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WEAK COMPACTNESS OF SOLUTION SETS
TO STOCHASTIC DIFFERENTIAL INCLUSIONS

WITH CONVEX RIGHT-HAND SIDES

Micha l Kisielewicz

Abstract. Necessary and sufficient conditions for the existence of weak

solutions to stochastic differential inclusions with convex right-hand sides
are given. The main results of the paper deal with the weak compactness

with respect to the convergence in distribution of solution sets to such

inclusions.

1. Introduction

The first papers concerning stochastic differential inclusions are due to F. Hiai
[3] and M. Kisielewicz [7], where independently, stochastic differential inclusions
have been defined as relations of the form

(1) xt − xs ∈ clL2

( ∫ t

s

F (τ, xτ ) dτ +
∫ t

s

G(τ, xτ ) dBτ

)
that have to be satisfied by L2-continuous Ft-nonanticipative stochastic process
(xt)0≤t≤T for every 0 ≤ s < t ≤ T , i.e. by Ft-nonanticipative square integrable
process (xt)0≤t≤T that is continuous with respect to the norm topology of the
space L2(Ω,F ,Rn). Such inclusions were considered on a given complete fil-
tered probability space (Ω,F , (Ft)0≤t≤T , P ) satisfying the usual hypotheses, i.e.
with the filtration (Ft)0≤t≤T such that F0 contains all P -null sets of F and
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Ft =
⋂
ε>0 Ft+ε. Apart from the set-valued mappings F : [0, T ]× Rn → Cl(Rn)

and G : [0, T ]×Rn → Cl(Rn) or with values at Cl(H), whereH is a Hilbert space,
some Ft-Brownian motions (Bt)0≤t≤T and (Wt)0≤t≤T , with values at R or H,
also have been given. As usualy Cl(X) denotes the space of all nonempty closed
subsets of a metric space (X, ρ). Similarly as in the theory of stochastic differ-
ential equations, the process (xt)0≤t≤T mentioned above, is said to be a strong
solution to (1). Such solutions have been considered by J. P. Aubin and G. Da
Prato [1], G. Da Prato and Frankowska [2], J. Motyl [9], [10], [11] and others.
For the existence of strong solutions some Lipschitz type conditions for F (t, · )
and G(t, · ) have to be satisfied. Such assumptions are rather too strong for the
practical applications. Therefore, we are interested in the weaker notation of so-
lutions that are not restrictive in the existence theory and are extremaly useful
and fruitful in both theory and applications. Such type solutions are known as
weak ones ([4], [5]), and are understood in fact as systems including a complete
filtered probability space (Ω,F , (Ft)0≤t≤T , P ) satisfying the usual hypotheses,
Ft-Brownian motion (Bt)0≤t≤T and an L2-continuous Ft-nonanticipative pro-
cess (xt)0≤t≤T satisfying the relation (1), when F and G are given. In what
follows we shall identify such system with a process (xt)0≤t≤T depending on
(Bt)0≤t≤T and denote it simply by (xt(B))0≤t≤T or (xt)0≤t≤T if dependence on
(Bt)0≤t≤T is not important. We will say that (xt(B))0≤t≤T is a weak solution to
(1) on (Ω,F , (Ft)0≤t≤T , P ). If (xt(B))0≤t≤T is such that P (x−1

0 (B)) = µ, where
µ is a given probability measure on the Borel σ-algebra β(Rn) on Rn, then we
say that (xt(B))0≤t≤T is a weak solution to (1) on (Ω,F , (Ft)0≤t≤T , P ) with an
initial distribution µ on β(Rn).

It was proved in [6] that for the existence of a weak solution to (1) with an
initial distribution µ it is enough to assume that F and G are Borel measurable,
bounded, convex valued and such that F (t, · ) and G(t, · ) are lower semicontin-
uous for fixed t ∈ [0, T ]. Stochastic differential inclusions, considered in [6] and
[7] are defined for one-dimensional Brownian motions. In the present paper we
extend the notation to the general case with m-dimensional Brownian motion
(Bt)0≤t≤T . Therefore G has to take its values from the space Cl(Rn×m), where
Rn×m denotes a space of all n×m-type matrices. We shall consider Rn×m as a
normed space with the metric ‖ · ‖ defined by

(∗) ‖g‖ =
( n∑
i=1

m∑
j=1

g2
ij

)1/2

for g = (gij)n×m.

Throughout the paper we assume that F and G are convex-valued or that G is
such that the set {g · gT : g ∈ G(t, x)} is convex for (t, x) ∈ [0, T ] × Rn, where
gT denotes the transposition of g.
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Similarly as in [4, Definition II.7.1] we will say that a filtered probability
space (Ω̃, F̃ , (F̃t)0≤t≤T , P̃) is an extension of (Ω,F , (Ft)0≤t≤T , P ) if and only if
there exists an (F̃ ,F)-measurable mapping π : Ω̃ → Ω such that

(i) π−1(Ft) ⊂ F̃t for t ∈ [0, T ],
(ii) P = P̃ ◦ π−1,
(iii) for every x ∈ L∞(Ω,F , P ) one has Ẽ(x̃|F̃t)(ω̃) = E(x|Ft)(π(ω̃)) for

ω̃ ∈ Ω̃, where x̃(ω̃) = x(π(ω̃)).

2. Existence of weak solutions

Let F : [0, T ]×Rn → Cl(Rn) and G : [0, T ]×Rn → Cl(Rn×m) be Borel mea-
surable and bounded, i.e. such that there exists M > 0 such that max{|F (t, x)|,
|G(t, x)|} ≤ M for (t, x) ∈ [0, T ] × Rn, where for a given subset A of a normed
space (X, | · |) we define |A| = sup{|a| : a ∈ A}. Assume that (Bt)0≤t≤T is
an m-dimensional Ft-Brownian motion and x = (xt)0≤t≤T is an n-dimensional
L2-continuous Ft-nonanticipative process on (Ω,F , (Ft)0≤t≤T , P ) satisfying the
usual hypothesis. We can define stochastic set-valued integrals for mappings
(F ◦ x)t(ω) = F (t, xt(ω)) and (G ◦ x)t(ω) = G(t, xt(ω)) setting∫ t

s

(F ◦ x)τ dτ =
{ ∫ T

0

1I[s,t](τ) · fτ dτ : f ∈ S(F ◦ x)
}
,(2) ∫ t

s

(G ◦ x)τ dBτ =
{ ∫ T

0

1I[s,t] · gτ dBτ : g ∈ S(G ◦ x)
}
,(3)

where S(F ◦ x) and S(G ◦ x) denote families of all Ft-nonanticipative selectors
for F ◦ x and G ◦ x, respectively. These integrals (see [7]) are defined to be
subsets of the space L2(Ω,F ,Rn) and are denoted simply by

∫ t
s
F (τ, xτ ) dτ and∫ t

s
G(τ, xτ ) dBτ , respectively. If F and G are assumed to be convex-valued then

the last integrals are closed subsets of L2(Ω,F ,Rn) [7]. Therefore, in what
follows we shall consider stochastic differential inclusions written in the form:

(4) xt − xs ∈
∫ t

s

F (τ, xτ ) dτ +
∫ t

s

G(τ, xτ ) dBτ

for 0 ≤ s < t ≤ T . Similarly as in [7, Theorem 4] the following lemma can be
proved.

Lemma 1. Let F : [0, T ]×Rn → Cl(Rn) and G : [0, T ]×Rn → Cl(Rn×m) be
measurable, bounded and convex valued. Assume (xt)0≤t≤T and (yt)0≤t≤T are
n-dimensional L2-continuous Ft-nonanticipative processes and (Bt)0≤t≤T is an
m-dimensional Ft-Brownian motion on (Ω,F , (Ft)0≤t≤T , P ). Then

yt − ys ∈
∫ t

s

F (τ, xτ ) dτ +
∫ t

s

G(τ, xτ ) dBτ
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for every 0 ≤ s < t ≤ T if and only if there are f ∈ S(F ◦ x) and g ∈ S(G ◦ x)
such that

yt = y0 +
∫ t

0

fτ dτ +
∫ t

0

gτ dBτ with (P.1)

for t ∈ [0, T ].

It is clear now that if F and G are convex valued we can define a weak
solution to (4) as a system consisting of a complete filtered probability space
(Ω,F , (Ft)0≤t≤T , P ), a continuous Ft-adapted process (xt)0≤t≤T and an Ft-
Brownian motion (Bt)0≤t≤T satisfying (4) for every 0 ≤ s < t ≤ T . We shall
still denote such systems by (xt(B))0≤t≤T on (Ω,F , (Ft)0≤t≤T , P ).

Denote by C2
b (Rn) the space of all continuous bounded functions h : Rn → R,

having continuous and bounded derivatives h′xi
and h′′xixj

for i, j = 1, . . . , n.
For any given F , G and a continuous n-dimensional Ft-adapted process x =
(xt)0≤t≤T on (Ω,F , (Ft)0≤t≤T , P ) we define a family

AxFG = {Axfg : (f, g) ∈ S(F ◦ x)× S(G ◦ x)}

of linear operators on C2
b (Rn) with values in the space of all Ft-nonanticipative

square integrable real valued processes on (Ω,F , (Ft)0≤t≤T , P ), of the form:

(5) (Axfgh)t =
n∑
i=1

h′xi
(xt)f it +

1
2

n∑
i=1

n∑
j=1

h′′xixj
(xt)σ

ij
t

a.e. on Ω and t ∈ [0, T ] for every h ∈ C2
b (Rn), where f = (f i)1×n, g = (gij)n×m

and σ = g · gT . We will say that Axfg ∈ AxFG generates on C2
b (Rn) a family

of continuous square integrable local Ft-martingales, if for every h ∈ C2
b (Rn) a

process [(ϕxh)t]0≤t≤T defined by

(6) (ϕxh)t = h(xt)− h(x0)−
∫ t

0

(Axfgh)τ dτ with (P.1)

for t ∈ [0, T ] is a continuous square integrable local Ft-martingales on the space
(Ω,F , (Ft)0≤t≤T , P ). By Mx

FG(C2
b (Rn)) we denote the family of all Axfg ∈ AxFG

that generates on C2
b (Rn) a family of continuous square integrable local Ft-

martingales.

Theorem 2. Let F : [0, T ]×Rn → Cl(Rn) and G : [0, T ]×Rn → Cl(Rn×m)
be Borel measurable, bounded and convex valued and let µ be a probability measure
on β(Rn). Stochastic differential inclusion (4) has at least one weak solution
with an initial distribution µ if and only if there are a filtered probability space
(Ω,F , (Ft)0≤t≤T , P ) and an n-dimensional continuous Ft-adapted process x =
(xt)0≤t≤T such that Px−1

0 = µ and Mx
FG(C2

b (Rn)) 6= ∅.
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Proof. (⇒) Let (xt(B))0≤t≤T be a weak solution to (4) on the space (Ω,F ,
(Ft)0≤t≤T , P ) with an initial distribution µ. For every 0 ≤ s < t ≤ T we have

xt − xs ∈
∫ t

s

F (τ, xτ ) dτ +
∫ t

s

G(τ, xτ ) dBτ .

Therefore, by virtue of Lemma 1, there are f ∈ S(F ◦ x) and g ∈ S(G ◦ x) such
that

xt = x0 +
∫ t

0

fτ dτ +
∫ t

0

gτ dBτ with (P.1)

for t ∈ [0, T ], and equivalently in the differential form dxt = ftdτ + gtdBt for
t ∈ [0, T ]. Hence, by the Itô formula, for every h ∈ C2

b (Rn), we obtain

(7) h(xt)− h(x0)−
∫ t

0

(Axfgh)τ dτ =
n∑
i=1

m∑
j=1

∫ t

0

h′xi
(xτ ) · gijτ dBjτ with (P.1)

for t ∈ [0, T ], where Bt = (B1
t , . . . , B

m
t )T and gt = (gijt )n×m. By the definition

of (ϕxh)t, the above equality (7) can be written in the form

(ϕxh)t =
n∑
i=1

m∑
j=1

∫ t

0

h′xi
(xτ ) · gijτ dBjτ with (P.1)

for t ∈ [0, T ]. Hence, by the properties of the Itô integrals, it follows that
Axfg ∈Mx

FG(C2
b (Rn)) and Mx

FG(C2
b (Rn)) 6= ∅.

(⇐) Assume there are (Ω,F , (Ft)0≤t≤T , P ) and an n-dimensional continuous
Ft-adapted process x = (xt)0≤t≤T such that Px−1

0 = µ and Mx
FG(C2

b (Rn)) 6= ∅.
Let (f, g) ∈ S(F ◦ x) × S(G ◦ x) be such that Axfg ∈ Mx

FG(C2
b (Rn)). Define

a sequence (τ
l
)∞l=1 of stopping times τ

l
= inf{t ∈ [0, T ] : xt 6∈ Kl}, where

Kl = {x ∈ Rn : |x| ≤ l} for l = 1, 2, . . . Select now, for every i = 1, . . . , n,
hi ∈ C2

b (Rn) such that hi(x) = xi for x ∈ Kl, where x = (x1, . . . , xn). For such
hi ∈ C2

b (Rn) we have∫ t∧τl

0

(Axfghi)τ dτ =
∫ t∧τl

0

f iτ dτ with (P.1)

and therefore,

(ϕxhi
)t∧τl

= xit∧τl
− xi0 −

∫ t∧τl

0

f iτ dτ with (P.1)

for i = 1, . . . , n, l = 1, 2, . . . and t ∈ [0, T ]. But Axfg ∈ Mx
FG(C2

b (Rn)). Then
[(ϕxhi

)t∧τl
]0≤t≤T is for every i = 1, . . . , n and l = 1, 2, . . . a continuous square

integrable local Ft-martingale on (Ω,F , P ), which implies that also [(ϕxhi
)t]0≤t≤T

is a continuous square integrable local Ft-martingale on (Ω,F , P ) for every i =
1, . . . , n. Denote it by (M i

t )0≤t≤T , i.e. let M i
t = (ϕxhi

)t for i = 1, . . . , n and
t ∈ [0, T ].
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Similarly, taking hij ∈ C2
b (Rn) such that hij(x) = xixj for x ∈ Kl for

i, j = 1, . . . , n, we obtain a family (Mij
t )0≤t≤T ; i, j = 1, . . . , n of continuous

square integrable local Ft-martingals on (Ω,F , P ) such that

M ij
t = xitx

j
t − xi0x

j
0 −

∫ t

0

[xiτf
j
τ + xjτf

i
τ + σijτ ] dτ with (P.1)

for i, j = 1, . . . , n and t ∈ [0, T ]. Now, similarly as in [3, Proposition 5.4.6], we
conclude that

〈M i,M j〉t =
∫ t

0

σijτ dτ with (P.1)

for i, j = 1, . . . , n and t ∈ [0, T ]. Therefore, by [2, Theorem II.7.1’], for every
j = 1, . . . ,m, there exists an F̃t-Brownian motion (B̃jt )0≤t≤T on an extension
(Ω̃, F̃ , (F̃t)0≤t≤T , P̃) of (Ω,F , (Ft)0≤t≤T , P ) such that

M i
t =

m∑
j=1

∫ t

0

g̃ijτ dB̃τ with (P̃.1)

for i = 1, . . . , n and t ∈ [0, T ]. Then

x̃it = x̃i0 +
∫ t

0

f̃ iτ dτ +
m∑
j=1

∫ t

0

g̃ijτ dB̃
j
τ with (P̃.1)

for i = 1, . . . , n and t ∈ [0, T ], or equivalently

x̃t = x̃0 +
∫ t

0

f̃τ dτ +
∫ t

0

g̃τdB̃τ with (P̃.1)

for t ∈ [0, T ], where x̃t(ω̃) = xt(π(ω̃)), f̃t(ω̃) = ft(π(ω̃)) and g̃t(ω̃) = gt(π(ω̃))
for ω̃ ∈ Ω̃. Hence, for 0 ≤ s < t ≤ T ,

x̃t − x̃s ∈
∫ t

s

F (τ, x̃τ ) +
∫ t

s

G(τ, x̃τ ) dB̃τ

i.e. (x̃t(B̃))0≤t≤T is a weak solution to (4) on (Ω̃, F̃ , (F̃t)0≤t≤T , P̃). �

3. Diagonally convex subsets of Rn×m

and diagonally convex valued multifunctions

A set G ⊂ Rn×m is said to be diagonally convex if a setD(G) = {u·uT : u ∈ G}
is a convex subset of Rn×n. It is easy to see that for every G ∈ Cl(Rn×m) we also
have D(G) ∈ Cl(Rn×n), because D(G) = l(G), where l(u) = u ·uT for u ∈ Rn×m.
It is also clear, that for every bounded set G ⊂ Rn×m, D(G) is bounded. It is
natural to ask when the convexity of G ⊂ Rn×m implies the convexity of D(G).
We show that this is true for sets G ⊂ R1×m. It will be follow from the below
general result.
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Proposition 1. If G ⊂ Rn×m is convex then for every u, v ∈ G and λ ∈ [0, 1]
there exists xλ ∈ G such that λ‖u‖2 + (1 − λ)‖v‖2 = ‖xλ‖2, where ‖ · ‖ is the
norm in Rn×m defined above.

Proof. Let u, v ∈ G be given. If ‖u‖ = ‖v‖ then for every λ ∈ [0, 1] we
can take xλ = u. Suppose 0 < ‖u‖ < ‖v‖ and let zλ = λ‖u‖2 + (1 − λ)‖v‖2 for
fixed λ ∈ [0, 1]. Let rλ =

√
zλ. It is easy to see that ‖u‖2 < zλ < ‖v‖2. Then

B‖u‖ ⊂ Brλ
⊂ B‖v‖, where Br denotes the closed ball in Rn×m centered at the

origin with a radius r > 0. Furthermore, we have u ∈ ∂B‖u‖ and v ∈ ∂B‖v‖,
where ∂Br = {z ∈ Rn×m : ‖z‖ = r}. Denoting luv = {λu+(1−λ)v : 0 ≤ λ ≤ 1}
we obtain luv ∩ ∂Brλ

6= ∅ for every λ ∈ [0, 1]. By the convexity of G we have
luv ∩∂Brλ

⊂ G for every λ ∈ [0, 1]. Therefore, for every λ ∈ [0, 1] there is xλ ∈ G
such that ‖xλ‖ = rλ. If 0 < ‖v‖ < ‖u‖ we can also select xλ ∈ G to every
λ ∈ [0, 1] such that ‖xλ‖ = rλ. Suppose now that ‖u‖ = 0 and ‖v‖ > 0. Taking
zλ = (1 − λ)‖v‖2 and rλ =

√
1− λ‖v‖ we obtain that Brλ

⊂ B‖v‖ and that
lov ∩∂Brλ

6= ∅ and lov ∩∂Brλ
⊂ G. Hence it follows the existence of xλ ∈ G such

that ‖xλ‖2 = (1− λ)‖v‖2 = λ‖u‖2 + (1− λ)‖v‖2 with ‖u‖ = 0 for λ ∈ [0, 1]. �

Now, from Proposition 1, we immediately obtain:

Proposition 2. If G ⊂ R1×m is convex then it is also diagonally convex.

Proof. Let us observe that for every u ∈ R1×m we have u · uT = ‖u‖2.
Therefore for every z1, z2 ∈ D(G) and λ ∈ [0, 1] there are u, v ∈ G such that
λz1 + (1 − λ)z2 = λ‖u‖2 + (1 − λ)‖v‖2. By Proposition 1, for every λ ∈ [0, 1]
there exists xλ ∈ G such that ‖xλ‖2 = λ‖u‖2 + (1 − λ)‖v‖2 = λz1 + (1 − λ)z2
and ‖xλ‖2 = xλ · xTλ ∈ D(G). �

In what follows we shall deal with set valued mappings G : [0, T ] × Rn →
Cl(Rn×m) that are assumed to be diagonally convex valued. It is clear that all
regularity properties of G can be extended for D(G) : [0, T ] × Rn → Cl(Rn×n)
defined by D(G)(t, x) = D(G(t, x)), because D(G(t, x)) = l(G(t, x)) and l :
Rn×m → Rn×n defined by l(u) = u · uT for u ∈ Rn×m is continuous. Hence
in particular, it follows that for a given n-dimensional continuous Ft-adapted
process x = (xt)0≤t≤T on (Ω,F , (Ft)0≤t≤T , P ) one has S(D(G ◦ x)) = D(S(G ◦
x)). Hence, in particular it follows that for every σ ∈ S(D(G ◦ x)) there is
g ∈ S(G ◦ x) such that σ = g · gT . More precisely we can state this result as the
following Proposition.

Proposition 3. Assume G : [0, T ] × Rn → Cl(Rn×m) is measurable and
bounded. Then for every n-dimensional continuous Ft-adapted process x =
(xt)0≤t≤T and n × n-dimensional Ft-nonanticipative process σt = (σijt )n×n on
(Ω,F , (Ft)0≤t≤T , P ) such that σt ∈ D(G(t, xt)) on [0, T ]×Ω there is g ∈ S(G◦x)
such that σ = g · gT .
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Proof. The result follows immediately from [8, Theorem II.3.12] applied
to the function l(u) = u · uT for u ∈ Rn×m and set-valued mapping Γt(ω) =
G(t, xt(ω)) that is Σ-measurable on [0, T ]× Ω with Σ = {Z ∈ βT ⊗ F : Zt ∈ Ft
for each t ∈ [0, T ]}, where Zt denotes the t-section of the set Z. It is easy to
see that Σ-measurability of Γ is equivalent with its Ft-nonanticipativity. Now,
by ([8], Theorem II.3.12) σt(ω) ∈ l(Γt(ω)) for (t, ω) ∈ [0, T ] × Ω implies the
existence of g ∈ S(G ◦ x) such that σt(ω) = l(gt(ω)) on [0, T ]× Ω. �

4. Selection properties of some set-valued mappings

A continuous n-dimensional stochastic process x = (xt)0≤t≤T on (Ω,F ,
(Ft)0≤t≤T , P ) can be equivalently defined as (F , β(CT ))-measurable random
function x : Ω → CT , where CT = C([0, T ],Rn) and β(CT ) denotes the Borel
σ-algebra on CT . Such defined continuous process determines on β(CT ) its dis-
tribution, denoted by Px−1 and understood as a probability measure on β(CT )
of the form (Px−1)(A) = P (x−1(A)) for every A ∈ β(CT ), where x−1(A) = {ω ∈
Ω : x(ω) ∈ A}. It admits the definition of convergence of sequences of continu-
ous processes in distribution, calling also a weak convergence. Recall, a sequence
(xr)∞r=1 of continuous processes defined on a sequence {(Ωr,Fr, P r)}∞r=1 of prob-
ability spaces is said to be convergent in distribution to a continuous process x on
(Ω,F , P ) if the sequence {P (xr)−1}∞r=1 converges weakly to Px−1 as r →∞. It
is well known (see [5]) that it is equivalent to limr→∞Erf(xr) = Ef(x) for every
continuous bounded function f : CT → R, where Er and E denote expectations
with respect to P r and P , respectively. In particular, for continuous processes x
and x̃ on (Ω,F , P ) and (Ω̃, F̃ , P̃), respectively such that Px−1 = P̃x̃−1 we have
Ef(x) = Ẽf(x̃) for every continuous bounded function f : CT → R. Denote
Cn = Cb(Rn,Rn) and Cn×n = Cb(Rn,Rn×n) and define on Cn × Rn × Rn and
Cn×n × Rn×n × Rn set-valued mappings Φ and Ψ by settings

Φ(ϕ, u)(z) =
n∑
i=1

ϕi(z) · ui,(8)

Ψ(ψ, u)(z) =
n∑
i=1

n∑
j=1

ψij(z) · vij ,(9)

for ϕ ∈ Cn, ψ ∈ Cn×n, u ∈ Rn, v ∈ Rn×n and z ∈ Rn, where ϕ = (ϕ1, . . . , ϕn),
ψ = (ψij)n×n, u = (u1, . . . , un) and v = (vij)n×n. In what follows we shall
restrict functional parameters ϕ and ψ to the set Kk = {z ∈ Rn : |z| ≤ k} for
fixed k = 1, 2, . . . and consider Φ and Ψ on the restricted spaces Ckn = Cb(Kk,Rn)
and Ckn×n = Cb(Kk,Rn×n) instead of Cn and Cn×n, respectively. We shall also
consider Φ and Ψ with the restricted domain to the sets {ϕ(h) : h ∈ C2

b (Rn)} ×
Rn × Rn and {ψ(h) : h ∈ C2

b (Rn)} × Rn×n × Rn, where ϕ(h) = (h′x1
, . . . , h′xn

)
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and ψ(h) = (h′′xixj
)n×n for every h ∈ C2

b (Rn). Immediately from the above
definitions we obtain:

Lemma 3. Let F : [0, T ]×Rn → Cl(Rn) and G : [0, T ]×Rn → Cl(Rn×m) be
measurable and bounded.

(i) If F and G are convex and diagonally convex valued, respectively then
Φ(ϕ, F (t, z))(z) and Ψ(ψ,D(G(t, z)))(z) are bounded closed and convex
subsets of R for fixed ϕ ∈ Cn, ψ ∈ Cn×n, z ∈ Rn and t ∈ [0, T ].

(ii) Φ(ϕ, F ( · , · ))( · ) and (ψ,D(G( · , · )))( · ) are measurable on [0, T ]× Rn

for fixed ϕ ∈ Cn and ψ ∈ Cn×n.
(iii) Φ( · , F (t, z))(z) and Ψ( · , D(G(t, z)))(z) are continuous for fixed (t, z) ∈

[0, T ]× Rn.
(iv) If F (t, · ) and G(t, · ) are continuous then Φ(ϕ, F (t, · ))( · ) and Ψ(ψ,

D(G(t, · )))( · ) are continuous for fixed ϕ ∈ Cn, ψ ∈ Cn×n and t ∈ [0, T ].

Lemma 4. Assume F : [0, T ]×Rn → Cl(Rn) and G : [0, T ]×Rn → Cl(Rn×m)
are measurable and bounded and are such that F (t, · ) and G(t, · ) are continu-
ous for fixed t ∈ [0, T ]. Let x and x̃ be n-dimensional continuous processes on
(Ω,F , P ) and (Ω̃, F̃ , P̃), respectively, such that Px−1 = P̃x̃−1. Then for every
l ∈ C1, ϕ ∈ Cn and ψ ∈ Cn×n one has

E

(
l(xs)

∫ t

s

Φ(ϕ, F (τ, xτ ))(xτ ) dτ
)

= Ẽ

(
l(x̃s)

∫ t

s

Φ(ϕ, F (τ, x̃τ ))(x̃τ ) dτ
)

and

E

(
l(xs)

∫ t

s

Ψ(ψ,D(G(τ, xτ )))(xτ ) dτ
)

= Ẽ

(
l(x̃s)

∫ t

s

Ψ(ψ,D(G(τ, x̃τ )))(x̃τ ) dτ
)

for every 0 ≤ s < t ≤ T .

Proof. Let 0 ≤ s < t ≤ T , ϕ ∈ Cn, ψ ∈ Cn×n and l ∈ C1 be fixed. Define,
for fixed p ∈ R, mappings Up : CT → R and Vp : CT → R by

Up(x) = J
(
p,

∫ t

s

l(xs)Φ(ϕ, F (τ, xτ ))(xτ ) dτ
)
,

Vp(x) = J
(
p,

∫ t

s

l(xs)Ψ(ψ,D(G(τ, xτ )))(xτ ) dτ
)
,

for x ∈ CT , where J ( · , A) denotes the support function of a set A ⊂ R. It can
be verified (see [8]) that Up and Vp are continuous and bounded on CT for every
p ∈ R. Therefore, by the properties of x and x̃, we get EUp(x) = ẼUp(x̃) and
EVp(x) = ẼVp(x̃) for every p ∈ R, where E and Ẽ denote the expectations with
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respect to P and P̃, respectively. By the properties of Aumann’s integral (see
[8]) we obtain

EUp(x) = J
(
p,E

∫ t

s

l(xs)Φ(ϕ, F (τ, xτ ))(xτ ) dτ
)
,

ẼUp(x̃) = J
(
p, Ẽ

∫ t

s

l(x̃s)Φ(ϕ, F (τ, x̃τ ))(x̃τ ) dτ
)
,

EVp(x) = J
(
p,E

∫ t

s

l(xs)Ψ(ψ,D(G(τ, xτ )))(xτ ) dτ
)
,

ẼVp(x̃) = J
(
p, Ẽ

∫ t

s

l(x̃s)Ψ(ψ,D(G(τ, x̃τ )))(x̃τ ) dτ
)
,

for every p ∈ R. Hence the convexity of Aumann’s integrals implies the result.�

Let us extend now the definition of the operator Axfg on the space Cn×Cn×n
by taking

Axfg(ϕ,ψ)t =
n∑
i=1

ϕi(xt) · f it +
1
2

n∑
i=1

n∑
j=1

ψij(xt)σ
ij
t

for t ∈ [0, T ], ϕ = (ϕi)1×n ∈ Cn and ψ = (ψij)n×n ∈ Cn×n, where for a given
continuous process x = (xt)0≤t≤T on (Ω,F , P ) we have f ∈ S(F ◦x), g ∈ S(G◦x)
and σ = g · gT . It is clear that for every h ∈ C2

b (Rn) we have (Axfgh)t =
Axfg(ϕ(h), ψ(h))t for t ∈ [0, T ].

Lemma 5. Assume F and G satisfy the assumptions of Lemma 4 and are
convex and diagonally convex valued, respectively, and let (xt(B))0≤t≤T be a weak
solution to (4) on (Ω,F , (Ft)0≤t≤T , P ). Assume x̃ = (x̃t)0≤t≤T is a continu-
ous n-dimensional F̃t-adapted process on (Ω̃, F̃ , (F̃t)0≤t≤T , P̃) such that Px−1 =
P̃x̃−1. Then for every l ∈ C1, ϕ ∈ Cn and ψ ∈ Cn×n there are F̃t-nonanticipative
processes (α̃t(l, ϕ))0≤t≤T and (β̃t(l, ψ))0≤t≤T such that

(i) α̃t(l, ϕ) ∈ Φ(ϕ, F (t, x̃t))(x̃t) with (P̃.1),
(ii) β̃t(l, ψ) ∈ Ψ(ψ,D(G(t, x̃t)))(x̃t) with (P̃.1),

(iii) E

(
l(xs)

∫ t

s

Axfg(ϕ,ψ)τ dτ
)

= Ẽ

(
l(x̃s)

∫ t

s

[
α̃τ (l, ϕ) +

1
2
β̃τ (l, ψ)

]
dτ

)
,

for every 0 ≤ s < t ≤ T , where f ∈ S(F ◦ x) and g ∈ S(G ◦ x) are such that
dxt = ftdt+ gtdBt.

Proof. Let l ∈ C1, ϕ ∈ Cn and ψ ∈ Cn×n be fixed. Denote

αt =
n∑
i=1

ϕi(xt)f it and βt =
n∑
i=1

n∑
j=1

ψij(xt)σ
ij
t with (P.1)
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for t ∈ [0, T ]. We have αt ∈ Φ(ϕ, F (t, xt))(xt) and βt ∈ Ψ(ψ,D(G(t, xt)))(xt)
a.e. on [0, T ]× Ω. Hence, and by Lemma 4, it follows that

E

(
l(xs)

∫ t

s

ατ dτ

)
∈ Ẽ

(
l(x̃s)

∫ t

s

Φ(ϕ, F (τ, x̃τ ))(x̃τ )) dτ
)
,

E

(
l(xs)

∫ t

s

βτ dτ

)
∈ Ẽ

(
l(x̃s)

∫ t

s

Ψ(ψ,D(G(τ, x̃τ )))(x̃τ )) dτ
)

for every 0 ≤ s < t ≤ T .
Let L = supx∈Rn |l(x)| <∞ and M̃t = sup{|a| : a ∈ Φ(ϕ, F (t, x̃t))(x̃t)}.
By the definition of Φ and properties of F it follows that (M̃t)0≤t≤T is

bounded on [0, T ] × Ω̃. Assume L > 0 and let ε > 0. Select δ > 0 such that
sup0≤t≤T E

∫ t+δ
t

ατ dτ < ε/4L, sup0≤t≤T Ẽ
∫ t+δ
t

M̃τ dτ < ε/4L, sup0≤t≤T |xt −
xt+δ| ≤ ε and sup0≤t≤T |x̃t − x̃t+δ| ≤ ε with (P.1) and (P̃.1), respectively. Let
τ0 = 0 and τk = kδ for k = 1, . . . , N , where N is such that (N − 1)δ <

T ≤ Nδ. By the definitions of set-valued integrals for every k = 1, . . . , N
there is (α̃kt )0≤t≤T ∈ S(Φ(ϕ, F ( · , x̃)(x̃)) such that E[

∫ τk

τk−1
l(xτk−1)ατ dτ ] =

Ẽ[
∫ τk

τk−1
l(x̃τk−1)α̃

k
τ dτ ]. Define xε = 1[0,τ1)x0 + 1[τ1,τ2)xτ1 + . . .+ 1[τN−1,T ]xτN−1 ,

x̃ε = 1[0,τ1)x̃0+1[τ1,τ2)x̃τ1 +. . .+1[τN−1,T ]x̃τN−1 and α̃ε = 1{0}α̃1
0+1(τ,τ1]α̃

1+. . .+
1(τN−1,T ]α̃

N . For every t ∈ [0, T ] there is k ∈ {1, . . . , N} such that t ∈ [τk−1, τk).
Therefore, |xt − xεt | = |xt − xτk−1 | ≤ ε and |x̃t − x̃εt | = |x̃t − x̃τk−1 | ≤ ε, which
implies that sup0≤t≤T |xt − xεt | ≤ ε and sup0≤t≤T |x̃t − x̃εt | ≤ ε with (P.1) and
(P̃.1), respectively. By the definition of α̃ε we get α̃ε ∈ S(Φ(ϕ, F ( · , x̃))(x̃)) be-
cause S(Φ(ϕ, F ( · , x̃))(x̃)) is a decomposable set (see [8] p. 50). For every fixed
0 ≤ s < t ≤ T there are positive integers 1 ≤ r < l ≤ N such that s ∈ (τr−1, τr]
and t ∈ (τl, τl−1] or s, t ∈ (τr−1, τr] or s, t ∈ (τl−1, τl]. In the last two cases we
get∣∣∣∣E( ∫ t

s

l(xεs)ατdτ
)
− Ẽ

( ∫ t

s

l(x̃εs)α̃
ε
τ

)∣∣∣∣
≤ LE

( ∫ t

s

|ατ | dτ
)

+ LẼ

( ∫ t

s

M̃τ dτ

)
≤ ε.

If s ∈ (τr−1, τr] and t ∈ (τl−1, τl] we obtain∣∣∣∣E( ∫ t

s

l(xεs)ατdτ
)
− Ẽ

( ∫ t

s

l(x̃εs)α̃
ε
τdτ

)∣∣∣∣
≤

∣∣∣∣E( ∫ τr

s

l(xεs)ατ dτ
)
− Ẽ

( ∫ τr

s

l(x̃εs)α̃
ε
τ dτ

)∣∣∣∣
+

l−1∑
i=r+1

∣∣∣∣E( ∫ τi

τi−1

l(xτi−1)ατ dτ
)
− Ẽ

( ∫ τi

τi−1

l(x̃τi−1)α̃
i
τ dτ

)∣∣∣∣
+

∣∣∣∣E( ∫ t

τl−1

l(xτl−1)ατ dτ
)
− Ẽ

( ∫ t

τl−1

l(x̃τl−1)α̃
l
τ dτ

)∣∣∣∣
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≤LE
( ∫ τr

s

|ατ | dτ
)

+ LẼ

( ∫ τr

s

M̃τ dτ

)
+ LE

( ∫ t

τl−1

|ατ | dτ
)

+ LẼ

( ∫ t

τl−1

M̃τ dτ

)
≤ ε.

By the weak compactness of S(Φ(ϕ, F ( · , x̃))(x̃)) (see [7], [8]) in the space of
all

∑̃
-measurable (Ft-nonanticipative) bounded functions, for every sequence

(εn)∞n=1 with εn → 0 we can select its subsequence, say (εnk
)∞k=1 such that

(α̃εnk )∞k=1 converges weakly to some α̃ ∈ S(Φ(ϕ, F ( · , x̃)))(x̃)) as k → ∞. Fur-
thermore, we have sup0≤t≤T |xt − x

εnk
t | → 0 and sup0≤t≤T |x̃t − x̃

εnk
t | → 0 as

k →∞ with (P.1) and (P̃.1), respectively. Therefore, we finally get

E

( ∫ t

s

l(xs)ατ dτ
)

= Ẽ

( ∫ t

s

l(x̃s)α̃τ dτ
)

for 0 ≤ s < t ≤ T . Denoting α̃(l, ϕ) = α̃ we obtain condition (i). In a similar
way we obtain the existence of β̃(l, ψ) = β̃ ∈ S(Ψ(ψ,D(G( · , x̃)))(x̃) such that

E

( ∫ t

s

l(xs)βτ dτ
)

= Ẽ

( ∫ t

s

l(x̃s)β̃τ dτ
)

for every 0 ≤ s < t ≤ T . Thus (ii) is satisfied. By the definition of Axfg(ϕ,ψ) it
follows that (i) and (ii), imply that also (iii) is satisfied. �

Lemma 6. Let assumptions of Lemma 5 be satisfied and let τk = inf{t ∈
[0, T ] : xt /∈ Kk} and τ̃k = inf{t ∈ [0, T ] : x̃ /∈ Kk}, where Kk = {z ∈ Rn : |z| ≤
k} for k = 1, 2, . . . Then, for every l ∈ C1, ϕ ∈ Cn, ψ ∈ Cn×n and k = 1, 2, . . .
there are F̃t-nonanticipative processes (α̃kt (l, ϕ)0≤t≤T and (β̃kt (l, ψ)0≤t≤T such
that

(i) α̃kt (l, ϕ) ∈ Φ(ϕ, F (t, x̃t∧eτk
))(x̃t∧eτk

)) with (P̃.1),
(ii) β̃kt (l, ψ) ∈ Ψ(ψ,D(G(t, x̃t∧eτk

)))(x̃t∧eτk
)) with (P̃.1),

(iii) for every 0 ≤ s < t ≤ T

E(l(xs∧τk
)
∫ t∧τk

s∧τk

Axfg(ϕ,ψ) dτ) = Ẽ(l(x̃s∧eτk
)
∫ t∧eτk

s∧eτk

[α̃kτ (l, ϕ) +
1
2
β̃kτ (l, ψ)] dτ),

(iv) α̃kt and β̃kt are continuous on Ck1 × Ckn and Ck1 × Ckn×n, respectively for
fixed t ∈ [0, T ] and k = 1, 2, . . .

Proof. Let us observe that Ck1 , Ckn and Ckn×n are separable metric space
for k = 1, 2, . . . Denote their countable dense subsets by Dk1 ,Dkn and Dkn×n,
respectively and assume that Dk1 = {l1, l2, . . . }, Dkn = {ϕ1, ϕ2, . . . } and Dkn×n =
{ψ1, ψ2, . . . } Similarly as in Lemma 5 we can show that for every fixed k =
1, 2, . . . and i = 1, 2, . . . there are F̃t-nonanticipative processes (α̃it)0≤t≤T and
(β̃it)0≤t≤T such that

(i’) α̃it ∈ Φ(ϕi, F (t, x̃t∧eτk
))(x̃t∧eτk

) with (P̃.1),
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(ii’) β̃it ∈ Ψ(ψi, D(G(t, x̃t∧eτk
)))(x̃t∧eτk

) with (P̃.1),
(iii’) for every 0 ≤ s < t ≤ T

E

(
li(xs∧τk

)
∫ s∧τk

s∧τk

Axfg(ϕi, ψi)τ dτ
)

= Ẽ

(
li(x̃s∧eτk

)
∫ s∧eτk

s∧eτk

[
α̃iτ +

1
2
β̃iτ

]
dτ

)
.

Define now multifunctions ΦiF and Ψi
G by setting

ΦiF (t, ω̃, l, ϕ) =

{
Φ(ϕ, F (t, x̃t∧eτk

))(x̃t∧eτk
) for (l, ϕ) 6= (li, ϕi),

α̃it for (l, ϕ) = (li, ϕi),

Ψi
G(t, ω̃, l, ϕ) =

{
Ψ(ψ,D(G(t, x̃t∧eτk

)))(x̃t∧eτk
) for (l, ψ) 6= (li, ψi),

β̃it for (l, ϕ) = (li, ϕi),

for i = 1, 2, . . . It is easy to see that ΦiG and Ψi
G are closed convex valued.

Furthermore ΦiF ( · , · , l, ϕ) and Ψi
G( · , · , l, ψ) are

∑̃
-measuarble (i.e. F̃t-non-

anticipative) and ΦiF (t, ω̃, · , · ) and Ψi
G(t, ω̃, · , · ) are continuous on Ck1 × Ckn

and Ck1 × Ckn×n, respectively. Therefore, by [12, Theorem 2] for every i =
1, 2, . . . there are Σ̃ ⊗ β1

n and Σ̃ ⊗ β1
n×n-measurable, respectively mappings

γi : [0, T ] × Ω̃ × Ck1 × Ckn → R and λi : [0, T ] × Ω̃ × Ck1 × Ckn×n → R, where
β1
n and β1

n×n denote the Borel σ-algebras on Ck1 × Ckn and Ck1 × Ckn×n, respec-
tively, such that γi(t, ω̃, · , · ) and λi(t, ω̃, · , · ) are continuous on Ck1 × Ckn and
Ck1 × Ckn×n, respectively, γi(t, ω, l, ϕ) ∈ Φ(ϕ, F (t, x̃t∧eτk

))(x̃t∧eτk
), λi(t, ω, l, ψ) ∈

Ψ(ψ,D(G(t, x̃t∧eτk
)))(x̃t∧eτk

), γi(t, ω, li, ϕi) = α̃it(ω) and λi(t, ω, li, ψi) = β̃it(ω)
for a.e. (t, ω) ∈ [0, T ]× Ω̃ and i = 1, 2, . . .

Let (Uki )∞i=1 and (V ki )∞i=1 be a countable open covering for Ck1 ×Ckn and Ck1 ×
Ckn×n, respectively such that (li, ϕi) ∈ Ui and (li, ψi) ∈ V ki for i = 1, 2, . . . Select
continuous locally finite partitions of the unity (pi)∞i=1 and (qi)∞i=1 subordinate
to (Uki )∞i=1 and (V ki )∞i=1, respectively. Define now α̃kt (l, ϕ) and β̃kt (l, ϕ) by

α̃kt (l, ϕ)(ω) =
∞∑
i=1

pi(l, ϕ) · γi(t, ω, l, ϕ),

β̃kt (l, ψ)(ω) =
∞∑
i=1

qi(l, ψ) · λi(t, ω, l, ψ),

for l ∈ Ck1 , ϕ ∈ Ckn, ψ ∈ Ckn×n and (t, ω) ∈ [0, T ]× Ω̃. It is clear that

α̃kt (l, ϕ) ∈ Φ(ϕ, F (t, x̃t∧eτk
))(x̃t∧eτk

) with (P̃.1),

β̃kt (l, ψ) ∈ Ψ(ψ,D(G(t, x̃t∧eτk
)))(x̃t∧eτk

) with (P̃.1),

for a.e. t ∈ [0, T ], because (pi)∞i=1 and (qi)∞i=1 are locally finite and multifunctions
Φ(ϕ, F (t, z))(z) and Ψ(ψ,D(G(t, z)))(z) are convex valued. Immediatelly from
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the above definitions, it follows that α̃kt and β̃kt are continuous on Ck1 × Ckn and
Ck1 ×Ckn×n with (P̃.1) for fixed t ∈ [0, T ]. Finally, by the above definitions we get

Λst(l, ϕ, ψ) =E

(
l(xs∧τk

)
∫ t∧τk

s∧τk

Axfg(ϕ,ψ)τ dτ
)

− Ẽ

(
l(x̃t∧eτk

)
∫ t∧eτk

s∧τk

[
α̃kτ (l, ϕ) +

1
2
β̃kτ (l, ψ)

]
dτ

)
=

∞∑
i=1

∞∑
j=1

pi(l, ϕ)qj(l, ψ)
[
E

(
l(xs∧τk

)
∫ t∧τk

s∧τk

Axfg(ϕ,ψ)τ dτ
)

− Ẽ

(
l(x̃t∧eτk

)
∫ t∧eτk

s∧eτk

[
γi(τ, · , l, ϕ) +

1
2
λj(τ, · , l, ψ)

]
dτ

)]
for 0 ≤ s < t ≤ T , l ∈ Ck1 , ϕ ∈ Ckn and ψ ∈ Ckn×n. Hence, by the properties
of γi and λi and (iii)’ it follows that Λst(li, ϕi, ψi) = 0 for every i = 1, 2, . . .
and 0 ≤ s < t ≤ T . But Λst is continuous on Ck1 × Ckn × Ckn×n and is equal to
zero on Dk1 × Dkn × Dkn×n. Then by the density of the last set we finally have
Λst(l, ϕ, ψ) = 0 for l ∈ Ck1 , ϕ ∈ Ckn and ψ ∈ Ckn×n. �

Lemma 7. Let assumptions and notations of Lemma 6 be true. Then for
every k = 1, 2, . . . there are f̃k ∈ S(F ◦ x̃k) and g̃k ∈ S(G ◦ x̃k) such that for
k = 1, 2, . . . we have

(10) E

(
l(xs∧τk

)
∫ t∧τk

s∧τk

Axfg(ϕ,ψ)τ dτ
)

= Ẽ

(
l(x̃s∧eτk

)
∫ t∧eτk

s∧eτk

Aex
efk
egk(ϕ,ψ)(x̃τ ) dτ

)
for every 0 ≤ s < t ≤ T , l ∈ Ck1 , ϕ ∈ Ckn and ψ ∈ Ckn×n, where x̃k = (x̃t∧eτk

)0≤t≤T .

Proof. Let (α̃kt (l, ϕ))0≤t≤T and (β̃kt (l, ψ))0≤t≤T be such as in Lemma 6 and
let us define multifunctions K and Q by setting

Kt(ω̃) = F (t, x̃t) ∩ {u ∈ Rn : sup
(l,ϕ)∈Ck

1×Ck
n

dist(α̃kt (l, ϕ)(ω̃),Φ(ϕ, u)(x̃t∧eτk
(ω̃)))}

and

Qt(ω̃) = D(G(t, x̃t)) ∩ {v ∈ Rn×n :

sup
(l,ψ)∈Ck

1×Ck
n×n

dist(β̃kt (l, ψ)(ω̃),Ψ(ψ, v)(x̃t∧eτk
(ω̃)))}

for t ∈ [0, T ], ω̃ ∈ Ω̃. By the continuity of dist(α̃kt ( · , · )(ω̃),Φ( · , u) (x̃t∧eτk
(ω̃)))

and dist(β̃kt ( · , · )(ω̃),Ψ( · , v)(x̃t∧eτk
(ω̃))) for fixed (t, ω̃) ∈ [0, T ]× Ω̃, u ∈ Rn and

v ∈ Rn×n and the separability of metric spaces Ck1 × Ckn and Ck1 × Ckn×n we have

Kt(ω̃) = F (t, x̃t) ∩ {u ∈ Rn : sup
(l,ϕ)∈Dk

1×Dk
n

dist(α̃kt (l, ϕ)(ω̃),Φ(ϕ, u)(x̃t∧eτk
(ω̃)))}



Weak Compactness 163

and

Qt(ω̃) = D(G(t, x̃t)) ∩ {v ∈ Rn×n :

sup
(l,ψ)∈Dk

1×Dk
n

dist(β̃kt (l, ψ)(ω̃),Ψ(ψ, v)(x̃t∧eτk
(ω̃)))}

for (t, ω̃) ∈ [0, T ] × Ω̃. By the continuity of the functions mentioned above, it
follows that mappings

[0, T ]× Ω̃ 3 (t, ω̃) → dist(α̃kt (l, ϕ)(ω̃),Φ(ϕ, u)(x̃t∧eτk
(ω̃))) ∈ R,

[0, T ]× Ω̃ 3 (t, ω̃) → dist(β̃kt (l, ψ)(ω̃),Ψ(ψ, v)(x̃t∧eτk
(ω̃))) ∈ R,

are
∑̃

-measurable, i.e. F̃t-nonanticipative for fixed l ∈ Dk1 , ϕ ∈ Dkn, ψ ∈ Dkn×n,
u ∈ Rn and v ∈ Rn×n. Then, by the countability of Dk1 × Dkn and Dk1 × Dkn×n,
also mappings

[0, T ]× Ω̃ 3 (t, ω̃) → sup
(l,ϕ)∈Dk

1×Dk
n

dist(α̃kt (l, ϕ)(ω̃),Φ(ϕ, u)(x̃t∧eτk
(ω̃))) ∈ R,

[0, T ]× Ω̃ 3 (t, ω̃) → sup
(l,ψ)∈Dk

1×Dk
n

dist(β̃kt (l, ψ)(ω̃),Ψ(ψ, v)(x̃t∧eτk
(ω̃))) ∈ R,

are
∑̃

-measuarble for fixed u ∈ Rn and v ∈ Rn×n. Hence, similarly as in the
proof of [8, Theorem II.3.12], it follows that (Kt)0≤t≤T and (Qt)0≤t≤T are F̃t-
nonanticipative. Therefore, by virtue of Kuratowski and Ryll–Nardzewski mea-
surable selection theorem, there are F̃t-nonanticipative selectors f̃k = (f̃kt )0≤t≤T
and σ̃k = (σ̃kt )0≤t≤T for (Kt)0≤t≤T and (Qt)0≤t≤T , respectively. By the defini-
tions of Kt(ω̃) and Qt(ω̃) it follows that f̃k ∈ S(F ◦ x̃) and σ̃k ∈ S(D(G ◦ x̃)).
Furthermore, we have

sup
(l,ϕ)∈Ck

1×Ck
n

dist(α̃kt (l, ϕ)(ω̃),Φ(ϕ, f̃kt (ω̃))(x̃t∧eτk
(ω̃))) = 0,

sup
(l,ψ)∈Ck

1×Ck
n×n

dist(β̃kt (l, ψ)(ω̃),Ψ(ψ, σ̃kt (ω̃))(x̃t∧eτk
(ω̃))) = 0,

a.e. on [0, T ] × Ω̃. By virtue of Proposition 4, σ̃k ∈ S(D(G ◦ x̃)) implies the
existence of g̃k ∈ S(G ◦ x̃) such that σ̃ = g̃k · (g̃k)T . Hence the properties of
(α̃kt (l, ϕ))0≤t≤T and (β̃kt (l, ψ))0≤t≤T , and the definition of Axfg(ϕ,ψ)t, imply that
(10) is satisfied. �

Lemma 8. Let F : [0, T ]×Rn → Cl(Rn) and G : [0, T ]×Rn → Cl(Rn×m) be
bounded measurable and convex and diagonally convex valued, respectively and
such that F (t, · ) and G(t, · ) are continuous for fixed t ∈ [0, T ]. Let (xt(B))0≤t≤T
be a weak solution to (4) on (Ω,F , (Ft)0≤t≤T , P ). Assume x̃ = (x̃t)0≤t≤T is an
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n-dimensional continuous F̃t-adapted process on (Ω̃, F̃ , (F̃t)0≤t≤T , P̃) such that
Px−1 = P̃x̃−1. Then there are f̃ ∈ S(F ◦ x̃) and g̃ ∈ S(G ◦ x̃) such that

(11) E

(
l(xs)

∫ t

s

Axfg(ϕ,ψ)τ dτ
)

= Ẽ

(
l(x̃s)

∫ t

s

Aex
efeg

(ϕ,ψ)τ dτ
)

for every 0 ≤ s < t ≤ T , l ∈ C1, ϕ ∈ Cn, ψ ∈ Cn and ψ ∈ Cn×n.

Proof. Let (τk)∞k=1 and (τ̃k)∞k=1 be such as in Lemma 6. We have 0 <

τ1 < τ2, . . . , 0 < τ̃1 < τ̃2, . . . , limk→∞ τk = T and limk→∞ τ̃k = T with
(P.1) and (P̃.1), respectively. Denote by lk, ϕk and ψk the restrictions of
l ∈ C1, ϕ ∈ Cn, and ψ ∈ Cn×n to the set Kk, for k = 1, 2, . . . , respectively.
We have lk(xs∧τk

) = l(xs∧τk
), lk(x̃s∧eτk

) = l(x̃s∧eτk
),

∫ t∧τk

s∧τk
Axfg(ϕk, ψk)τ dτ =∫ t∧τk

s∧τk
Axfg(ϕ,ψ)τ dτ and

∫ t∧eτk

s∧eτk
Aex

efk
egk

(ϕk, ψk)τ dτ =
∫ t∧eτk

s∧eτk
Aex

efk
egk

(ϕ,ψ)τ dτ with

(P.1) and (P̃.1), respectively, where f̃k ∈ S(F ◦ x̃) and g̃k ∈ S(G ◦ x̃) are such
that (10) is satisfied. Put now f̃ = 1{0}f̃1

0 + 1(0,eτ1]f̃
1 + 1(eτ1,eτ2]f̃

2 + . . . and
g̃ = 1{0}g̃1

0 + 1(0,eτ1]g̃
1 + 1(eτ1,eτ2]g̃

2 + . . . Let us observe that by the decomposabil-
ity of S(F ◦ x̃) and S(G◦ x̃) we have f̃ ∈ S(F ◦ x̃) and g̃ ∈ S(G◦ x̃). Furthermore

E

(
l(xs∧τk

)
∫ t∧τk

s∧τk

Axfg(ϕ,ψ)τ dτ
)

= Ẽ

(
l(x̃s∧eτk

)
∫ t∧eτk

s∧eτk

Aex
efeg

(ϕ,ψ)τ dτ
)

for 0 ≤ s < t ≤ T , l ∈ C1, ϕ ∈ Cn, and ψ ∈ Cn×n. Hence, in the limit as k →∞,
we obtain

E

(
l(xs)

∫ t

s

Axfg(ϕ,ψ)τ dτ
)

= Ẽ

(
l(x̃s)

∫ t

s

Aex
efeg

(ϕ,ψ)τ dτ
)

for 0 ≤ s < t ≤ T , l ∈ C1, ϕ ∈ Cn, and ψ ∈ Cn×n. �

Lemma 9. Let assumptions of Lemma 8 be satisfied. Then there are f̃ ∈
S(F ◦ x̃) and g̃ ∈ S(G ◦ x̃) such that

(12) E

(
l(xs)

∫ t

s

(Axfgh)τ dτ
)

= Ẽ

(
l(x̃s)

∫ t

s

(Aex
efeg
h)τ dτ

)
for every 0 ≤ s < t ≤ T , l ∈ C1 and h ∈ C2

b (Rn).

Proof. The proof follows immediately from Lemma 8. Indeed, by Lemma 8
there are f̃ ∈ S(F◦x̃) and g̃ ∈ S(G◦x̃) such that (11) is satisfied for 0 ≤ s < t ≤ T

and every l ∈ C1, ϕ ∈ Cn, and ψ ∈ Cn×n. Then (11) is in particular, satisfied for
0 ≤ s < t ≤ T , ϕ(h) ∈ Cn and ψ(h) ∈ Cn×n for every l ∈ C1 and h ∈ C2

b (Rn).
But for every h ∈ C2

h(Rn) one has

Axf (ϕ(h), ψ(h))t = (Axfgh)t with (P.1),

Aex
efeg

(ϕ(h), ψ(h))t = (Aex
efeg
h)t with (P̃.1),

for t ∈ [0, T ]. Thus (12) is satisfied. �
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Lemma 10. Assume that cponditions of Lemma 8 are satisfied and let G
be convex valued. Then there are f̃ ∈ S(F ◦ x̃) and g̃ ∈ S(G ◦ x̃) such that
Aex

efeg
∈Mex

FG(C2
b (Rn)).

Proof. By virtue of Theorem 2, there are f ∈ S(F ◦ x) and g ∈ S(G ◦
x) such that Axfg ∈ Mx

FG(C2
b (Rn)). Then, for every h ∈ C2

b (Rn) a process
[(ϕxh)t]0≤t≤T , with (ϕxh)t defined by (6), is a continuous square integrable local
Ft-martingale on (Ω,F , P ). Therefore, there exists a sequence (rk)∞k=1 of Ft-
stopping times on (Ω,F , P ) such that rk−1 ≤ rk for k = 1, 2, . . . , with r0 = 0,
limk→∞ rk = +∞ with (P.1) and such that [(ϕxh)t∧rk

]0≤t≤T are, for every k =
1, 2, . . . , continuous square integrable Ft-martingales on (Ω,F , P ). Hence, in
particular it follows that for every 0 ≤ s < t ≤ T one has E[(ϕxh)t∧rk

|Fs] =
(ϕxh)s∧rk

with (P.1). Thus, for every 0 ≤ s < t ≤ T and h ∈ C2
b (Rn) we have

E{[(ϕxh)t∧rk
)−(ϕxh)s∧rk

]|Fs} = 0 with (P.1). By the continuity of l ∈ C1 and Fs-
measurability of xs, a random variable l(xs) is also Fs-measurable. Therefore
E{(l(xs)[(ϕxh)t∧rk

) − (ϕxh)s∧rk
]|Fs} = 0 with (P.1) for every 0 ≤ s < t ≤ T ,

l ∈ C1 and h ∈ C2
b (Rn), which in particular implies that E(l(xs)[(ϕxh)t∧rk

) −
(ϕxh)s∧rk

]) = 0 for every 0 ≤ s < t ≤ T , l ∈ C1 and h ∈ C2
b (Rn). Hence, in the

limit as k → ∞, we obtain E(l(xs)[(ϕxh)t − (ϕxh)s]) = 0, that can be written in
the form

(13) E(l(xs)[(h(xt)− h(xs)]) = E

(
l(xs)

∫ t

s

(Axfgh)τ dτ
)

for every 0 ≤ s < t ≤ T , l ∈ C1 and h ∈ C2
b (Rn). By Lemma 9, there are f̃ ∈

S(F ◦ x̃) and g̃ ∈ S(G ◦ x̃) such that (12) is satisfied. By the continuity of l ∈ C1

and h ∈ C2
b (Rn) and the equality Px−1 = P̃x̃−1 it follows that E(l(xs)[h(xt)−

h(xs)]) = Ẽ(l(x̃s)[h(x̃t)− h(x̃s)]) for every 0 ≤ s < t ≤ T . Hence, from (12) and
(13) one obtains

(14) Ẽ(l(x̃s)[h(x̃t)− h(x̃s)]) = Ẽ

(
l(xs)

∫ t

s

(Aex
efeg
h)τ dτ

)
for 0 ≤ s < t ≤ T , l ∈ C1 and h ∈ C2

b (Rn), i.e. Ẽ{l(x̃s)[(ϕexh)t − (ϕexh)s]} = 0 for
0 ≤ s < t ≤ T , l ∈ C1 and h ∈ C2

b (Rn). Hence, in particular, Ẽ(l(x̃s) · Ẽ{[(ϕexh)t−
(ϕexh)s]|F̃s}) = 0 for 0 ≤ s < t ≤ T every l ∈ C1 and h ∈ C2

b (Rn). Taking
in particular, l(x̃s) = Ẽ{[(ϕexh)t − (ϕexh)s]|F̃s} with (P̃.1) we get Ẽ(Ẽ{[(ϕexh)t −
(ϕexh)s]|F̃s})2 = 0 for 0 ≤ s < t ≤ T and h ∈ C2

b (Rn). Therefore, Ẽ{[(ϕexh)t −
(ϕexh)s]|F̃s} = 0 with (P̃.1) for 0 ≤ s < t ≤ T and h ∈ C2

b (Rn). Then
Ẽ[(ϕexh)t|F̃s] = (ϕexh)s with (P̃.1) for every 0 ≤ s < t ≤ T and h ∈ C2

b (Rn).
Therefore, Aex

efeg
∈Mex

FG(C2
b (Rn)). �

Lemma 11. Assume F and G satisfy the assumptions of Lemma 8 and
G is convex valued. Let (xrt (B

r))0≤t≤T be weak solutions to (4) on the space
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(Ωr,Fr, (Frt )0≤t≤T , P r) for r = 1, 2, . . . Let x̃r = (x̃rt )0≤t≤T and x̃ = (x̃t)0≤t≤T
be for r = 1, 2, . . . continuous n-dimensional F̃t-adapted processes on the space
(Ω̃, F̃ , (F̃t)0≤t≤T , P̃) such that P̃(x̃r)−1 = P r[xr(Br)]−1 for r = 1, 2, . . . and
limr→∞ sup0≤t≤T |x̃rt − x̃t| = 0 with (P̃.1). Then there are f̃ ∈ S(F ◦ x̃) and
g̃ ∈ S(G ◦ x̃) such that Aex

efeg
∈Mex

FG(C2
b (Rn)).

Proof. By virtue of Lemma 10, for every r = 1, 2, . . . there are f̃r ∈ S(F ◦x̃)
and g̃r ∈ S(G ◦ x̃) such that Aexr

efr
egr
∈ Mexr

FG(C2
b (Rn)). Similarly as in the proof

of Lemma 10, it follows

(15) Ẽ(l(x̃rs)[h(x̃
r
t )− h(x̃rs)]) = Ẽ

(
l(x̃rs)

∫ t

s

(Aexr

efr
egrh)τ dτ

)
for every r = 1, 2, . . . , 0 ≤ s < t ≤ T , and h ∈ C2

b (Rn).
By the continuity of l ∈ C1 and h ∈ C2

b (Rn) we get limr→∞ Ẽ(l(x̃rs)[h(x̃
r
t )

−h(x̃rs)]) = Ẽ(l(x̃s)[h(x̃t) − h(x̃s)]), for every 0 ≤ s < t ≤ T , l ∈ C1 and
h ∈ C2

b (Rn). By the boundedeness of F we obtain that a sequence (f̃rt )0≤t≤T ,
r = 1, 2, . . . is uniformly integrable ([8]) and therefore it is weakly compact.
Then there exists an F̃t-nonanticipative process (f̃t)0≤t≤T such that for every
A ∈ βT ⊗ F̃ one has

∫
A
f̃rτ dτdP̃ →

∫
A
f̃τ dτdP̃ as r → ∞. Therefore, for every

ε > 0 and A ∈ βT ⊗ F̃ we also get

dist
( ∫

A

f̃τ dτ dP̃,
∫
A

F (τ, x̃τ ) dτ dP̃
)

≤
∣∣∣∣ ∫
A

f̃τ dτ dP̃−
∫
A

f̃rτ dτ dP̃
∣∣∣∣ + dist

( ∫
A

f̃rτ dτ dP̃,
∫
A

F (τ, x̃rτ ) dτ dP̃
)

+H

( ∫
A

F (τ, x̃rτ ) dτ dP̃,
∫
A

F (τ, x̃rτ ) dτ dP̃
)
≤ ε

for sufficiently large r = 1, 2, . . . , because f̃rτ ∈ F (τ, x̃rτ ) a.e. on [0, T ] × Ω̃,∫
A
f̃rτ dτdP̃ →

∫
A
f̃τ dτdP̃ and H(

∫
A
F (τ, x̃rτ ) dτdP̃,

∫
A
F (τ, x̃rτ ) dτdP̃) → 0 as

r →∞, where H is a generalized Haussdorff metric on Cl(Rn). Hence it follows
that f̃ ∈ S(F ◦ x̃). On the other hand, by the linearity of the mapping Φ(ϕ, · ),
defined by (8) we obtain

lim
r→∞

Ẽ

(
l(x̃rs)

∫ t

s

Φ(ϕ(h), f̃rτ )(x̃rτ ) dτ
)

= Ẽ

(
l(x̃s)

∫ t

s

Φ(ϕ(h), f̃)(x̃τ ) dτ
)

for every 0 ≤ s < t ≤ T , l ∈ C1 and h ∈ C2
b (Rn), because l ∈ C1, h ∈ C2

b (Rn)
and limr→∞ sup0≤t≤T |x̃rt − x̃t| = 0 with (P̃.1).

Similarly, by the boundedeness of D(G(t, z)), for (t, z) ∈ [0, T ] × Rn, a se-
quence (σ̃rt )0≤t≤T , defined for each r = 1, 2, . . . by setting σ̃rt = g̃rt · (g̃rt )T is
also weakly compact, because σ̃rt ∈ D(t, x̃rt ) for a.e. (t, ω̃) ∈ [0, T ]× Ω̃ and each
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r = 1, 2, . . . Then there exists an n × n-dimensional F̃t-nonanticipative process
σ̃ = (σ̃t)0≤t≤T such that σ ∈ S(D(G ◦ x̃)) = D(S(G ◦ x̃)) and such that

lim
r→∞

Ẽ

(
l(xrs)

∫ t

s

Ψ(ψ(h), σ̃rτ )(x̃
r
τ ) dτ

)
= Ẽ

(
l(xs)

∫ t

s

Ψ(ψ(h), σ̃τ )(x̃τ ) dτ
)

for every 0 ≤ s < t ≤ T , l ∈ C1 and h ∈ C2
b (Rn), which similarly as in the

proof of Lemma 10, implies that there is g̃ ∈ S(G ◦ x̃) such that σ̃ = g̃ · g̃T and
Aex

efeg
∈Mex

FG(C2
b (Rn)). �

5. Weak compactness of solution sets

For given F : [0, T ] × Rn → Cl(Rn), G : [0, T ] × Rn → Cl(Rn×m) and a
probability measure µ on β(Rn) we denote by Xµ(F,G) a set of all weak solutions
to (4) with an initial distribution µ. A sequence (xr(Br))∞r=1 of Xµ(F,G) is said
to be convergent in distribution if there is a probability measure P on β(CT ),
such that P r(xr(Br))−1 ⇒ P as r →∞, where ⇒ denotes the weak convergence
of probability measures. We prove now the main results of the paper.

Theorem 12. Assume that F and G satisfy the assumptions of Lemma 8
and G is convex valued. Then, for every probability measure µ on β(Rn), the set
Xµ(F,G) is nonempty and sequentially weakly closed with respect to the conver-
gence in distribution.

Proof. By virtue of ([12], Theorem 2) there are measurable mappings f :
[0, T ] × Rn → Rn and g : [0, T ] × Rn → Rn×m such that f(t, · ) and g(t, · ) are
continuous for fixed t ∈ [0, T ] and such that f(t, x) ∈ F (t, x) and g(t, x) ∈ G(t, x)
for (t, x) ∈ [0, T ]×Rn. Now, immediately from [4, Theorem IV.2.2] it follows that
a stochastic differential equation dxt = f(t, xt)dt + g(t, xt) dBt has at least one
weak solution (xt(B))0≤t≤T on (Ω,F , (Ft)0≤t≤T , P ) with an initial distribution
µ. By the definitions of mappings f and g it easy follows that (xt(B))0≤t≤T ∈
Xµ(F,G). Thus Xµ(F,G) 6= ∅.

Assume {(xrt (Br))0≤t≤T }∞r=1 is a sequence in Xµ(F,G) convergent in distri-
butions. Then there is a probability measure P on β(CT ) such thatP r[(xr(Br)]−1

⇒ P as r → ∞, where (Ωr,Fr, (Frt )0≤t≤T , P r) is such that xr(Br) satisfies (4)
on this space. We have also P [xr0(B

r)]−1 = µ for every r = 1, 2, . . .
By virtue of [4, Theorem I.2.7] there is (Ω̃, F̃ , (F̃t)0≤t≤T , P̃) and random func-

tions x̃r : Ω̃ → CT and x̃ : Ω̃ → CT ; each r = 1, 2, . . . such that P r[xr(Br)]−1 =
P̃(x̃r)−1 for r = 1, 2, . . . , P̃x̃−1 = P and limr→∞ sup0≤t≤T |x̃rt − x̃t| = 0 with
(P̃.1). Then, by Lemma 11 there are f̃ ∈ S(F ◦ x̃) and g̃ ∈ S(G ◦ x̃) such
that Aex

efeg
∈ Aex

FG(C2
b (Rn)). Therefore, by Theorem 2, there exists F̂t-Brownian

motion (B̂t)0≤t≤T on an extension (Ω̂, F̂ , (F̂t)0≤t≤T , P̂ ) of (Ω̃, F̃ , (F̃t)0≤t≤T , P̃)
and such that (x̂t(B̂))0≤t≤T is a weak solution to (4) on (Ω̂, F̂ , (F̂t)0≤t≤T , P̂ ),
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where x̂t(B̂)(ω̂) = x̃t(π(ω̂)) for every ω̂ ∈ Ω̂. It is easy to see that P̂ [x̂0(B̂)] = µ.
On the other hand we have P r[xr(Br)]−1 = P̃(x̃r)−1 and x̃rt → x̃t uniformly
with respect to t ∈ [0, T ] with (P̃.1). Then P̃(x̃r)−1 ⇒ P̃x̃−1 as r → ∞
and P̃(x̃r)−1 = P r[xr(Br)]−1; each r = 1, 2, . . . Therefore, P r[xr(Br)]−1 ⇒
P̃x̃−1 as r → ∞. By the definition of the extension (Ω̂, F̂ , (F̂t)0≤t≤T , P̂ ) of
(Ω̃, F̃ , (F̃t)0≤t≤T , P̃) it follows that P̂ [x̂(B̂)]−1(A) = P̂ [x̂(B̂)−1(A)] = P̂ [(π−1 ◦
x̃−1)(A)] = (P̂ ◦ π−1)(x̃−1(A)) = P̃(x̃−1(A)) = (P̃x̃−1(A) for every A ∈ β(CT ).
Therefore, P̂ [x̂(B̂)]−1 = P̃x̃−1 and P r[xr(Br)]−1 ⇒ P̂ [x̂(B̂)]−1 as r →∞, which
completes the proof. �

Remark 1. For the nonemptiness of Xµ(F,G) it is enough only to assume
that F and G are measurable bounded closed and convex valued and such that
F (t, · ) and G(t, · ) are lower semicontinuous for fixed t ∈ [0, T ].

Denote now by Xµ(F,G,Ω) set of all weak solutions to (4) on the space (Ω,F ,
(Ft)0≤t≤T , P ) with an initial distribution µ. We have of course Xµ(F,G,Ω) ⊂
Xµ(F,G).

Theorem 13. If F and G satisfy the assumptions of Theorem 12 then for
every filtered probability space (Ω,F , (Ft)0≤t≤T , P ) and every probability measure
µ on β(Rn) the set Xµ(F,G,Ω) is nonempty and relatively sequentially weakly
compact with respect to the convergence in distribution.

Proof. Similarly as in the proof of Theorem 12 we obtain Xµ(F,G,Ω) 6= ∅
for fixed (Ω,F , (Ft)0≤t≤T , P ) and µ. Let {(xrt (Br))0≤t≤T }∞r=1 be a sequence
of weak solutions to (4) on (Ω,F , (Ft)0≤t≤T , P ) with an initial distribution µ.
By virtue of Lemma 1 for every r = 1, 2, . . . there are fr ∈ S(F ◦ xr) and
gr ∈ S(G ◦ xr) such that dxrt = frt dt+ grt dB

r
t for t ∈ [0, 1]. Now, similarly as in

[4, Theorem IV.2.2], for every k = 1, 2, . . . , there is a number Ck such that

sup
r≥1

sup
0≤t≤T

E{|xrt |2k} ≤ Ck and sup
r≥1

sup
0≤t≤T

E{|xrt |2k} ≤ Ck|t− s|k

for every t, s ∈ [0, T ]. Therefore, by [4, Theorems I.4.2 and I.4.3] there ex-
ist an increasing sequence (r

l
)∞l=1 of positive integers, a filtered probability

space (Ω̃, F̃ , (F̃t)0≤t≤T , P̃) and continuous n-dimensional processes (x̃nl
t )0≤t≤T

and (x̃t)0≤t≤T , each l = 1, 2, . . . such that P (xnl)−1 = P̃(x̃nl)−1 for l = 1, 2, . . .
and liml→∞ sup0≤t≤T |x̃nl − x̃t| = 0 with (P̃.1). Hence, by virtue of Lemma 11
there are f̃ ∈ S(F ◦ x̃) and g̃ ∈ S(G ◦ x̃) such that Aex

efeg
∈Mex

FG(C2
b (Rn)), which

by Theorem 2 implies the existence of F̂t-Brownian motion on an extension of
(Ω̂, F̂ , (F̂t)0≤t≤T , P̂ ) of (Ω̃, F̃ , (F̃t)0≤t≤T , P̃) such that (x̂t(B̂))0≤t≤T is a weak so-
lution to (4) on (Ω̂, F̂ , (F̂t)0≤t≤T , P̂ ), where x̂t(B̂)(ω̂) = x̃t(π(ω̂) for ω̂ ∈ Ω̂. Sim-
ilarly as in the proof of Theorem 12 we can show that P [xnl(Bnl)]−1 ⇒ P̂ [x̂(B̂)]
as l→∞. Then the set cldw(Xµ(F,G,Ω)) is weakly compact with respect to the
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convergence in distribution, where cldw denotes the weak closure with respect to
the convergence in distribution. �
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