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STRUCTURE OF LARGE POSITIVE SOLUTIONS
OF SOME SEMILINEAR ELLIPTIC PROBLEMS
WHERE THE NONLINEARITY CHANGES SIGN

Zongming Guo

Abstract. Existence and uniqueness of large positive solutions are ob-
tained for some semilinear elliptic Dirichlet problems in bounded smooth

domains Ω with a large parameter λ. It is shown that the large positive

solution has flat core. The distance of its flat core to the boundary ∂Ω is
exactly measured as λ→∞.

1. Introduction

In this paper we study the following eigenvalue problem

(1.1) −∆u = λf(u) in Ω, u = 0 on ∂Ω,

where Ω is a bounded domain in RN (N ≥ 2) with smooth boundary ∂Ω, λ > 0.
We are interested in the structure of positive solutions of (1.1) for large positive
λ in the case that f(0) = 0, f ′(0) = 0, f(a) = f(b) = 0, 0 < a < b, f changes
sign on [0,∞). More precisely, we assume that f ∈ C1((0,∞)\{b})∩C0([0,∞))
satisfies the following conditions:

(f1) f(0) = 0, f ′(0) = 0, f has two positive zeros a and b such that a < b;
f < 0 in (0, a), f > 0 in (a, b); there exists 0 < δ < b − a such that
f ′(s) < 0 for s ∈ (b− δ, b) and f has no other positive zeros,
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(f2) lims→b− f(s)/(b− s)ω = C1, lims→b− f ′(s)/(b− s)ω−1 = −C2 for some
0 < C1, C2 < ∞ and 0 < ω < 1,

(f3)
∫ b

0
f(s) ds>0 and β is the unique number in (a, b) such that

∫ β

0
f(s) ds=0.

Note that (f2) implies lims→b− f ′(s) = −∞.
Problem (1.1) has appeared in various models in applied mathematics, in-

cluding population genetics and chemical reactor theory (see e.g. [16] and the
references therein) and has been studied by many authors (see for example [1],
[7]–[9], [19], [20], [5], [16]). Notice that if we set ε2 = 1/λ, (1.1) can be viewed
as a singularly perturbed problem. The case that f ′(0) = 0 can be viewed as
a border line case of singular perturbation problems (see [10]). Benci and Ce-
rami [2] raised the question what happens for the structure of positive solutions
in this borderline case, also called the zero mass case.

In paper [4], Clement and Sweers obtained that (1.1) has a unique positive
solution uλ with max uλ → b as λ → ∞ and uλ → b in compact sets of Ω as
λ → ∞ if f satisfies (f1) and (f3) with f ′(0) < 0 and −∞ < f ′(b) < 0. Notice
that under such conditions on f , the fact that max uλ < b can be obtained by
the maximum principle. In a recent paper [6], Dancer studied (1.1) in a domain
D of type RN with f ′(0) = 0 and −∞ < f ′(b) < 0. He showed that when f

satisfies (f1), (f3) and some extra conditions, (1.1) has exactly 2 positive solutions
uλ, uλ with 0 < ‖u‖∞ < b for all large positive λ: uλ is a large solution, i.e.
uλ → b uniformly on compact subsets of D as λ → ∞; uλ is a small solution,
i.e. ‖uλ‖∞ < b and vλ(y) := uλ(λ−1/2y) → V as λ → ∞ in C2

loc(RN ), where
V = V (y) is the unique positive (radial) solution of

(1.2) ∆V + f(V ) = 0 in RN , V ′(|y|) < 0, V (y) → 0 as |y| → ∞.

In this paper we shall show that when f satisfies (f1)–(f3), (1.1) has a unique
large positive solution uλ for λ sufficiently large. By a large solution uλ of (1.1),
we mean that uλ ∈ C2(Ω) and that there exists an open set Ω0 ⊂ Ω independent
of λ with meas (Ω0) > 0 such that

(1.3) limλ→∞ inf
x∈Ω0

uλ(x) > a.

Since lims→b− f ′(s) = −∞ (see (f2)), the large positive solution uλ of (1.1) may
have flat core, i.e.

Gλ = {x ∈ Ω | uλ(x) = b} 6= ∅
(see [22]). We shall prove that under the assumptions (f1)–(f3), there exists flat
core for the large positive solution uλ of (1.1) when λ is sufficiently large. We
also give the exact estimate of the flat core of uλ.

The flat core properties of the positive solutions of elliptic equations similar
to (1.1) have also been discussed by several authors, see for example [17], [18],
[21]. In [21], Sweers obtained a positive solution of (1.1) which has flat core
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for λ sufficiently large. In a recent paper [18], Melian and Lis studied the flat
core properties of the positive solutions of some elliptic problems involving p-
Laplacian, but with simpler nonlinearity. It was known from [18] that under
the conditions: f ∈ C2(0, b) with f(s) > 0 in (0, b); lims→0+ f(s)/s = m > 0;
f(b) = 0; f(s)/s is decreasing in (0, b) and lims→b− f(s)/(b− s)ω = C > 0 with
0 < ω < 1, (1.1) has a unique positive solution for λ sufficiently large and flat
core of this solution exists.

Since the large positive solution uλ of (1.1) has flat core, one will see that the
problem studied in this paper becomes more difficult. For example, it is known
from [11] that if f is a Lipschitz continuous function, the positive solutions of
(1.1) with Ω being an N -ball is radially symmetric. We shall see in Section 5
below that such result is also true for the large positive solutions of (1.1), but
f(s) in our case is not Lipschitz for s near s = b. Moreover, we shall see later
that it is difficult to establish the sweeping out results when we use sub- and
supersolution argument because of the flat core of uλ.

2. Existence of large positive solutions

In this Section we study the existence of large positive solutions of (1.1).
The results in this section are strongly related to [4], but we need to overcome
a difficulty arising from the singularity of f ′(s) at s = b. To deal with the case
that f ′(b) = −∞, we modify f in the following way.

For any ε > 0 sufficiently small, define fε(s) = f(s) − ε. Then there exists
a(ε) > a and b(ε) < b such that fε(aε) = 0, fε(bε) = 0 and fε(0) = −ε. (It is
easy to see that a(ε) → a and b(ε) → b as ε → 0 and fε ∈ C1([0, b(ε)]).) We
make an extension Fε of fε:

Fε is bounded,

Fε(s) ≡ 0 for s ∈ (−∞,−1],

Fε ∈ C1(−∞, b(ε)) and Fε < 0 for s ∈ (−1, 0),

Fε → 0 uniformly for s ∈ [−1, 0] as ε → 0,

lims→0− F ′ε(s) = 0, lims→(−1)+ F ′ε(s) = 0,

Fε ≡ fε for s ∈ [0, b(ε)],

Fε(s) < 0 for s ∈ [b(ε),∞),∫ b(ε)

−1
Fε(s) ds > 0.

Lemma 2.1. Let Fε be defined as above. Then there exists µ0 > 0 indepen-
dent of ε such that for µ > µ0, there exists vε,µ ∈ C1(RN ), radially symmetric,
which satisfies

(2.1) −∆v = µFε(v) in RN , v(1) = −1.
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Moreover, max vε,µ < b(ε) and max vε,µ → b(ε) as µ →∞.

Proof. Define f̃ε(s) = Fε(s − 1). We have that f̃ε satisfies f̃ε(0) = 0 and
f̃ ′ε(0)=0. Moreover, f̃ε is bounded in [0, b(ε)+1]. Since f̃ε(b(ε)+1)=Fε(b(ε))=0,
without loss of generality, we assume f̃ε(s) ≡ 0 for s ∈ [b(ε) + 1,∞). Now we
consider the problem

(2.2) −∆u = µf̃ε(u) in B, u = 0 on ∂B,

where B is the unit ball in RN . By the arguments similar to that in [4], we can
obtain a global minimizer yε,µ ∈ H1

0 (B) to the functional

Iµ(u) =
1
2

∫
B

|∇u|2 − µ

∫
B

F̃ε(u),

where F̃ε(s) =
∫ s

0
f̃ε(ξ) dξ. It is known from the regularity of −∆ and the

maximum principle that yε,µ ∈ C2
0 (B) which is a positive solution of (2.2).

By [11], we know that yε,µ is radially symmetric and y′ε,µ < 0 for r ∈ (0, 1].
Moreover, the fact that max yε,µ → b(ε) + 1 can also be obtained from the
argument similar to that in [4].

Set vε,µ(r) = yε,µ(r)− 1 for r ∈ [0, 1] and

vε,µ(r) =

{
−1 +

1
2−N

(r2−N − 1)y′ε,µ(1) for r ∈ (1,∞) if N > 2,

−1 + y′ε,µ(1) log r for r ∈ (1,∞) if N = 2.

Since Fε = 0 on (−∞,−1], one verifies that vε,µ is the required function. This
completes the proof. �

Remark. By the well-known result of [11], we know that all the positive
solutions of (2.2) are radially symmetric for ε > 0. But we do not know whether
such conclusion is true or not when ε = 0 since f̃0 is not Lipschitz continuous
near s = b + 1.

Corollary 2.2. Let (µ, vε,µ) be as in Lemma 2.1, and let αε,µ ∈ (0, 1) be
the unique zero of vε,µ. Then for y ∈ Ω and λ > µ · α2

ε,µ · d(y, ∂Ω)−2,

(2.3) wµ,ε(λ, y;x) := vε,µ((λ/µ)1/2 · (x− y)), x ∈ Ω

is a subsolution of the problem

(2.4) −∆u = λFε(u) in Ω, u = 0 on ∂Ω.

Remark. We can show that for any ε > 0 sufficiently small, αε,µ → 1
as µ → ∞. In fact, for any sequence {µn} with µn → ∞ as n → ∞, by
the arguments similar to that in the proof of Lemma 2.1, we have that τn :=
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vε,µn(0) = maxB vε,µn → b(ε) as n → ∞. Defining y = µ
1/2
n r and ṽε,µn(y) =

vε,µn
(r), we have that ṽε,µn

satisfies

ṽ′′ε,µn
+

N − 1
y

ṽ′ε,µn
+ Fε(ṽε,µn

) = 0, ṽ′ε,µn
(0) = 0, ṽε,µn

(0) = τn.

Since τn → b(ε) as n →∞ and b(ε) is the unique solution of the problem

u′′ +
N − 1

y
u′ + Fε(u) = 0 in (0,∞), u′(0) = 0, u(0) = b(ε),

one obtains from the theory of ordinary differential equations that

ṽε,µn → b(ε) in C1
loc(0,∞) as n →∞.

(We can choose subsequences if necessary.) This implies that

vε,µn
→ b(ε) in C1

loc(B) as n →∞.

Thus, αε,µn
→ 1 as n →∞.

Let x∗ ∈ Ω. We define λ∗ := µd(x∗, ∂Ω)−2 > µα2
µ,εd(x∗, ∂Ω)−2 and zλ =

w(λ, x∗), where µ, α are as defined in Corollary 2.2. Note that λ∗ is independent
of ε.

Theorem 2.3. Let f satisfy (f1)–(f3). Then there exists λ0 > 0 such that
for λ > λ0, (1.1) has at least one large positive solution uλ such that

(2.5) max uλ → b as λ →∞.

Moreover, uλ → b on compact sets of Ω as λ →∞.

The proof of this theorem is similar to that in [4], but we need to overcome
a difficulty arising from the singularity of f ′(s) at s = b. We first present the
following lemmas.

Lemma 2.4. Let Fε be as above. Then

(i) for λ > λ∗ (2.4) has a solution u
(ε)
λ ∈ [zλ, b(ε)),

(ii) there exist λ∗∗ > λ∗, c > 0 and τ ∈ (a, b(ε)), such that for λ > λ∗∗

every solution u
(ε)
λ ∈ [zλ, b(ε)) of (2.4) satisfies

(2.6) u
(ε)
λ (x) > min{cλ1/2d(x, ∂Ω), τ} for all x ∈ Ω.

Proof. By Corollary 2.2, for λ > λ∗ we have that zλ is a subsolution of (2.4)
and zλ < b(ε). Since b(ε) is a supersolution of (2.4) and there exists Mε > 0
such that Fε(s) + Mεs is strictly increasing in (minΩ zλ, b(ε)), by a monotone
method, there exists a minimal solution u

(ε)
λ ∈ [zλ, b(ε)) of (2.4) for λ > λ∗. This

completes the proof of the first assertion.
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Since Ω satisfies a uniform interior sphere condition, there exists η0 > 0 such
that Ω =

⋃
{B(x, η) | x ∈ Ωη} for η ∈ (0, η0], where Ωη = {x ∈ Ω | d(x, ∂Ω) >

η}. Set

(2.7)

λ∗∗ = max(λ∗, µη−2
0 ),

c = µ−1/2 inf{(α− r)−1v(r) | r ∈ [0, α)},
τ = v(0),

with µ, v and α as in Corollary 2.2. (Note that λ∗∗ is independent of ε.)
Let (λ, uε,λ) be any solution of (2.4), λ > λ∗∗ and uε,λ ∈ [zλ, b(ε)). Since for

λ > λ∗∗, Ωα(µ/λ)1/2 is arcwise connected and since w(λ, y) is a subsolution for
y ∈ Ωα(µ/λ)1/2 with w(λ, y) < 0 on ∂Ω, by the sweeping out result (see [5]) we
obtain

uε,λ > w(λ, y) in Ω for all y ∈ Ωα(µ/λ)1/2 .

Hence, a similar argument to that in [4] implies

uε,λ > cλ1/2d(x, ∂Ω) for all x ∈ Ω \ Ωα(µ/λ)1/2 ,(2.8)

uε,λ(x) > τ for all x ∈ Ωα(µ/λ)1/2 ,(2.9)

which completes the proof. �

Remarks. (1) The sweeping out result as in [5] holds here since there exists
Mε > 0 such that |F ′ε(s)| ≤ Mε for s ∈ [0, b(ε)].

(2) It follows from (2.8)–(2.9) that the minimal solution u
(ε)
λ > 0 for λ > λ∗∗,

and maxu
(ε)
λ ∈ (a, b(ε)) for µ and λ sufficiently large. This implies that u

(ε)
λ is

a positive solution of

(2.10) −∆u = λ(f(u)− ε) in Ω, u = 0 on ∂Ω.

(3) We know that the constant c in (2.7) depends upon ε. But we can show
that c ≥ c0/2 > 0 for any ε sufficiently small, where c0 is independent of ε. In
fact, we know that for any fixed µ sufficiently large, and any sequence {εn} with
εn → 0 as n → ∞, there exists a subsequence (still denoted by {εn}) such that
vεn,µ → v0,µ in C1(B) and v0,µ is a positive radial solution of the problem

−∆u = µF0(u) in B, u = 0 on ∂B,

where F0(s) = f(s) in [0, b] and F0(s) ≡ 0 in (−∞, 0]. We can choose

c0 = µ−1/2 inf{(1− r)−1v0,µ(r) | r ∈ [0, 1)}.

Note that for µ sufficiently large, max v0,µ = b may hold.
By the conditions on f , we can choose a fixed b̂ ∈ (b− δ, b) and M > 0 such

that f(s) + Ms is increasing for s ∈ [0, b̂]. Let γ > 1 be a fixed number. Now,
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setting

g(s) =

{
Ms for s ∈ (0, b̂],

Mb̂ + γf (̂b)− γf(s) for s ∈ (̂b, b],

we can easily show that g is continuous in [0, b] and g is increasing in [0, b].
Moreover, we aslo know that f(s)+g(s) is increasing in [0, b]. (Note that f ′(s) <

0 for s ∈ (̂b, b).)

Lemma 2.5 (Maximum Principle). If u1, u2 ∈ H1
0 (Ω)∩C0(Ω) such that, for

any φ ∈ H1
0 (Ω), φ ≥ 0,

(2.11)
∫

Ω

∇u2 · ∇φ +
∫

Ω

g(u2)φ ≥
∫

Ω

∇u1 · ∇φ +
∫

Ω

g(u1)φ

and
u2 ≥ u1 on ∂Ω,

then u2 ≥ u1 in Ω.

Proof. Let us choose φ = (u1 − u2)+ ∈ H1
0 (Ω) ∩ C0

0 (Ω). Then it follows
from (2.11) that

0 ≥
∫

Ω

|∇(u1 − u2)+|2 +
∫

Ω

[g(u1)− g(u2)](u1 − u2)+.

This implies that (u1 − u2)+ = 0 in Ω and thus, u1 ≤ u2 in Ω. �

Proof of Theorem 2.3. Since u
(ε)
λ is a positive subsolution of (1.1) with

max u
(ε)
λ < b, b is a supersolution of (1.1) and f(s) + g(s) is increasing in (0, b),

by a monotone argument as in Theorem 2.4 in [3] that there exist a minimal
positive solution uλ ∈ C2

0 (Ω) of the problem (1.1) such that

(2.12) u
(ε)
λ ≤ uλ(x) ≤ b in Ω.

Here we use Lemma 2.5. It follows from Lemma 2.4 that for any ε > 0 and
λ > λ∗,

uλ > min{cλ1/2d(x, ∂Ω), τ} for all x ∈ Ω.

Since τ → b as ε → 0 and µ → ∞, we have from (2.9) (we may choose λ = µ2)
that for λ sufficiently large that

(2.13) uλ > τ for all x ∈ Ωα(µ/λ)1/2 .

Since limλ→∞ µ/λ = 0 (here we use λ = µ2) and τ → b as λ → ∞ and ε → 0
(noticing that uλ is independent of ε and α > α̃ > 0), we have from (2.13) that

uλ → b on compact sets of Ω as λ →∞.

We easily know that uλ is a large positive solution of (1.1) according to the
definition of large positive solutions. This completes the proof. �
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Remarks. (1) Note that the monotone argument was used to the weak
solutions in [3], but the arguments can be applied for our case to obtain the
solution in C2(Ω) since g is bounded.

(2) We can obtain that if uλ is a positive solution of (1.1) with uλ ∈ [zλ, b],
then uλ ≥ u

(ε)
λ in Ω. In fact, u

(ε)
λ can be obtained by the similar monotone

argument to that in the proof of Theorem 2.3 with f(s) replaced by Fε. Note
that by modifying g(s) = Ms for s ≤ 0 we can show that Fε(s)+g(s) is increasing
in (−∞, b(ε)). Thus, the monotone argument can be used for the problem (2.4).
On the other hand, by modifying f(s) ≡ 0 for s < 0 and g as above for s < 0, we
also know that f(s)+g(s) is increasing for s ∈ (−∞, b). Since zλ is a subsolution
for both (2.4) and (1.1), we can use the monotone argument starting from zλ,
i.e.

−∆ζ(1)
n + λg(ζ(1)

n ) = λ(Fε + g)(ζ(1)
n−1) in Ω, ζ(1)

n = 0 on Ω

with ζ
(1)
0 = zλ and

−∆ζ(2)
n + λg(ζ(2)

n ) = λ(f + g)(ζ(2)
n−1) in Ω, ζ(2)

n = 0 on Ω

with ζ
(2)
0 = zλ. Since f(s) > Fε(s) on (0, b], then it follows from the maximum

principle in Lemma 2.5 that ζ
(2)
n ≥ ζ

(1)
n in Ω. Since u

(ε)
λ is the minimal solution

of (2.4) in [zλ, b(ε)), thus, uλ ≥ u
(ε)
λ in Ω.

3. Asymptotic behaviour of large
positive solutions of (1.1) when λ is large

In this Section we shall study the asymptotic behaviour of the positive solu-
tions of (1.1) when λ is large. We first consider the following ordinary differential
equations

−y′′ = f(y)− ε, y(0) = 0, y(∞) = b(ε),(3.1)

−y′′ = f(y), y(0) = 0, y(∞) = b.(3.2)

By the first integrals of the equations, we have that each of (3.1) and (3.2) has
a unique positive solution yε(t) and y(t) respectively which satisfies (yε)′(t) > 0
for t ∈ [0,∞) and y′(t) ≥ 0 for t ∈ [0,∞) (see [5], [15]). To show (yε)′(t) > 0
for t ∈ [0,∞), we use the fact that |f ′(s)| is bounded for s ∈ [0, b(ε)]. Now we
show that there exists t0 > 0 such that y′(t) > 0 for t ∈ (0, t0) and y′(t0) = 0
and y(t) ≡ b for t ∈ [t0,∞). In fact, from the first integral of (3.2), we have

|y′(t)|2 + 2F (y(t)) ≡ C, t ∈ (0,∞),

where F (s) =
∫ s

0
f(ξ) dξ. Therefore,

|y′(t)|2 = 2(F (b)− F (y)).
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Since F (b) > F (s) for 0 < s < b, we have∫ y(t)

0

(F (b)− F (s))−1/2 ds = 21/2t.

Since f(s) ∼ (b − s)ω for s near b, 0 < ω < 1, we know that F (b) − F (s) ≥
ρ(b− s)1+ω, where ρ > 0. Thus,

∫ b

0
(F (b)− F (s))−1/2 ds = A < ∞. Let

(3.3) t0 = 2−1/2A.

Then the first integral of (3.2) implies that y′(t) > 0 for t ∈ (0, t0), y′(t0) = 0 and
y ≡ b in [t0,∞). On the other hand, by the first integrals of the equations (3.1)–
(3.2), we also know that

(yε)′(0) =
(

2
∫ b(ε)

0

[f(s)− ε] ds

)1/2

,

y′(0) =
(

2
∫ b

0

f(s) ds

)1/2

.

Thus (yε)′(0) → y′(0) as ε → 0. Therefore,

yε → y in C1
loc(0,∞).

If x ∈ Ω and x is near ∂Ω, x can be uniquely written in the form x = s+tν(s),
where s ∈ ∂Ω, ν(s) denotes the inward unit normal vector to ∂Ω at s, and t is
small and positive. We will make frequent use of these coordinates. If λ > 0,
define ηλ(x) = y(λ1/2t) if x is near ∂Ω and ηλ(x) = b otherwise.

Proposition 3.1. Let f satisfy (f1)–(f3). For any θ > 0 sufficiently small,
there is λ = λ(θ) > λ∗∗ such that if λ > λ and uλ ∈ [zλ, b] is a positive solution
of (1.1), then

(3.4) (1− θ)ηλ ≤ uλ ≤ (1 + θ)ηλ.

To prove this result, we first obtain the following sweeping out result.

Proposition 3.2 (Sweeping Out Result). Let f satisfy (f1)–(f3),

u ∈ H1
0 (Ω) ∩ C0(Ω)

with max u ≤ b be a solution of (1.1) and let A = {vt | t ∈ [0, 1]} be a family of
subsolutions of (1.1) satisfying vt ∈ H1

0 (Ω) ∩ C0(Ω), max vt ≤ b̃ < b and vt ≤ 0
on ∂Ω for all t ∈ [0, 1]. If

(i) t → (vt − v0) ∈ C0(Ω) is continuous with respect to the ‖ · ‖0-norm,
(ii) u ≥ v0 in Ω, and
(iii) u 6≡ vt, for all t ∈ [0, 1] and x near ∂Ω, then u ≥ vt in Ω for t ∈ [0, 1].
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Proof. Define G = {x ∈ Ω | u(x) = b}. We know that G depends upon λ,
we shall omit the subscript λ here and below for simplicity. In the following, we
only consider the case G 6= ∅. The case G = ∅ can be studied similarly.

Set E = {t ∈ [0, 1] | u ≥ vt in Ω}. By (ii), E is nonempty. Moreover, E is
closed. We easily know that G ⊂⊂ Ω is closed. Since max vt ≤ b̃ < b for any
t ∈ [0, 1], then, for 0 < τ < b − b̃, we can choose a neighbourhood O of G such
that G ⊂ O ⊂⊂ Ω and u ≥ vt + τ in O for any t ∈ [0, 1]. Moreover, there exists
M > 0 sufficiently large such that for any t ∈ E,

f(u) + Mu ≥ f(vt) + Mvt for x ∈ Ω \O.

Thus, for t ∈ E, we can easily show that u > vt in Ω \O. In fact, suppose that
there exists x0 ∈ Ω \ O and u − vt vanishes at x = x0, then u − vt attends its
minimum at x = x0 in Ω \O. On the other hand,

−∆(u− vt) + λM(u− vt) ≥ 0 in Ω \O.

The Hopf’s maximum principle implies that u ≡ vt in Ω \ O. This contradicts
the assumption (iii).

Now applying the strong maximum principle, we have

∂(u− vt)
∂ν

< 0 on ∂Ω.

Thus, u− vt ≥ cφ on Ω \O (see [14]), where c > 0 and φ is the unique positive
solution of the problem

−∆φ = 1 in Ω, φ = 0 on ∂Ω.

This and the arguments above imply that u− vt ≥ c1φ for x ∈ Ω, where c1 > 0.
By (i), we have that E is an open set. Thus, E = [0, 1]. �

Proof of Proposition 3.1. To prove this proposition, we first construct
sub- and supersolutions of (1.1), then obtain (3.4) by sweeping out results. We
only consider the case that uλ has flat core, i.e. Gλ = {x ∈ Ω | uλ(x) = b} 6= ∅
in the proof. If flat core of uλ does not exist, the proof is similar but is simpler.
(The key step in the proof below is to establish the sweeping out results. If
max uλ < b for all λ large, for a fixed λ large, we can choose Mλ > 0 such that
|f ′(s)| ≤ Mλ for s ∈ (0,maxΩ uλ]. Assuming Gλ = ∅ in the proof below, we
obtain our conclusion in this case by the similar arguments.)

Near ∂Ω, we use the s, t coordinates. In these variables,

∆uλ =
∂2uλ

∂t2
+ b(s, t)

∂uλ

∂t
+ terms involving s derivatives.
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If αε < (yε)′(0) but is close, using the first integral of (3.1) we easily prove
that the solution ỹε of (3.1) with the initial conditions:

ỹε(0) = 0, ỹ′ε(0) = αε,

first increases to a number near b(ε) but less than b(ε), and then decreases to
zero (see [5]). Hence there is l̃ε near b(ε) and t̃ε sufficiently large such that

ỹε(t̃ε) = l̃ε, ỹ′ε(t̃ε) = 0.

We know that there exists Mε > 0 sufficiently large such that hε(s) := f(s) −
ε + Mεs is strictly increasing for s ∈ (0, b(ε)] (since b(ε) < b). Hence if µ̃ is close
to 1 and β is small, the solution yε of

(3.5) −x′′ − βx′ + Mεx = µ̃hε(x(t)), x(0) = 0, x′(0) = αε

increases until tε, where yε(tε) is close to b(ε) but less than b(ε). Moreover, tε
is sufficiently large.

Let t0 be the number such that y′(t) > 0 for 0 < t < t0 and y(t) ≡ b for
t ≥ t0, where y is the unique positive solution of (3.2). We know that tε > t0 for
any ε > 0 sufficiently small and yε(t0) < b(ε). Define

η̃
(ε)
λ (x) =

{
yε(λ1/2t) if x is close to ∂Ω and 0 ≤ t ≤ λ−1/2t0,

yε(t0) otherwise,

where x = s + tν(s) if x is near ∂Ω. (Thus η̃
(ε)
λ is constant except near ∂Ω.) We

know that η̃
(ε)
λ is in C1(Ω) except the points x = s + tν(s) with t = λ−1/2t0.

Suppose we can show that, for λ large and uλ is a positive solution of (1.1), then

(3.6) uλ ≥ η̃
(ε)
λ for all ε > 0 sufficiently small.

Since yε is close to yε on compact intervals if αε is near (yε)′(0); µ̃ is near 1
and β is small, uλ ≥ (1− θ/2)η(ε)

λ , where

η
(ε)
λ (x) =

{
yε(λ1/2t) if x is close to ∂Ω and 0 ≤ t ≤ λ−1/2t0,

yε(t0) otherwise.

Since yε → y in C0([0, t0]), as ε → 0, we have η
(ε)
λ → ηλ in C0(Ω) as ε → 0,

where

ηλ(x) :=

{
y(λ1/2t) if x is close to ∂Ω and 0 ≤ t ≤ λ−1/2t0,

b otherwise.

Thus uλ ≥ (1− θ)ηλ. This will prove half of Proposition 3.1.
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Now we show (3.6). By choosing β < 0 and µ̃ < 1, we have η̃
(ε)
λ is in C0(Ω)∩

H1
0 (Ω). Moreover, we can find e ∈ (0, 1) such that uλ ≥ η̃

(ε)
eλ by Theorem 2.3

and Remark 2 after its proof. Now we deduce that

(3.7) uλ ≥ η̃
(ε)
jλ for j ∈ [e, 1].

We first show that η̃
(ε)
jλ are subsolutions of (1.1) for j ∈ [e, 1]. We only need to

check this for Ωt0 := {x = s + tν(s) ∈ Ω | 0 ≤ t ≤ (jλ)−1/2t0}. Since

−∆η̃
(ε)
jλ = −(η̃(ε)

jλ )′′ − b(s, t)(η̃(ε)
jλ )′

≤ λ[jµ̃f(yε((jλ)1/2t)) + j(µ̃− 1)Mεyε((jλ)1/2t)]

+ (jλ)1/2(β(jλ)1/2 − b(s, t))y′ε((jλ)1/2t)

≤ λf(yε((jλ)1/2t)) + λ(jµ̃− 1)[f(yε((jλ)1/2t))

+
j(µ̃− 1)
jµ̃− 1

Mεyε((jλ)1/2t)]

+ (jλ)1/2(β(jλ)1/2 − b(s, t))y′ε((jλ)1/2t).

Define mε,j(s) = f(s)+[j(µ̃− 1)/(jµ̃− 1)]Mεs. Since j(µ̃− 1)/(jµ̃− 1) ≥ θ̃ > 0
for j ∈ [e, 1], if we choose Mε sufficiently large, we have that mε,j is also strictly
increasing in (0, b(ε)) for all j ∈ [e, 1]. Thus, mε,j(yε((jλ)1/2t)) ≥ 0 in Ω and η̃

(ε)
jλ

is a subsolution of (1.1) for each j ∈ [e, 1] provided µ̃ < 1 and β < 0. On the
other hand, we also know that max η̃

(ε)
jλ < b(ε) < b in Ω for any ε > 0 sufficiently

small. Then the sweeping out result (see Proposition 3.2) implies that

uλ ≥ η̃
(ε)
jλ for all j ∈ [e, 1].

Now we construct supersolutions of (1.1) to prove the right hand side of (3.4).
If α1 > y′(0) and close, it is easy to show from the first integral that the so-
lution ỹ1 of (3.2) such that ỹ1(0) = 0, ỹ′1(0) = α1, increases till it hits y = b.
Hence if µ̂ > 1 close to 1 and β > 0 is small, the solution y1 of

(3.8) −x′′ − βx′ + Max = µ̂[f(x(t)) + Max(t)], x(0) = 0, x′(0) = α1

increases until t1, where y1(t1) = b. Where Ma > 0 satisfies that |f ′(s)| ≤
[µ̂/(µ̂− 1)]Ma for s ∈ [0, a]. Clearly t1 < t0 provided that µ̂ is near 1 and β is
small. We define

ηλ(x) =

{
y1(λ1/2t) if 0 < t < λ−1/2t1,

b otherwise.

Choosing µ̂ > 1 and β > 0, we shall show that

uλ ≤ ηjλ for j ∈ [1, e]

provided it is possible to choose e > 1 such that uλ ≤ ηeλ for λ large.
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Define E = {j ∈ [1, e] | uλ ≤ ηjλ}. We know that e ∈ E and E is closed. Let

G = {x ∈ Ω | uλ(x) = b}, Fj = {x ∈ Ω | ηjλ(x) = b},

and
Ωj = {x = s + tν(s) ∈ Ω | 0 < t < (jλ)−1/2t1}.

(Note that G, Fj and Ωj depend upon λ, we omit the subscript λ here and
below.) We shall prove that for each j0 ∈ E, there is a neighbourhood J0 of j0
such that

(3.9) G ⊂ Fj for all j ∈ J0.

Notice that G is closed, we first show that for a sufficiently small neighbour-
hood Q of G such that G ⊂ Q ⊂⊂ Ω, there exists τ > 0 (depending upon Q)
such that

(3.10) ηj0λ ≥ uλ + τ on ∂Q.

(Note that both Q and τ depend upon λ.) On the contrary, there exists x0 ∈ ∂Q

such that
ηj0λ(x0) = uλ(x0).

Since x0 6∈ G, it is clear that x0 6∈ Fj0 . Setting δ̃ = dist(x0, Fj0)/2, we have
B
eδ(x0) ∩ Fj0 = ∅. Since max

B
eδ
(x0)

ηj0λ < b, we can find Mj0 > 0 such that
g(s) := f(s) + Mj0s is strictly increasing for s ∈ [0,max

B
eδ
(x0)

ηj0λ]. This also
implies that B

eδ(x0) ⊂ Ωj0 .
On the other hand, for λ sufficiently large,

−∆(ηj0λ − uλ) + λMj0(ηj0λ − uλ)(3.11)

= λ(g(ηj0λ)− g(uλ)) + λ(j0µ̂− 1)
[
f(ηj0λ) +

j0(µ̂− 1)
(j0µ̂− 1)

Maηj0λ

]
+ (λj0)1/2[β(j0λ)1/2 − b(s, t)]y′1 > 0 in B

eδ(x0)

provided µ̂ > 1 and β > 0, where we use the facts that j0(µ̂− 1)/(j0µ̂− 1) >

(µ̂− 1)/µ̂ and that |f ′(s)| ≤ [µ̂/µ̂− 1]Ma for s ∈ [0, a] (we can easily see that
the second term on the right hand side of (3.11) is positive). Therefore, the
strong maximum principle implies ηj0λ ≡ u in B

eδ(x0). This contradicts (3.11).
Since ηjλ is continuous in the norm ‖ ·‖0 about j, we have from (3.10) that there
exists δ̂ > 0 sufficiently small such that

(3.12) ηjλ − uλ ≥ 0 on ∂Q

for j ∈ J := (j0 − δ̂, j0 + δ̂). (If j0 = e, we choose J = (j0 − δ̂, j0).)
Now we show that (3.9) holds for a neighbourhood J0 of j0 with J0 ⊂ J . On

the contrary, we have sequences {jn} ⊂ J and {xn} ⊂ G with jn → j0 as n →∞
such that ηjnλ(xn) < uλ(xn). Define mn = infx∈Q[ηjnλ(x) − uλ(x)]. We have
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that mn can be achieved at ξn ∈ Q and mn < 0 for n sufficiently large. Now,
setting

Hn = {x ∈ Q | ηjnλ(x)− uλ(x) ≥ 0},

we know that Hn is closed and ξn 6∈ Hn. Let ω̂n = dist(ξn,Hn) and B
bωn

(ξn) be
the ball with certer at ξn and radius ω̂n. One easily knows that B

bωn
(ξn) ⊂ Q

and

(3.13) ηjnλ(x)− uλ(x) < 0 for x ∈ B
bωn

(ξn)

and there is at least one point ηn ∈ ∂B
bωn

(ξn), where ηjnλ − uλ vanishes.
On the other hand, choosing Q such that

(3.14) uλ ≥ b− δ/4 in Q,

where δ > 0 is as in (f1), we have

(3.15) ηj0λ ≥ uλ ≥ b− δ/4 in Q.

The continuity on the C0-norm of ηjλ about j implies that for n sufficiently
large,

(3.16) ηjnλ ≥ b− δ/2 on Q.

Thus, for n sufficiently large,

(3.17) ηjnλ ≥ b− δ/2 on B
bωn

(ξn).

Therefore, for x ∈ B
bωn

(ξn),

−∆(ηjnλ − uλ) = λ(jnµ̂f(ηjnλ)− f(uλ))

+ (λjn)1/2[β(λjn)1/2 − b(s, t)]y′1 + λjn(µ̂− 1)Maηjnλ.

Since f ′(s) < 0 for s ∈ (b − δ, b), we have that f(ηjnλ) ≥ f(uλ) in B
bωn

(ξn).
Therefore,

(3.18) −∆(ηjnλ − uλ) ≥ 0 on B
bωn

(ξn)

provided β > 0, µ̂ > 1 and λ sufficiently large. It follows from (3.18) and the
Hopf’s maximum principle that

(3.19) ηjnλ − uλ ≡ mn < 0 in B
bωn

(ξn).

But (3.19) contradicts the fact that ηjnλ − uλ has a zero point on ∂B
bωn

(ξn).
This shows (3.9).
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Now we show that there exists a neighbourhood J1 of j0 in J0 such that
J1 ⊂ E. Since j0 ∈ E and uλ ≤ ηj0λ in Ω, we can choose a small neighbourhood
Q1 of Fj0 such that G ⊂ Fj0 ⊂⊂ Q1 and

uλ ≤ ηj0λ in Q1,(3.20)

uλ < ηj0λ on ∂Q1.(3.21)

By the property of Fj ; the fact that G ⊂ Fj for all j ∈ J0 and the continuity
of ηjλ in the C0-norm about j, we have that there exists a neighbourhood J1 of
j0 in J0 such that G ⊂ Fj ⊂⊂ Q1 for all j ∈ J1 and (3.20)–(3.21) hold for all
j ∈ J1. The existence of J1 can be obtained by the arguments similar to that in
the proof of (3.9). Without loss of generality, we assume Q ⊂ Q1.

Now we consider the domain Ω1 := Ω \ Q1. Since Ω1 ⊂ Ωj0 , we know that
max uλ ≤ max ηj0λ < b in Ω1. Thus, assuming that for Mj0 > 0 and g(s) as
above, we have

g(ηj0λ)− g(uλ) ≥ 0 in Ω1.

Therefore,

−∆(ηj0λ − uλ) + λMj0(ηj0λ − uλ)

= λ(g(ηj0λ)− g(uλ)) + λ(j0µ̂− 1)
[
f(ηj0λ) +

j0(µ̂− 1)
j0µ̂− 1

Maηj0λ

]
+ (λj0)1/2[β(j0λ)1/2 − b(s, t)]y′1 ≥ 0 in Ω1.

In fact, since j(µ̂− 1)/(jµ̂− 1) ≥ (µ̂− 1)/µ̂ for j ≥ 1, then

f(ηj0λ) +
j0(µ̂− 1)
j0µ̂− 1

Maηj0λ ≥ 0

in Ω1. The arguments similar to that in the proof of Proposition 3.2 imply that
there exists c > 0 such that

(3.22) ηj0λ − uλ ≥ cφ in Ω1,

where φ is as that in the proof of Proposition 3.2. The continuity of ηjλ in the
C0-norm about j implies that

(3.23) uλ ≤ ηjλ in Ω1

for all j ∈ J2, where J2 is a neighbourhood of j0 in J1. (3.23) and the claim
immediately after (3.20)–(3.21) above give the fact that J2 ⊂ E. This implies
that E = [1, e].

Now we show that it is possible to choose e > 1 such that uλ ≤ ηeλ for λ large
and all positive solutions uλ ∈ [zλ, b] of (1.1). It is easy to see that this reduces to
showing that there is K > 0 such that uλ(x) ≤ Kλ1/2t if uλ is a positive solution
of (1.1), x is near ∂Ω and λ is large. Obviously, it suffices to prove the result for
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t ≤ K1λ
−1/2 (K1 > 0). Now for arbitrary x0 ∈ ∂Ω, letting X = λ1/2(x − x0)

and ũλ(X) = uλ(x), then

−∆ũλ = f(ũλ) in Ωλ, ũλ = 0 on ∂Ωλ,

where Ωλ = {X | λ−1/2X + x0 ∈ Ω}. By a blow up argument as in [5], the
stretching only flattens the boundary as λ →∞. Since 0 ∈ ∂Ωλ and ‖ũ‖∞ ≤ b,
we apply the regularity result of −∆ to obtain that ∇ũλ is bounded on the
bounded subsets of Ωλ which contain neighbourhoods of 0 on ∂Ωλ. Hence, in
the original variables, ‖∇uλ‖∞ ≤ Kλ1/2 on the subsets of Ω which contain
neighbourhoods of x0 on ∂Ω. The required estimate for uλ near ∂Ω now follows
since ∂Ω is compact. This completes the proof. �

4. Uniqueness results

In this Section we show that (1.1) has only one large positive solution uλ

when λ is sufficiently large.
First note that from the definition of the large positive solution of (1.1),

there exists ξ ∈ (a, b) and a ball B(x0, r) ⊂ Ω which is independent of λ

such that uλ ≥ ξ in B(x0, r) for all λ sufficiently large. Let w(λ, x0) be as
in (2.3). We know that w(λ, x0) is a subsolution of (1.1) with f replaced by Fε

for λ > µα2d(x0, ∂Ω)−2. Therefore, it follows from the monotone arguments as
in Lemma 2.4 and Theorem 2.3 that for λ > λ∗∗x0

(with x∗ replaced by x0), (2.4);
(1.1) has a positive solution u

(ε)
λ ; ũλ in [w(λ, x0), b] respectively (both of them

are minimal solutions) such that ũλ ≥ u
(ε)
λ in Ω and

(4.1) ũλ → b on compact sets of Ω as λ →∞.

Therefore, for λ ≥ λ > max{λ∗∗x0
, λ∗∗x∗} and λ being a fixed sufficiently large

number,

(4.2) ũλ ≥ w(λ, x∗) in Ω

and
ũλ ≥ uλ,x∗ in Ω,

where uλ,x∗ ∈ [w(λ, x∗), b] is the minimal positive solution of (1.1). (This is
known from Remark 2 after the proof of Theorem 2.3.)

Now we show that uλ ≥ ũλ and hence

uλ ≥ uλ,x∗ in Ω

for λ ≥ λ. Therefore, the eatimates in Proposition 3.1 are true for uλ.
It is enough to prove uλ ≥ w(λ, x0) in Ω. It is known from the above that

w(λ, x0) is a subsolution of (2.4) for ε sufficiently small and

τ = maxw(λ, x0) < b(ε) < b.
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Moreover, there exists σε > 0 such that

(4.3) f(s) ≥ σε(s− ξ) for s ∈ [ξ, b(ε)]

since ξ > a and f(s) > 0 for s ∈ [ξ, b(ε)]. (We know that ξ < b(ε) when ε is
sufficiently small).

Lemma 4.1. Let f satisfy (4.3). Then, for λ > λ,

(4.4) uλ ≥ b(ε) in B(x0, r/2).

Proof. We know that uλ ≥ ξ in B(x0, r). Now for any x1 ∈ B(x0, r/2), we
set

θ(x1, λ, t;x) = ξ + tφ1((σελ/λ1)1/2(x− x1)) for x ∈ B̃ and t ∈ [0, b(ε)− ξ],

where λ1 and φ1 with ‖φ1‖∞ = 1 are the first eigenvalue and the corresponding
eigenfunction of the eigenvalue problem of −∆ in the unit ball of RN with the
Dirichlet boundary condition; B̃ = B(x1, λ1(σελ)−1). It is well-known that φ1 is
radially symmetric and φ1(0) = 1. Note that for λ > λ1(σεr/2)−1, B̃ ⊂ B(x0, r).
We assume that λ > max{λ1(σεr/2)−1, λ}. We claim that the set {θ(x0, λ, t) |
t ∈ [0, b(ε)− ξ]} is a family of subsolutions of the problem

(4.5) −∆v = λf(v) in B̃, v = uλ on ∂B̃,

with the closure of B̃ is contained in B(x0, r). It is clear that uλ ≥ θ(x0, λ, 0)
in B̃ and |f ′(s)| ≤ Mε for s ∈ [0, b(ε)]. Thus, by the similar argument to that in
the proof of Proposition 3.2, we obtain that

(4.6) uλ ≥ θ(x0, λ, b(ε)− ξ) in B̃

and thus

(4.7) uλ(x1) ≥ b(ε) for all x1 ∈ B(x0, r/2).

This completes the proof of Lemma 4.1. �

It is easily seen that when λ > (r/2)−2µ, w(λ, x0;x) ≤ 0 for x ∈ Ω \
B(x0, r/2). We assume λ > λ̃ := max{λ1(σεr/2)−1, λ, (r/2)−2µ} in the follows.
Then we obtain

(4.8) uλ ≥ w(x0, λ) in Ω,

since τ < b(ε). By the fact that ũλ is the minimal positive solution of (1.1) in
[w(x0, λ), b], we have

(4.9) uλ ≥ ũλ in Ω.

This is our claim.
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Theorem 4.2. Assume that f satisfies (f1)–(f3). Then (1.1) has only one
large positive solution uλ for λ sufficiently large satisfying maxΩ uλ ≤ b and

(4.10) uλ → b in compact sets of Ω as λ →∞.

Proof. The existence of at least one large positive solution uλ of (1.1) for λ

sufficiently large has been obtained in Theorem 2.3. We only need to study the
uniqueness of uλ.

By the argument above, we know that if uλ and u∗λ are two large positive
solutions of (1.1) for λ sufficiently large, then uλ ≤ u∗λ or u∗λ ≤ uλ holds and the
asymptotic behaviour in Proposition 3.1 holds for both uλ and u∗λ and λ large.
Without loss of generality, we assume u∗λ ≤ uλ in Ω in the follows.

Now we show that for λ sufficiently large,

(4.11) uλ ≡ u∗λ in Ω.

On the contrary, there exist sequences {λn} with λn → ∞ as n → ∞ and
{un} ≡ {uλn

}, {u∗n} ≡ {u∗λn
} such that un 6≡ u∗n for all n.

Define vn = (un−u∗n)/‖un−u∗n‖∞. Then vn ≥ 0, vn 6≡ 0 in Ω and maxΩ vn =
1 for all n. Setting

Hn = {x ∈ Ω | un(x) = b},
H∗

n = {x ∈ Ω | u∗n(x) = b},

we easily know that H∗
n ⊂ Hn ⊂⊂ Ω and that vn satisfies the problem

(4.12) −∆vn = λnf ′(ξn)vn in Ω \Hn, vn = 0 on ∂Ω,

where ξn ∈ (u∗n, un). Now we show if ηn ∈ Ω such that vn(ηn) = 1, then

(4.13) dist(ηn, ∂Ω) → 0 as n →∞.

(Note that vn(x) = 0 for x ∈ H∗
n.) In fact, it is known from Proposition 3.1 that

if K ⊂⊂ Ω is a compact set, then u∗n → b, un → b in K as n →∞. If ηn ∈ K for
all n large, we know that ηn ∈ K \H∗

n. There are two cases here: (i) there exists
a subsequence of {ηn} (still denoted by {ηn}) such that ηn ∈ K \Hn, (ii) there
exists a subsequence of {ηn} (still denoted by {ηn}) such that ηn ∈ Hn \ H∗

n.
Since Hn and H∗

n are closed sets in Ω, for the first case, there exists a small
neighbourhood Bηn of ηn in Ω such that Bηn ∩Hn = ∅ and f ′(ξn) < 0 in Bηn for
all n large. (We use the continuity of ξn in Bηn

here.) This is a contradiction
since vn attains its maximum on Ω at ηn. For the second case, we also can choose
a small neighbourhood Bηn

of ηn in Ω such that Bηn
∩ H∗

n = ∅. On the other
hand, we write (4.12) in the form

−∆vn = λn
f(un)− f(u∗n)

un − u∗n
vn
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and easily know that −∆vn < 0 in Bηn
. This is also a contradiction. Thus,

(4.13) holds.
Now we use the blow up argument as in [12], [5] to show that (4.13) does not

hold. We consider two cases here: (we can choose subsequences if necessary)

(i) λ
1/2
n dist(ηn, ∂Ω) → Z ≥ t0 (Z can be ∞), as n →∞,

(ii) λ
1/2
n dist(ηn, ∂Ω) ≤ Z < t0 for all n sufficiently large, where t0 > 0 is

the number defined in (3.3).

For the first case, we have from Proposition 3.1 that un(ηn) → b, u∗n(ηn) → b

as n → ∞. Thus we derive contradictions by the arguments similar to that in
the proof of (4.13).

For the second case, we make a change of variables, Xn = λ
1/2
n (x − η̃n),

where η̃n is the point on ∂Ω closest to ηn. Let ũn(Xn) = un(x), ũ∗n(Xn) = u∗n(x),
ξ̃n(Xn) = ξn(x) and ṽn(Xn) = vn(x). We have that ṽn satisfies the problem

(4.14) −∆ṽn = f ′(ξ̃n)ṽn in Ω̃n \ H̃n, ṽn = 0 on ∂Ω̃n,

where

Ω̃n ≡ {Xn = λ1/2
n (x− η̃n) | x ∈ Ω}, H̃n ≡ {Xn = λ1/2

n (x− η̃n) | x ∈ Hn}.

Note that ṽn(Zn) = 1, where Zn = λ
1/2
n (ηn − η̃n) is at distance at most Z

from 0 and Z < t0. By the argument similar to that in the proof of Theorem 2
of [5], we have that ũn → y(x1) in C1

loc(T1), ũ∗n → y(x1) in C1
loc(T1) as n →∞.

Where T1 = {x ∈ RN | x1 ≥ 0} and y is the unique solution of (3.2). Defining
H = {x ∈ T1 | x1 ≥ t0}, we easily know that H̃n → H and ξ̃n → y(x1) in
C0

loc(T1 \H) as n →∞. Moreover, ṽn converges in C1
loc(T1 \H) to a non-trivial

non-negative bounded solution ṽ of

(4.15) −∆ṽ = f ′(y(x1))ṽ in T1 \H, ṽ = 0 on ∂T1.

Here ṽ is non-trivial because ṽn(Zn) = 1 and dist(0, Zn) ≤ Z < t0.
Now we show that such ṽ can not exist by the three steps as that in the proof

of Proposition 2 of [5], but with a different definition domain of y(x1).
Step 1. We find a solution q of

(4.16) −u′′ = f ′(y)u,

which is positive on [0, t0) and is not bounded as x1 → t−0 .
By differentiating the equation satisfied by y ((3.2)) with respect to x1, we

see that y′(x1) is a solution of (4.16). Let Y be the solution of the initial value
problem

(4.17) −Y ′′ = f ′(y)Y in (0, t0), Y (0) = 0, Y ′(0) = 1.
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We claim that Y (x1) →∞ as x1 → t−0 . In fact, we know from a simple compu-
tation

(4.18) (y′Y ′ − Y y′′)′ ≡ 0 in (0, t0).

This implies that

(4.19) y′Y ′ − Y y′′ ≡ C in [0, t0],

where C = y′(0). Our claim can be obtained from (4.19) and the facts that
y′(x1) → 0 and y′′(x1) → 0 as x1 → t−0 . Define q(x1) = y′(x1) + Y (x1). We
easily know that q satisfies our requirement.

Step 2. If (4.15) has a non-trivial bounded non-negative solution ṽ, the ṽ can
be chosen so that T (x1) = supy∈RN−1 ṽ(x1, y) is continuous for x1 > 0.

The proof of Step 2 is similar to that of Proposition 2 in [5].
Step 3. We show that ṽ can not exist. If ṽ exists, using the notation of

Step 2, we consider r(x) = ṽ(x)/q(x1). By Steps 1 and 2 and the boundedness
of ṽ, it follows that limx1→t−0

T (x1)/q(x1) = 0. Thus, since T (0) = 0, we can
find 0 < x̃1 < t0 such that

sup{T (x1)/q(x1) | 0 ≤ x1 < t0} = T (x̃1)/q(x̃1).

By Step 2, ṽ can be chosen so that ṽ(x̃1, y) achieves its maximum on RN−1 at 0.
By our construction, r(x) achieves its maximum on {(x1, y) | 0 ≤ x1 < t0, y ∈
RN−1} at the interior point (x̃1, 0). However, since q satisfies (4.16), a simple
calculation shows that r satisfies an elliptic equation

r′′x1x1
+ 2(q′/q)r′x1

+ ∆N−1r = 0,

where ∆N−1 denotes the Laplacian in the y variables. Hence, by applying the
maximum principle on compact sets, we see that r(x1, y) is constant of 0 ≤ x1 <

t0, y ∈ RN−1. This is impossible since r = 0 when x1 = 0. �

We easily obtain the following corollary from Theorem 4.2.

Corollary 4.3. Let f satisfy (f1)–(f3) and Ω be an N -ball or an annulus.
Then (1.1) has exactly one large positive solution uλ which is radially symmetric
for λ sufficiently large. Moreover, uλ → b in compact subsets of Ω as λ →∞.

Remark. Corollary 4.3 implies that (1.1) has no non-radial large positive
solutions for λ sufficiently large.

5. Flat core of the large positive solution

In this section we shall give the asymptotic behaviour of the flat core Gλ of
the unique large positive solution uλ as λ →∞. The existence of Gλ for uλ was
obtained in [21]. Our main result of this section is
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Theorem 5.1. Let f satisfy (f1)–(f3). Then for λ sufficiently large, Gλ

satisfies that if d∗(λ) = dist(Gλ, ∂Ω), then

lim
λ→∞

λ1/2d∗(λ) =
C(F )1/2

2
,

where

C(F ) =
1
2

( ∫ b

0

2ds

(F (b)− F (s))1/2

)2

and F (s) =
∫ s

0

f(ξ) dξ.

Moreover,

lim
λ→∞

λ1/2dist(x,Gλ) =
C(F )1/2

2
for any x ∈ ∂Ω.

To prove this theorem, we start the study from the simple case N = 1, i.e.
the problem

(5.1) −v′′ = λf(v) in (0, `), v(0) = 0, v(`) = 0,

where ` > 0 is independent of λ. The main idea of this section is similar to that
in [18] but with many modifications.

Lemma 5.2. Assume that f satisfies (f1)–(f3). Then there exists a unique
positive solution vλ(x) of (5.1) satisfying

(5.2) vλ → b uniformly on compact sets of (0, `) as λ →∞.

Moreover, for λ ≥ λ̂ := (1/`2)C(F ),

(5.3) Eλ = {x ∈ (0, `) | vλ(x) = b} = [d∗(λ), `− d∗(λ)],

where

C(F ) =
1
2

( ∫ b

0

2 ds

(F (b)− F (s))1/2

)2

,(5.4)

F (s) =
∫ s

0

f(ξ) dξ,

d∗(λ) =
1
2
C(F )1/2λ−1/2.(5.5)

Proof. We claim that if vλ ∈ C1([0, `]) is a positive solution of (5.1) with
‖vλ‖∞ ≤ b, then vλ is symmetric about x = `/2. In fact, the first integral of (5.1)
implies that

(5.6) |v′λ|2 + 2λF (vλ) = C, x ∈ (0, `).

Let vλ = sup0<x<` vλ(x). Then it follows from (5.6) that

(5.7) |v′λ|2 = 2λ(F (vλ)− F (vλ)).

On the other hand, we easily know from (5.6) that vλ is the only critical value
of vλ = vλ(x). Therefore, if xλ

1 = min{x | vλ = vλ}, xλ
2 = max{x | vλ = vλ},
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then vλ increases before xλ
1 , decreases after xλ

2 , while vλ ≡ vλ in xλ
1 ≤ x ≤ xλ

2 .
Thus, it follows from (5.7) that

(5.8)
∫ vλ(x)

0

ds

(F (vλ)− F (s))1/2
= (2λ)1/2x, 0 < x < xλ

1 ,

and

(5.9)
∫ vλ(x)

0

ds

(F (vλ)− F (s))1/2
= (2λ)1/2(`− x), xλ

2 < x < `.

(5.8) and (5.9) imply that vλ is symmetric with respect to `/2 and

(5.10)
∫ vλ

0

ds

(F (vλ)− F (s))1/2
= (2λ)1/2xλ

1 .

This implies our claim.
To prove the existence, we first notice that it follows from (f2) that∫ b

0

ds

(F (b)− F (s))1/2
< ∞.

Defining C(F ) and d∗(λ) as in (5.4) and (5.5) and

λ̂ =
1
`2

C(F ),

we have that if λ > λ̂, then d∗(λ) < `/2. Now we define vλ(x) by

(5.11)
∫ vλ(x)

0

ds

(F (b)− F (s))1/2
= (2λ)1/2x, 0 < x < d∗(λ)

and

(5.12) vλ(x) ≡ b for x ∈ [d∗(λ), `/2].

We can define vλ on [`/2, `] such that vλ is symmetric about x = `/2. It is clear
that vλ is the required positive solution of (5.1).

Now we show that vλ is the unique positive solution of (5.1) such that
max vλ → b as λ → ∞. In fact, suppose wλ is a positive solution of (5.1)
such that max wλ → b as λ → ∞, we can show that wλ(`/2) = b for λ suffi-
ciently large. On the contrary, we know that wλ(`/2) := wλ < b for all λ large.
Since F (s) =

∫ s

0
f(ξ) dξ, we know that for s < wλ and near wλ,

F (s) = F (wλ) + f(wλ)(s− wλ) +
1
2
f ′(wλ)(s− wλ)2 + o((s− wλ)2).

We know that f(wλ) > 0 and f ′(wλ) < 0 for λ sufficiently large (since wλ → b

as λ →∞). Thus,

F (wλ)− F (s) ≥ 1
2
f(wλ)(wλ − s) for s near wλ.
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Therefore,

(5.13)
∫ wλ

s0

(F (wλ)− F (s))−1/2 ≤ 2(f(wλ))−1/2

∫ wλ

s0

(wλ − s)−1/2 ds < ∞

for s0 near wλ and λ sufficiently large. On the other hand, we know from a similar
identity to (5.10) that

(5.14)
∫ wλ

0

ds

(F (wλ)− F (s))1/2
= (2λ)1/2 `

2
.

(Since wλ < b, wλ can only attain at x = `/2.) We easily derive a contradiction
from (5.13) and (5.14). Since wλ can also be written to the forms same as (5.11)
and (5.12), we have that wλ ≡ vλ in (0, `). �

Now we are dealing with the case Ω = BR = {x ∈ RN | |x| < R}.

Lemma 5.3. Let uλ be the unique large positive (radial) solution of (1.1)
for λ sufficiently large obtained in Corollary 4.3. Then uλ has flat core Gλ,B.
Moreover,

(5.15) lim
λ→∞

supλ1/2d(λ, B) ≤ C(F )1/2

2
,

where d(λ, B) = dist(Gλ,B , ∂BR).

Proof. We know that uλ satisfies the problem

(5.16) −(rN−1u′λ)′ = λrN−1f(uλ), r ∈ (0, R), u′λ(0) = 0, uλ(R) = 0.

Now we introduce a change

ρ = g(r) =

{ 1
2−N

(R2−N − r2−N ) N ≥ 3,

log(R/r) N = 2.

Observe that 0 < ρ < ∞ if 0 < r < R. Setting vλ(ρ) = uλ(g−1(ρ)) in (5.16)
leads to the problem

(5.17) −v′′λ = λ(g−1(ρ))2(N−1)f(vλ), 0 < ρ < ∞, v(0) = v′(∞) = 0,

where ′ = d/dρ. Moreover, vλ is the unique large positive solution of (5.17)
(see [18]).

If we fix 0 < θ < ∞ independent of λ and v = vλ(ρ) stands for the unique
large positive solution to (5.17), then we have that v(θ) → b as λ →∞ and that
there exists a unique 0 < ηλ < θ such that v(ηλ) = a and

−v′′ ≥ λ(g−1(θ))2(N−1)f(v)

provided that ηλ < ρ < θ (since f(v(ρ)) ≥ 0 for ηλ < ρ < θ). The uniqueness
of ηλ can be known from the structure of uλ. In fact, we can easily show that
u′λ ≡ 0 and uλ ≡ b in [0, r̃λ] for some r̃λ ≥ 0 and u′λ < 0 in (r̃λ, R] (see [15]).
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Thus, vλ has the similar property. We know that ηλ = g(rλ), where uλ(rλ) = a.
It follows from Proposition 3.1 that λ1/2(R − rλ) → t0 as λ →∞, where t0 > 0
satisfies y(t0) = a and y(t) is the unique solution of (3.2). (This can also be
obtained from the arguments similar to that in the proof of Theorem 4.2 or that
in the proof of Theorem A in [13]. In fact, if r is near R, Xλ = λ1/2(R− r) and
ũλ(Xλ) = uλ(r), we know

ũλ(Xλ) → y(t) in C1
loc(0,∞) as λ →∞,

where y is the unique solution of (3.2).) By the first integral arguments similar
to that in the proof of Lemma 5.2, we easily know from the property of y that

t0 = 2−1/2

∫ a

0

ds

(F (b)− F (s))1/2
.

Thus,

rλ = R− (2λ)−1/2

∫ a

0

ds

(F (b)− F (s))1/2
+ o(λ−1/2)

for λ sufficiently large. Therefore, for N ≥ 3,

ηλ = g(rλ) = (2λ)−1/2R1−N

∫ a

0

ds

(F (b)− F (s))1/2
+ o(λ−1/2).

For N = 2, we also obtain

ηλ = g(rλ) = (2λ)−1/2R−1

∫ a

0

ds

(F (b)− F (s))1/2
+ o(λ−1/2).

(Note that we use Taylor expansions here.)
Let us introduce now the auxiliary problem

(5.18) −v′′ = λ(g−1(2θ))2(N−1)f(v), ηλ < ρ < θ, v(ηλ) = a, v′(θ) = 0.

We observe now that (5.18) admits a unique positive solution v = vλ(ρ, θ) pro-
vided λ > λ0 and vλ(θ) = b, where

λ0 =
[
θ−1

(
2−1/2R1−N

∫ a

0

ds

(F (b)− F (s))1/2
+ 2

+ (2(g−1(2θ))2(N−1))−1/2

∫ b

a

ds

(F (b)− F (s))1/2

)]2

.

In fact, restricting to ηλ < ρ < θ the unique positive solution v̂λ of

−v′′ = λ(g−1(2θ))2(N−1)f(v),(5.19)

ηλ < ρ < 2θ − ηλ,

v(ηλ) = v(2θ − ηλ) = a
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with max v̂λ = b, we obatin vλ. Now we show that (5.19) has a unique positive
solution v̂λ(x) with max v̂λ = b. In fact, the arguments similar to that in the
proof of Lemma 5.2 imply that, if

λ >

[
θ−1

(
λ1/2ηλ + (2(g−1(2θ))2(N−1))−1/2

∫ b

a

ds

(F (b)− F (s))1/2

)]2

,

(5.19) has a unique solution v̂λ(x) with v̂λ(θ) = b satisfying∫
bvλ(x)

a

ds

(F (b)− F (s))1/2
= (2λ(g−1(2θ))2(N−1))1/2(x− ηλ) for x ∈ (ηλ, θ)

and ∫
bvλ(x)

a

ds

(F (b)− F (s))1/2
= (2λ(g−1(2θ))2(N−1))1/2(2θ − ηλ − x)

for x ∈ (θ, 2θ − ηλ). Define

d(λ) = ηλ + (2λ(g−1(2θ))2(N−1))−1/2

∫ b

a

ds

(F (b)− F (s))1/2
,

A =
∫ a

0

ds

(F (b)− F (s))1/2
, B =

∫ b

a

ds

(F (b)− F (s))1/2
.

We easily know d(λ) < θ for λ > λ0 and sufficiently large and thus

v̂λ ≡ b in [d(λ), 2θ − d(λ)].

It is clear that v̂λ(ρ) (for ηλ < ρ < 2θ − ηλ) is a subsolution of the problem

(5.20) −v′′ = λ(g−1(ρ))2(N−1)f(v), v(ηλ) = a, v(2θ − ηλ) = vλ(2θ − ηλ).

(Note that vλ(2θ − ηλ) → b as λ → ∞.) Since b is a supersolution of (5.20),
then we use the arguments similar to that in the proof of Theorem 2.3 to obtain
a positive solution vλ of (5.20) in [v̂λ, b]. Since vλ(ρ) is the unique large positive
solution of (5.17) and vλ(ρ) satisfies (5.20), we can conclude

vλ ≡ vλ in (ηλ, θ),(5.21)

a < vλ(ρ, θ) ≤ vλ(ρ) for ηλ < ρ < θ.(5.22)

(To show (5.21), we first notice that vλ(2θ − ηλ) = uλ(g−1(2θ − ηλ)) → b as
λ →∞. vλ and vλ are corresponding to the solutions uλ and uλ of the problem

−(rN−1u′)′ = λrN−1f(u) in (g−1(2θ − ηλ), g−1(ηλ)),

u(g−1(ηλ)) = uλ(g−1(ηλ)) = a, u(g−1(2θ − ηλ)) = uλ(g−1(2θ − ηλ)).

Since uλ is the unique large positive solution of (5.16), extending uλ to be uλ

in [0, g−1(2θ − ηλ)] and (g−1(ηλ), R], we have that uλ is also a large positive
solution of (5.16). Thus, uλ ≡ uλ for λ sufficiently large. This shows (5.21).)
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Notice that vλ(ρ, θ) develops a flat core for each λ > λ0 and

(5.23) vλ(d(λ)) = b.

Since uλ is decreasing, (5.23) implies uλ(r) ≡ b for 0 ≤ r ≤ g−1(d(λ)). Thus,

(5.24) 0 < dist(Gλ,B , ∂BR) ≤ R− g−1(d(λ)).

If we put d̂(λ) := R− g−1(d(λ)), it follows that

d̂(λ) = RN−1[(2λ)−1/2R1−NA + (2λ)−1/2(g−1(2θ))1−NB + o(λ−1/2)] + o(λ−1/2)

for λ sufficiently large. Since

(5.25) lim
λ→∞

λ1/2d̂(λ) = 2−1/2A + 2−1/2

(
R

g−1(2θ)

)N−1

B,

it is obtained from (5.24) and (5.25), after passing to the limit as θ → 0+, that

(5.26) lim
λ→∞

supλ1/2dist(Gλ,B , ∂BR) ≤ C(F )1/2

2
,

since 2−1/2(A + B) = C(F )1/2/2. This completes the proof of Lemma 5.3. �

Lemma 5.4. Let Ω = A(R1, R2) = {x ∈ RN | 0 < R1 < |x| < R2} and
uλ(r) be the unique large positive solution of (1.1) in Ω for λ sufficiently large.
If Gλ,A = {x ∈ A(R1, R2) | uλ(|x|) = b}, then

(5.27) lim
λ→∞

inf λ1/2dist(Gλ,A, ∂A) ≥ C(F )1/2

2
.

Proof. Setting

ρ = g(r) =


1

2−N
[r2−N −R2−N

1 ] for N ≥ 3,

log
(

r

R1

)
for N = 2,

and

vλ(ρ) = uλ(g−1(ρ)),

we can rewrite (1.1) as

−v′′ = λ(g−1(ρ))2(N−1)f(v), 0 < ρ < T, v(0) = v(T ) = 0,

where ′ = d/dρ and T = g(R2). Since uλ is the unique large positive solution
of (1.1) with r1 = R1, r2 = R2, then vλ(ρ) is the unique large positive solution
of this problem. Moreover, there exist 0 < η1

λ < η2
λ < T such that

vλ(η1
λ) = vλ(η2

λ) = a
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and η1
λ = g(r1

λ), η2
λ = g(r2

λ), where R1 < r1
λ < r2

λ < R2 such that uλ(r1
λ) =

uλ(r2
λ) = a. By the arguments similar to that in the proof of Lemma 5.3, we

have

λ1/2(r1
λ −R1) → t0 = 2−1/2A, λ1/2(R2 − r2

λ) → t0 = 2−1/2A as λ →∞,

where t0 and A are defined in the proof of Lemma 5.3. Thus, for λ sufficiently
large,

r1
λ = R1 + (2λ)−1/2A + o(λ−1/2), r2

λ = R2 − (2λ)−1/2A + o(λ−1/2).

Then, for N ≥ 3,

η1
λ = g(r1

λ) = (2λ)−1/2R1−N
1 A + o(λ−1/2),

η2
λ = g(r2

λ) = (N − 2)−1(R2−N
1 −R2−N

2 )− (2λ)−1/2AR1−N
2 + o(λ−1/2).

For N = 2, we have

η1
λ = g(r1

λ) = log(1 + (2λ)−1/2AR−1
1 + o(λ−1/2)) = (2λ)−1/2AR−1

1 + o(λ−1/2),

η2
λ = g(r2

λ) = log(R2R
−1
1 )− (2λ)−1/2AR−1

2 + o(λ−1/2).

(Note that we use Taylor expansions in the calculations.) Thus

η1
λ + η2

λ ≥ [2(N − 2)]−1(R2−N
1 −R2−N

2 ) for N ≥ 3 and λ large,

η1
λ + η2

λ ≥ 2−1(logR2 − logR1) for N = 2 and λ large.

Now we consider the problem

(5.28) −v′′ = λR
2(N−1)
1 f(v), η1

λ < ρ < η2
λ, v(η1

λ) = v(η2
λ) = a.

The arguments similar to that in the proof of Lemma 5.3 imply that, for λ > λ0

with

λ
1/2
0 =


4(N − 2)[(2R

2(N−1)
1 )−1/2B + 2−1/2R1−N

1 A + 2]
R2−N

1 −R2−N
2

for N ≥ 2,

4[(2R2
1)
−1/2B + 2−1/2R−1

1 A + 2]
logR2 − log R1

for N = 2,

(5.28) has a unique solution v−λ such that

v−λ ≡ b in [d(λ), (η1
λ + η2

λ)− d(λ)],

where d(λ) := (2λ)−1/2R1−N
1 B + η1

λ < (η1
λ + η2

λ)/2 and B is defined in the proof
of Lemma 5.3.

On the other hand, v−λ is a subsolution of the problem

(5.29) −v′′ = λ(g−1(ρ))2(N−1)f(v), η1
λ < ρ < η2

λ, v(η1
λ) = v(η2

λ) = a.

Since b is a supersolution of (5.29), we can obtain a positive solution vλ of (5.29)
in [v−λ , b] by the arguments similar to that in the proof of Theorem 2.3. It is



68 Z. Guo

clear that vλ is a large positive solution of (5.29) and hence vλ ≡ vλ in (η1
λ, η2

λ).
This implies that

(5.30) a < v−λ (ρ) ≤ vλ(ρ), η1
λ < ρ < η2

λ.

We know that for λ > λ0 and sufficiently large,

v−λ (ρ) = b for ρ ∈ [d(λ), (η1
λ + η2

λ)− d(λ)].

Then vλ has flat core and thus uλ has flat core.
Let us consider the auxiliary problem

(5.31) −w′′ = λ(g−1(θ))2(N−1)f(w), η1
λ < ρ < θ, w(η1

λ) = a, w(θ) = b,

where θ is again an arbitrary fixed number so that η1
λ < θ < (η1

λ + η2
λ)/2. By

the arguments similar to that in the proof of Lemma 5.3, we know that (5.31)
exhibits a unique positive solution w = wλ(ρ, θ) for λ large enough. Moreover,
if ρ(λ) := (2λ)−1/2(g−1(θ))1−NB + η1

λ, then wλ = b for ρ(λ) ≤ ρ ≤ θ, while
a < wλ < b in η1

λ < ρ < ρ(λ). On the other hand, since vλ solves (5.29)
in η1

λ < ρ < η2
λ then it defines a subsolution to (5.31) in η1

λ < ρ < θ. Since b is
a supersolution of (5.31), we can use the arguments similar to that in the proof
of Theorem 2.3 to obtain that there exists a solution wλ of (5.31) between vλ

and b. The uniqueness of wλ implies that wλ ≡ wλ in [η1
λ, θ]. Thus,

(5.32) a < vλ(ρ) ≤ wλ(ρ, θ) ≤ b for η1
λ < ρ < θ.

(5.32) implies that
uλ(r) ≤ wλ(g(r), θ) < b

provided that r ∈ A(R1, R2) and R1 < r < g−1(ρ(λ)). This means that

(5.33) dist(Gλ,A,Γ1) ≥ g−1(ρ(λ))−R1,

where Γ1 = {x ∈ ∂A | |x| = R1}. Observing that

g−1(ρ(λ))−R1 = [(2−N)ρ(λ) + R2−N
1 ]1/(2−N) −R1

= RN−1
1 ρ(λ) + o(ρ(λ))

= RN−1
1 [(2λ)−1/2(g−1(θ))1−NB

+ (2λ)−1/2R1−N
1 A + o(λ−1/2)] + o(ρ(λ))

= (2λ)−1/2

(
R1

g−1(θ)

)N−1

B + (2λ)−1/2A + o(λ−1/2),

for λ sufficiently large, we conclude from (5.33) that

lim
λ→∞

inf λ1/2dist(Gλ,A,Γ1) ≥ 2−1/2

(
R1

g−1(θ)

)N−1

B + 2−1/2A.
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Such estimate rapidly leads, by letting θ → 0+, to the desired result. Namely,

lim
λ→∞

inf λ1/2dist(Gλ,A,Γ1) ≥
C(F )1/2

2
.

We can use the same idea to claim that

lim
λ→∞

inf λ1/2dist(Gλ,A,Γ2) ≥
C(F )1/2

2
,

where Γ2 = {x ∈ ∂A | |x| = R2}. In fact, considering the auxiliary problem

−w′′ = λ(g−1(T ))2(N−1)f(w), θ < ρ < η2
λ, w(θ) = b, w(η2

λ) = a,

where θ is an arbitrary fixed number so that (η1
λ + η2

λ)/2 < θ < η2
λ, we have that

this problem has a unique positive solution w = wλ(ρ, θ) for λ large enough.
Moreover, if ρ(λ) := η2

λ− (2λ)−1/2(g−1(T ))1−NB, then wλ = b for θ ≤ ρ ≤ ρ(λ),
while a < wλ(ρ) < b for ρ(λ) < ρ < η2

λ. The same arguments as the above imply
that

dist(Gλ,A,Γ2) ≥ R2 − g−1(ρ(λ)).

Our claim can be obtained by simple calculations. (Note that we need to use the
formulae of η2

λ for N ≥ 3 and N = 2 given above respectively in the calculations.
Moreover, we know that η2

λ → T as λ →∞ and g−1(T ) → R2.) �

Proof of Theorem 5.1. For any x0 ∈ ∂Ω and a ball B being chosen to
be tangent to ∂Ω at x0 and B ⊂ Ω, we consider the problem

(5.34) −∆z = λf(z) in B, z = 0 on ∂B.

The arguments similar to that in the proof of Corollary 4.3 imply that (5.34) has
a unique large positive (radial) solution zλ for λ sufficiently large. Lemma 5.3
implies that for λ sufficiently large, flat core Gλ,B of zλ exists. On the other
hand, we know that zλ is a subsolution of (1.1) by extending it to be 0 on Ω \B,
b is a supersolution of (1.1). By the arguments similar to that in the proof of
Theorem 2.3, we obtain a positive solution uλ ∈ [zλ, b] of (1.1). It is clear that uλ

is the unique large positive solution of (1.1). Therefore, uλ ≥ zλ in Ω and

dist(x0, Gλ) ≤ dist(x0, Gλ,B).

Since dist(x0, Gλ,B) = dist(Gλ,B , ∂B), thus Lemma 5.3 implies

(5.35) lim
λ→∞

supλ1/2dist(x0, Gλ) ≤ C(F )1/2

2
.

This implies

(5.36) lim
λ→∞

supλ1/2 max
x∈∂Ω

dist(x, Gλ) ≤ C(F )1/2

2
.
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To get the estimate of limλ→∞ inf λ1/2 minx∈∂Ω dist(x, Gλ), we construct an
annulus Ae = {x ∈ RN | â < |x− ye| < Re} with ye ∈ RN such that Ω ⊂ Ae and
Ae tangent to ∂Ω at x0. Now we consider the problem

(5.37) −∆z = λf(z) in Ae, z = 0 on ∂Ae.

Corollary 4.3 implies that (5.37) has a unique large positive (radial) solution zλ

for λ sufficiently large. Lemma 5.4 implies that for λ sufficiently large, flat
core Gλ,Ae of zλ exists. By extending uλ to be 0 in Ae \ Ω, we easily know
that uλ is a subsolution of (5.37). Moreover, b is a supersolution of (5.37). Thus
the arguments similar to that in the proof of Theorem 2.3 imply that there exists
a positive solution of (5.37) in [uλ, b]. It is clear that this solution is the unique
positive large solution zλ of (5.37). Thus uλ ≤ zλ in Ω for λ sufficiently large.
Thus,

dist(x0, Gλ,Ae) ≤ dist(x0, Gλ).

Moreover, Lemma 5.4 implies

(5.38) lim
λ→∞

inf λ1/2dist(x0, Gλ) ≥ C(F )1/2

2
.

This also implies that

(5.39) lim
λ→∞

inf λ1/2 min
x∈∂Ω

dist(x, Gλ) ≥ C(F )1/2

2
.

Now our conclusions of Theorem 5.1 can be easily obtained from (5.36) and (5.39).
�
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[9] J. M. Fraile, J. L. Gómez, P. K. Medina and S. Merino, Elliptic eigenvalue

problems and unbounded continua of positive solutions of a semilinear elliptic problem,
J. Differential Equations 127 (1996), 295–319.

[10] M. Flucher and J. Wei, Asymptotic shape and location of small cores in elliptic
free-boundary problems, Math. Z. 228 (1998), 683–703.

[11] B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the
maximum principle, Comm. Math. Phys. 68 (1979), 209–243.

[12] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic
equations, Comm. Partial Differential Equations 6 (1981), 883–901.

[13] Z. M. Guo, Existence of positive radial solutions for a class of quasilinear elliptic

systems in annular domains, Chinese Ann. Math. 17A 5 (1996), 573–582.

[14] Z. M. Guo and J. R. L. Webb, Uniqueness of positive solutions for quasilinear elliptic

equations when a parameter is large, Proc. Royal Soc. Edinburgh 124A (1994), 189–198.

[15] Z. M. Guo and Z. D. Yang, Some uniqueness results for a class of quasilinear elliptic

eigenvalue problems, Acta Math. Sinica (new series) 14 (1998), 245–260.

[16] J. Jang, On spike solutions of singularly perturbed semilinear Dirichlet problems, J. Dif-

ferential Equations 114 (1994), 370–395.

[17] S. Kamin and L. Veron, Flat core properties associated to the p-Laplacian operator,

Proc. Amer. Math. Soc. 118 (1993), 1079–1085.

[18] J. G. Melián and J. S. Lis, Stationary profiles of degenerate problems when a param-

eter is large, Differential Integral Equations. 13 (2000), 1201–1232.

[19] W. M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly

perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math. 48 (1995), 731–768.

[20] W. M. Ni, I. Takagi and J. Wei, On the location and profile of spike-layer solutions

to a singularly perturbed semilinear Dirichlet problems: Intermediate solutions, Duke

Math. J. 94 (1998), 597–618.

[21] G. Sweers, Some results for a semilinear elliptic problem with a large parameter, Pro-

ceedings ICIAM 87 (1987), Paris, 109–116; CWI Tract 36 (1987), Math. Centrum,
Centrum Wisk. Inform., Amsterdam.

[22] J. L. Vazquez, A strong maximum principle for some quasilinear elliptic equations,
Appl. Math. Optim. 12 (1984), 191–202.

Manuscript received February 20, 2001

Zongming Guo

Department of Mathematics

Henan Normal University
Xinxiang, 453002, P.R. CHINA

E-mail address: guozm@public.xxptt.ha.cn

TMNA : Volume 18 – 2001 – No 1


