ≤ µr[‖xr‖‖y∗‖ − ‖xr‖2] = µr‖xr‖[‖y∗‖ − ‖xr‖] < 0,

which is a contradiction. Therefore f is without exceptional family of elements
with respect to K. The last conclusion of theorem is a consequence of Corol-
lary 10. �
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Remark. Our condition (θ-S) is more general as the condition used in [32,
Theorem 3.1] since in condition (θ-S) the element y∗ is dependent on the family
{xr}r>0, while in [32, Theorem 3.1] the element ŷ is independent on the family
{xr}r>0.

Harker and Pang in [12] studied the solvability of variational inequalities
in Rn and in some results they used an interesting condition, which implies the
existence of solution of a general variational inequality. We consider now this
condition in an arbitrary Hilbert space but for complementarity problems. We
will denote this condition by (HP).

Definition 5. We say that a mapping f : H → H satisfies condition (HP),
with respect to K, if there exists an element x∗ ∈ K such that the set K(x∗) =
{x ∈ K | 〈f(x), x− x∗〉 < 0} is bounded (or empty).

We have the following result.

Theorem 12. Let (H, 〈 · , · 〉) be a Hilbert space, K ⊂ H a closed pointed
convex cone and f : H → H a mapping. If f satisfies condition (HP) with respect
to K, then f satisfies condition (θ-S). Moreover, if f is a completely continuous
filed, or an α-condensing field or a projectionally pseudo-contractant field, then
the problem NCP(f,K) has a solution.

Proof. Let {xr}r>0 be a family of elements such that ‖xr‖ → ∞ as r →∞.
If there exists an element x∗ ∈ K such that the set K(x∗) is bounded (or empty)
then, for r > 0 sufficiently large, we have that xr 6∈ K(x∗), which implies that
〈f(xr), xr − x∗〉 ≥ 0, for r sufficiently large such that in addition ‖xr‖ > ‖x∗‖.
Obviously in this case, condition (θ-S) is satisfied. �

Proposition 13. Let (H, 〈 · , · 〉) be a Hilbert space, K ⊂ H a closed pointed
convex cone and f : H → H a mapping. If f has an exceptional family of
elements with respect to K, then for any point x∗ ∈ K, the set {x ∈ K | 〈f(x), x−
x∗〉 < 0} is non-empty and unbounded.

Proof. This result is a consequence of Theorems 11 and 12. �

In [32] was considered the notion of “p-order coercivity” in Rn. Now we will
consider this notion in any infinite dimensional Hilbert space.

Definition 6 ([32]). We say that a mapping f : H → H is (x∗, p)-coercive
with respect to a convex cone K ⊂ H if there exist some p ∈ ]−∞, 1[ and an
element x∗ ∈ K such that limx∈K,‖x‖→∞〈f(x), x− x∗〉/‖x‖p = ∞.

Remark. The case p = 1 is covered by the classical notion of coercivity used
by many authors in the theory of variational inequalities. Any coercive mapping
is p-coercive but the converse is not true as it is shown in [32], considering H = R,
K = R+, f(x) = xα/(1 + x) with α > 0 and x∗ any element such that x∗ ≥ 1.
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Theorem 14. Let (H, 〈 · , · 〉) be a Hilbert space, K ⊂ H a closed pointed
convex cone and f : H → H a mapping. If f is (x∗, p)-coercive with −∞ < p < 1,
then f is without exceptional family of elements with respect to K.

Proof. It is sufficient to show that the (x∗, p)-coercivity implies condition
(θ-S). Indeed, if 0 ≤ p < 1 then we have

(5) lim
x∈K,‖x‖→∞

〈f(x), x− x∗〉
‖x‖p

= ∞

with x∗ ∈ K defined by the (x∗, p)-coercivity. Relation (5) implies

lim
x∈K,‖x‖→∞

〈f(x), x− x∗〉 = ∞

which has as consequence the fact that condition (θ-S) is satisfied. If −∞ < p <

0, then for every family of elements {xr}r>0 ⊂ K, with ‖xr‖ → ∞ as r → ∞,
we have (using formula (5)) that 〈f(xr), xr −x∗〉 > 0 for r > 0 sufficiently large.
Therefore, again condition (θ-S) is satisfied and the proof is complete. �

Definition 7. Let f : H → H be a mapping and K ⊂ H a closed pointed
convex cone. We say that a mapping T : H → H is an (x∗, p)-scalar asymptotic
derivative of f with respect to K, if there exists an element x∗ ∈ K and a real
number p ∈ ]−∞, 1[, such that

lim
x∈K,‖x‖→∞

〈f(x)− T (x), x− x∗〉
‖x‖p

= 0.

The importance of Definition 7 is given by the following result.

Proposition 15. Let (H, 〈 · , · 〉) be a Hilbert space, f : H → H a mapping
and K ⊂ H a closed pointed convex cone. If f has an (x∗, p)-scalar asymptotic
derivative T , and T is (x∗, p)-coercive, then f is without exceptional family of
elements with respect to K.

Proof. The proposition is a consequence of Theorem 14 and of the following
relation

lim
x∈K,‖x‖→∞

〈f(x), x− x∗〉
‖x‖p

= lim
x∈K,‖x‖→∞

〈f(x)− T (x), x− x∗〉
‖x‖p

+ lim
x∈K,‖x‖→∞

〈T (x), x− x∗〉
‖x‖p

= ∞ �

We recall that a mapping f : H → H is called pseudo-monotone on K, if for
any x, y ∈ K, x 6= y we have that 〈y − x, f(x)〉 ≥ 0 implies 〈y − x, f(y)〉 ≥ 0.
The following notion is more general as a similar notion defined in [32].
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Definition 8. We say that a mapping f : H → H is weakly proper on K,
if for each family of elements {xr}r>0 ⊂ K, with ‖xr‖ → ∞ as r → ∞, there
exists an element x∗ ∈ K such that for some r > 0, with ‖x∗‖ < ‖xr‖ we have
〈f(x∗), xr − x∗〉 ≥ 0.

We have the following result.

Theorem 16. Let (H, 〈 · , · 〉) be a Hilbert space, K ⊂ H a closed pointed
convex cone and f : H → H a pseudo-monotone mapping. If f is a completely
continuous field, or an α-condensing field, or a projectionally pseudo-contractant
field, then the problem NCP(f,K) has a solution if and only if f is weakly proper
on K.

Proof. We suppose that the problem NCP(f,K) has a solution x∗∗. Be-
cause the fact that the solvability of the problem NCP(f,K) is equivalent to the
solvability of the following variational inequality (see [14], [15])

(VI(f,K)) find x0 ∈ K such that 〈f(x0), x− x0〉 ≥ 0 for all x ∈ K,

we have 〈f(x∗∗), x−x∗∗〉 ≥ 0 for all x ∈ K. Obviously, if we take in Definition 8,
x∗ = x∗∗, we deduce that f is weakly proper on K.

Conversely, assume that f is weakly proper on K. In this case Definition 8
implies that for each family of elements {xr}r>0, with ‖xr‖ → ∞ as r → ∞,
there exists an element x∗ ∈ K such that 〈f(x∗), xr−x∗〉 ≥ 0 for some r > 0 such
that ‖x∗‖ < ‖xr‖. Since f is pseudo-monotone we have that 〈f(xr), xr−x∗〉 ≥ 0,
which implies that f satisfies condition (θ-S), with respect to K. By Theorem 11
we have that the problem NCP(f,K) has a solution and the proof is complete.�

Comments. We presented in this paper several existence theorems for non-
linear complementarity problems considered in an arbitrary Hilbert space. Our
results are based on Leray–Schauder type alternatives and on the notion of ex-
ceptional family of elements for a mapping. The research on this subject must
be developed now following two directions: the first is to find new and more
general Leray–Schauder type alternatives and the second to find new classes of
mappings without exceptional family of elements with respect to a given convex
cone.

References

[1] J. Banas and K. Goebel, Measure of Noncompactness in Banach Spaces, Marcel

Dekker Inc., New York and Basel, 1980.

[2] H. Ben-El-Mechaiekh, S. Chebbi and M. Florenzano, A Leray–Schauder type

theorem for approximable maps. A simple proof, Proc. Amer. Math. Soc. 126 (1998),
2345–2349.



Leray–Schauder Alternatives and Complementarity Problems 203

[3] H. Ben-El-Mechaiekh and A. Idzik, A Leray–Schauder type theorem for approx-

imable maps, Proc. Amer. Math. Soc. 122 (1994), 105–109.
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