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ON THE CONCEPT OF ORIENTABILITY
FOR FREDHOLM MAPS

BETWEEN REAL BANACH MANIFOLDS

Pierluigi Benevieri — Massimo Furi

Abstract. In [1] we introduced a concept of orientation and topologi-

cal degree for nonlinear Fredholm maps between real Banach manifolds.

In this paper we study properties of this notion of orientation and we
compare it with related results due to Elworthy–Tromba and Fitzpatrick–

Pejsachowicz–Rabier.

1. Introduction

In [1] we introduced a new degree theory for a class of nonlinear Fredholm
maps of index zero between open subsets of (real) Banach spaces (or, more
generally, Banach manifolds) called oriented maps. This degree extends the
theory given by Elworthy–Tromba in [3] and [4], it is developed starting from
the Brouwer degree for maps between finite dimensional manifolds, and it is
primarily based on a purely algebraic concept of orientation for Fredholm linear
operators of index zero between (real) vector spaces. According to this algebraic
concept, any Fredholm operator of index zero has exactly two orientations, no
matter whether or not it is an isomorphism. This differs from the definition of
Fitzpatrick–Pejsachowicz–Rabier (see [9]), where only the invertible operators
have two orientations, and differs from the notion due to Mawhin in [14], where
only the noninvertible Fredholm operators of index zero have two orientations.
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What was crucial for the construction of our degree is that the concept of
orientation of a Fredholm linear operator of index zero is “stable” when embed-
ded in the framework of (real) Banach spaces. In fact, loosely speaking, any
bounded oriented operator acting between Banach spaces induces, by a sort of
continuity, an orientation on any sufficiently close operator (as well as on any
compact linear perturbation of such an operator). Thus, if f : Ω → F is a non-
linear Fredholm operator of index zero from an open subset of a Banach space E
into a Banach space F , this kind of stability allowed us to define an orientation
of f as a “continuous” assignment of an orientation of the Fréchet derivative of
f at any x ∈ Ω. After this preliminary definition, the notion of oriented map
was extended to the nonflat context (i.e. to the case of Fredholm maps of index
zero acting between real Banach manifolds).

In [1] some interesting properties of oriented (and orientable) maps were
stated without proof, since they were not essential in the construction of our
degree. The purpose of this paper is to give a more detailed analysis of the
concept of orientation, including the proofs of some statements appeared in [1].
To this aim the concept of oriented map will be reformulated in terms of covering
space theory.

Among other results we prove a homotopy property of the orientability (The-
orem 4.3) which, roughly speaking, asserts that the orientation of a nonlinear
map can be continuously carried along a homotopy of Fredholm maps of index
zero. Thus, in particular, when two nonlinear Fredholm maps of index zero are
homotopic (in a sense to be made more precise), either they are both orientable
or both nonorientable.

As we shall see, a simple example of nonorientable map consists of a constant
map from a nonorientable finite dimensional (real) manifold into a manifold with
the same dimension. Since (C1) maps between orientable finite dimensional
manifolds (of the same dimension) are orientable, in the flat, finite dimensional
case, a nonorientable map cannot exist (the open sets of Rm being orientable).
In the infinite dimensional (flat) context the situation is different, as we shall
see in Section 4, where we will provide an example of a nonorientable Fredholm
map of index zero acting between open sets of Banach spaces.

The last part of the paper is dedicated to a comparison with related no-
tions of orientations due to Elworthy–Tromba (see [3] and [4]) and Fitzpatrick–
Pejsachowicz–Rabier (see [8] and [9]).

2. Orientation for linear Fredholm operators in vector spaces

This section is devoted to a brief review of the concept of orientation for linear
Fredholm operators of index zero between real vector spaces recently introduced
in [1].
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Let E be a vector space and T : E → E a linear map of the type T = I −K,
where I denotes the identity of E and K has finite dimensional range. Take
any finite dimensional subspace E0 of E containing RangeK and observe that T
maps E0 into itself. This implies that the determinant, detT |E0 , of the restriction
T |E0 : E0 → E0 is well defined. It is not difficult to show that this determinant
does not depend on the choice of the finite dimensional space E0 containing
RangeK. Thus, it makes sense to denote by detT this common value, and this
will be done hereafter.

We recall that a linear operator between vector spaces, L : E → F , is called
(algebraic) Fredholm if both KerL and coKerL have finite dimension. In this
case its index is the integer

indL = dim KerL− dim coKerL.

In particular, when L : Rm → Rn, one easily gets ind L = m− n.
If L : E → F is Fredholm and A : E → F is any linear operator with finite

dimensional range, we say that A is a corrector of L provided that L + A is an
isomorphism. Observe that this may happen only if indL = 0, since, as well
known, L+ A is Fredholm of the same index as L. Assume therefore indL = 0
and notice that, in this case, the set of correctors of L, indicated by C(L), is
nonempty. In fact, any (possibly trivial) linear operator A : E → F such that
KerA⊕KerL = E and RangeA⊕ RangeL = F is a corrector of L.

We introduce in C(L) the following equivalence relation. Given A,B ∈ C(L),
consider the automorphism T = (L+B)−1(L+A) of E. We have

T = (L+B)−1(L+B +A−B) = I − (L+B)−1(B −A).

Thus T = I −K, where K = (L + B)−1(B − A) has finite dimensional range.
This implies that detT is well defined and, in this case, non-vanishing since T is
invertible. We say that A is equivalent to B or, more precisely, A is L-equivalent
to B, if det (L+B)−1(L+A) > 0. This is actually an equivalence relation on
C(L), with just two equivalence classes (see [1]). We can therefore introduce the
following definition.

Definition 2.1. An orientation of a Fredholm operator of index zero L is
one of the two equivalence classes of C(L). We say that L is oriented when an
orientation is chosen.

We point out that in the particular case when L : E → F is a bounded
Fredholm operator of index zero between real Banach spaces, a partition in two
equivalence classes of the set of compact correctors of L was introduced for the
first time (as far as we know) by Pejsachowicz and Vignoli in [16]. Namely, if
A and B are compact (linear) correctors of L, the map (L+ B)−1(L+ A) is of
the form I −K, with K a compact operator. Thus the Leray–Schauder degree
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of I −K is well defined (since (I −K)−1(0) is compact) and equals either 1 or
−1 (by a well known result of Leray–Schauder). Now, the operator A is said to
be in the same class of B if the degree of I −K is 1. Clearly, as a consequence
of the definition of Leray–Schauder degree, this equivalence relation coincides
with our notion in the case when one considers only bounded correctors with
finite dimensional image. Apart for the sake of simplicity, the reason why in our
concept of orientation we do not use the equivalence relation in [16] is due to the
fact that we want our degree to be based just upon the Brouwer theory.

A prelude to the idea of partitioning the set of correctors of an algebraic
Fredholm operator of index zero L : E → F can be found in the pioneering
paper of Mawhin [14]. Here is a brief description of this idea. Fix a projector
P : E → E onto KerL and a subspace F1 of F such that F1 ⊕ RangeL = F .
To any isomorphism J : KerL → F1 one can associate the corrector JP of L
(this of course does not exhaust C(L)). Two such correctors, J1P and J2P , are
equivalent if det J−1

2 J1 > 0. One can check that, except in the case when L is
an isomorphism (which is crucial to us), this equivalence relation produces two
equivalence classes, each of them contained in one class of C(L) (and not both
in the same one).

According to Definition 2.1, an oriented operator L is a pair (L, ω), where ω is
one of the two equivalence classes of C(L). However, to simplify the notation, we
shall not use different symbols to distinguish between oriented and nonoriented
operators (unless it is necessary).

Given an oriented operator L : E → F , we shall often denote its orientation
by C+(L), and the elements of this equivalence class will be called the posi-
tive correctors of L (the elements in the opposite class, C−(L), are the negative
correctors).

A “natural” corrector of an isomorphism L is the trivial operator 0. This
corrector defines an equivalence class of C(L), called the natural orientation
of L. However, if an isomorphism L has already an orientation (not necessarily
the natural one), we define its sign as follows: signL = 1 if the trivial operator 0
is a positive corrector of L (i.e. if L is naturally oriented) and signL = −1
otherwise. As we shall see, in the case when L is an automorphism of a finite
dimensional space, this definition coincides with the sign of the determinant.

In the particular case when the spaces E and F are finite dimensional (of
the same dimension), an orientation of a linear operator L : E → F determines
uniquely an orientation of the product space E × F (and vice versa). To see
this, suppose first that L is an oriented operator. To determine an orientation
of E×F , take any of the two orientations of E and consider a positive corrector
A of L. Then orient F in such a way that L+A becomes orientation preserving.
Thus E × F turns out to be oriented by considering the product of the two
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orientations of E and F (notice that such an orientation of E × F does not
depend on the chosen orientation of E and the positive corrector of L, but only
on the orientation of L). Conversely, if E × F is oriented, every linear operator
L : E → F can be oriented by choosing as positive correctors of L those operators
A such that L+A is orientation preserving (this makes sense, since an orientation
of E×F can be regarded as a pair of orientations of E and F , up to an inversion
of both of them).

Clearly, if E is a finite dimensional vector space, the product E × E turns
out to be canonically oriented by considering the square of any orientation of E.
Consequently, any endomorphism of E inherits an orientation that will be called
canonical. One can check that when an endomorphis L of E is invertible, the
natural and the canonical orientations of L coincide if and only if detL > 0.
Thus, choosing for L the canonical orientation, one has signL = sign (detL).

If the spaces E and F are infinite dimensional, and L : E → F is Fredholm of
index zero, the above one-to-one correspondence between the orientations of L
and of E×F cannot be stated (E×F being infinite dimensional). However, let us
show that an orientation of L can be regarded as an orientation of the restriction
of L to any pair of subspaces E1 and F1 of E and F , respectively, with F1

transverse to L and E1 = L−1(F1). In particular, when these two subspaces
are finite dimensional, according to the previous argument, an orientation of L
can be viewed as an orientation of E1 × F1. This is a crucial property of the
orientation, very useful in the construction of our degree (see [1]). Consider
therefore any subspace F1 of F , which is transverse to L (i.e. RangeL+F1 = F ),
and observe that the restriction L1 of L to the pair of spaces E1 = L−1(F1) (as
domain) and F1 (as codomain) is still Fredholm of index zero (thus when F1 is
finite dimensional, E1 has the same dimension as F1). Split E and F as follows:
E = E0 ⊕ E1, F = L(E0)⊕ F1, where E0 is any direct complement of E1 in E.
In this splitting, L can be represented by means of a matrix

L =
(
L0 0
0 L1

)
,

where L0 : E0 → L(E0) is an isomorphism. Thus, a linear operator A : E → F ,
represented by

A =
(

0 0
0 A1

)
,

is a corrector of L if and only if A1 is a corrector of L1. It is easy to check
that two correctors of L1 are equivalent if and only if so are the corresponding
correctors of L. This establishes a one-to-one correspondence between the two
orientations of L1 and the two orientations of L.

According to the above argument, it is convenient to introduce the following
definition.
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Definition 2.2. Let L : E → F be a Fredholm operator of index zero
between real vector spaces, let F1 be a subspace of F which is transverse to L,
and denote by L1 the restriction of L to the pair of spaces L−1(F1) and F1. Two
orientations, one of L and one of L1, are said to be correlated (or one induced by
the other) if there exists a projector P : E → E onto E1 and a positive corrector
A1 of L1 such that the operator A = JA1P is a positive corrector of L, where
J : F1 ↪→ F is the inclusion.

We close this section by pointing out that the concept of orientation for
a Fredholm operator of index zero can be extended to any Fredholm operator.
In fact, if L : E → F is Fredholm of index n > 0, define L̃ : E → F × Rn

by L̃x = (Lx, 0), which is Fredholm of index 0. An orientation of L is just
an orientation of the associated operator L̃. The case of negative index can be
treated in a similar way.

3. Stability of the orientation in Banach spaces

As we have seen, the notion of orientation of an algebraic Fredholm operator
of index zero L : E → F does not require any topological structure on E and F ,
which are supposed to be just vector spaces. We will show how, in the context of
Banach spaces, an orientation of a continuous Fredholm operator of index zero
induces, by a sort of stability, an orientation to any sufficiently close bounded
operator. This allows us to define a concept of orientation for continuous maps
from a topological space into the set of bounded Fredholm operators of index
zero between Banach spaces.

Unless otherwise stated, hereafter E and F will denote two real Banach
spaces. We shall indicate, respectively, by L(E,F ) and Iso(E,F ) the Banach
space of bounded linear operators from E into F and the open subset of L(E,F )
of the isomorphisms. The special cases L(E,E) and Iso(E,E) will be denoted,
respectively, L(E) and GL(E) (the general linear group of E). Furthermore,
F(E,F ) (or F(E) when E = F ) will stand for the subspace of L(E,F ) of the
operators with finite dimensional range.

From now on, any linear operator between Banach spaces that we shall con-
sider (such as Fredholm operators or correctors) will be assumed to be bounded
(even if not explicitly mentioned). For the sake of simplicity, the set of contin-
uous correctors of a Fredholm operator of index zero L : E → F will be still
denoted by C(L), as in the algebraic case, instead of C(L) ∩ L(E,F ). It is clear
that an orientation of L can be regarded as an equivalence class of continuous
correctors of L.

We recall that the set Φ(E,F ) of Fredholm operators from E into F is
open in L(E,F ), and the integer valued map ind : Φ(E,F ) → Z is continuous.
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Consequently, given n ∈ Z, the set Φn(E,F ) of the Fredholm operators of index
n (written Φn(E) when E = F ) is an open subset of L(E,F ).

The following result, which is crucial for us, represents a sort of stability
(in the context of Banach spaces) of the equivalence relation introduced in the
previous section.

Lemma 3.1. Let A,B ∈ F(E,F ) be two L-equivalent correctors of an oper-
ator L ∈ Φ0(E,F ). Then there exist two neighbourhoods UA and UB of A and
B in F(E,F ) and a neighbourhood VL of L in Φ0(E,F ) such that A′ and B′ are
L′-equivalent for any A′ ∈ UA, B′ ∈ UB, L′ ∈ VL.

Proof. Recall that the operator K = I − (L + B)−1(L + A) has finite
dimensional range, and the assertion that A and B are L-equivalent means
det (I −K) > 0. Therefore, it is enough to show that det (I −K ′) > 0 for
K ′ ∈ F(E) sufficiently close to K. To prove this take a ball D ⊂ F(E) with
center K such that I − K ′ is still an automorphism for all K ′ ∈ D. Choose
any K ′ ∈ D and consider a finite dimensional subspace E0 of E containing both
RangeK and RangeK ′. This implies that E0 contains the range of any oper-
ator St = (1 − t)K + tK ′ in the line segment joining K and K ′. Thus, by the
choice of D, det (I − St)|E0 must be positive for all t ∈ [0, 1], and this implies
det (I −K ′) > 0. �

We recall now the concept of orientation for a subset of Φ0(E,F ) or, more
generally, for a continuous map into Φ0(E,F ), introduced in [1].

Definition 3.2. Let Λ be a topological space and h : Λ → Φ0(E,F ) a
continuous map. An orientation α of h is a continuous choice of an orientation
α(λ) of h(λ) for each λ ∈ Λ; where “continuous” means that for any λ ∈ Λ
there exists Aλ ∈ α(λ) which is a positive corrector of h(λ′) for any λ′ in a
neighbourhood of λ. A map is orientable if it admits an orientation and oriented
when an orientation has been chosen. In particular, a subset A of Φ0(E,F ) is
said to be orientable (or oriented) if so is the inclusion i : A ↪→ Φ0(E,F ).

Clearly, any restriction of an orientable map is orientable. More generally,
if g1 : Λ → Λ1 is a continuous map between topological spaces and g2 : Λ1 →
Φ0(E,F ) is orientable, then the composition h = g2 ◦ g1 is orientable. Thus, in
particular, a map h : Λ → Φ0(E,F ) is orientable whenever its image is contained
in an orientable subset of Φ0(E,F ).

Moreover, since Iso(E,F ) is open in L(E,F ), any given corrector of L ∈
Φ0(E,F ) is still a corrector of every L′ in a suitable neighbourhood of L. Con-
sequently, Φ0(E,F ) is locally orientable, and so is any continuous map h : Λ →
Φ0(E,F ), in the sense that any λ ∈ Λ admits a neighbourhood U with the
property that the restriction h|U is orientable.
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Notice also that Iso(E,F ) is (globally) orientable, and can be oriented with
the natural orientation (i.e. by choosing the trivial operator 0 ∈ F(E,F ) as
a positive corrector of any L ∈ Iso(E,F )).

Remark 3.3. It is convenient to observe that an orientation of a continuous
map h : Λ → Φ0(E,F ) can be given by assigning a family {(Ui, Ai) : i ∈ I},
called an oriented atlas of h, satisfying the following properties:

• {Ui : i ∈ I} is an open covering of Λ,
• given i ∈ I, Ai is a corrector of any h(λ), for all λ ∈ Ui,
• if λ ∈ Ui ∩ Uj , then Ai is h(λ)-equivalent to Aj .

As a straightforward consequence of Lemma 3.1 we get the following result
which asserts that the above definition of orientation can be reformulated in an
equivalent way, which turns out to be useful in the proof of some statements.

Proposition 3.4. Let h : Λ → Φ0(E,F ) be a continuous map. A choice of
an orientation α(λ) of h(λ) for each λ ∈ Λ is an orientation for h if and only if
the following condition holds:

• given any λ ∈ Λ and any positive corrector A of h(λ), there exists
a neighbourhood U of λ such that A ∈ α(λ′), for all λ′ ∈ U .

The following two results are useful consequences of the above proposition.

Proposition 3.5. Let A be an oriented subset of Φ0(E,F ). Then the map
L 7→ signL, which is defined on the open subset A∩Iso(E,F ) of A, is continuous.

Proof. If A ∩ Iso(E,F ) is empty, there is nothing to prove. Otherwise, let
L ∈ A∩Iso(E,F ) and assume, without loss of generality, that the trivial operator
0 is a positive corrector of L (which means signL = 1). Proposition 3.4 ensures
that 0 remains a positive corrector for the operators of A in a neighbourhood
of L, and in such a neighbourhood the sign map is constantly 1. �

Proposition 3.6. An orientable map h : Λ → Φ0(E,F ) admits at least
two orientations. If, in particular, Λ is connected, then h admits exactly two
orientations.

Proof. Assume h : Λ → Φ0(E,F ) is orientable and let α be one of its
orientations. Taking at any λ ∈ Λ the orientation opposite to α(λ), one gets an
orientation α− 6= α. Now, observe that, as a consequence of Proposition 3.4,
the subset of Λ in which two orientations coincide is open, and for the same
reason is open also the set in which two orientations are opposite one to the
other. Therefore, if Λ is connected, two orientations of h are either equal or one
is opposite to the other. �

The following result will be useful in the sequel.



Orientability for Fredholm Maps 287

Lemma 3.7. Let L ∈ Φ0(E,F ) be a singular operator. Then any oriented
neighbourhood of L contains isomorphisms of opposite signs.

Proof. Since any operator belonging to Φ0(E,F ) \ Iso(E,F ) admits arbi-
trarily close operators with one-dimensional kernel, we may assume dim KerL =
dim coKerL = 1. Now, split E and F as follows: E = E1 ⊕ KerL, F =
RangeL ⊕ F2, where E1 and F2 are closed complements of KerL and RangeL
respectively. In this decomposition L is represented by means of a matrix

L =
(
L11 0
0 0

)
,

where L11 : E1 → RangeL is an isomorphism. Let A22 : KerL → F2 be an
isomorphism and consider the following corrector of L:

A =
(

0 0
0 A22

)
.

Without loss of generality we may orient L (and, consequently, a neighbourhood
of L) by choosing A as a positive corrector. To prove the assertion it is enough to
check that sign (L+ tA) = sign t for t 6= 0 sufficiently small (observe that L+ tA

is an isomorphism for all t 6= 0). A direct computation shows that the trivial
operator and A are (L+ tA)-equivalent if and only if 1 + 1/t > 0. Thus, as far
as A is a positive corrector of L+ tA, and t 6= 0, sign (L+ tA) = sign (1 + 1/t).
Now, Proposition 3.4 ensures that A is a positive corrector of L + tA for all t
sufficiently small; and the assertion is proved. �

Obviously, if L belongs to the set Φ(E) of the Fredholm operators from E

into itself and k is a positive integer, the operator Lk ∈ L(E × Rk) represented
by the matrix

Lk =
(
L 0
0 0

)
is again Fredholm of the same index as L. Thus, we have a map Jk : Φ0(E) →
Φ0(E × Rk), called the natural embedding of Φ0(E) into Φ0(E × Rk), which
assigns to every L the operator Lk defined above. We observe that the natural
image Jk(Φ0(E)) of Φ0(E) is contained in the subset

Z = Φ0(E × Rk)\GL(E × Rk)

of the singular operators of Φ0(E × Rk).

Proposition 3.8. A subset A of Φ0(E) is orientable if and only if so is
its natural image Jk(A) ⊂ Φ0(E × Rk). More generally, the orientations of a
continuous map h : Λ → Φ0(E) are in a one-to-one correspondence with the
orientations of the composite map Jk ◦ h.
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Proof. Observe first that if A is a corrector of L ∈ A, then the associated
operator

A =
(
A 0
0 Ik

)
,

where Ik stands for the identity of Rk, is a corrector of Jk(L). One can easily
check that A,B ∈ C(L) are L-equivalent if and only if the associated operators
A and B are Jk(L)-equivalent. This shows that the orientations of A are in
a one-to-one correspondence with the orientations of its natural image Jk(A).
The case of a map h : λ→ Φ0(E) can be treated in the same way. �

The notion of continuity in the definition of oriented map can be regarded
as a true continuity by introducing the following topological space (which is
actually a real Banach manifold). Let Φ̂0(E,F ) denote the set of pairs (L, ω)
with L ∈ Φ0(E,F ) and ω one of the two equivalence classes of C(L). Given an
open subset W of Φ0(E,F ) and an element A ∈ F(E,F ), consider the set

O(W,A) = {(L, ω) ∈ Φ̂0(E,F ) : L ∈W, A ∈ ω}.

The collection of sets obtained in this way is clearly a basis for a topology on
Φ̂0(E,F ), and the natural projection p : (L, ω) 7→ L is a double covering of
Φ0(E,F ). Observe also that the family of the restrictions of p to the open
subsets of Φ̂0(E,F ) in which p is injective is an atlas for a Banach manifold
structure modeled on L(E,F ).

It is easy to check that the following is an alternative definition of orienta-
tion, and has the advantage that many properties of the orientable maps can be
directly deduced from well known results in covering space theory.

Definition 3.9. Let h : Λ → Φ0(E,F ) be a continuous map defined on
a topological space Λ. An orientation of h is a lifting ĥ of h (i.e. a continuous
map ĥ : Λ → Φ̂0(E,F ) such that p ◦ ĥ = h). The map h is called orientable
when it admits a lifting, and oriented when one of its liftings has been chosen.
In particular, a subset A of Φ0(E,F ) is orientable (oriented) when so is the
associated inclusion.

According to this definition, an orientation of h is a continuous map ĥ : Λ →
Φ̂0(E,F ) of the form ĥ : λ 7→ (h(λ), α(λ)). Thus ĥ is completely determined by
its second component α. For this reason, when it is convenient, we shall merely
call α an orientation of h, which is in the spirit of Definition 3.2.

The following proposition is a characterization of the orientability for a con-
nected subset of Φ0(E,F ).

Proposition 3.10. Let A be a connected subset of Φ0(E,F ). Then A is
orientable if and only if Â = p−1(A) is composed of two connected components.
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Moreover, when A is orientable, the restriction of p to each one of these compo-
nents is a homeomorphism onto A.

Proof. First assume that A is orientable and denote by α and α− the two
orientations of A. It follows that (A, α) and (A, α−) are nonempty open subsets
of Â (here, given an orientation β of A, (A, β) denotes the set {(L, β(L)) :L ∈
A}). Observe that these two sets are connected (being homeomorphic to A),
with empty intersection and such that (A, α)∪ (A, α′) = Â. Thus Â has exactly
two connected components.

Conversely, suppose that Â has two connected components, say Â1 and Â2.
Since the projection p : Â → A is a covering map, it is also an open map.
Moreover, because Â has a finite number of components (just two, in this case),
p is a closed map. Thus the two connected sets p(Â1) and p(Â2) are open and
closed in A and, consequently, A = p(Â1) = p(Â2). Since p|

bA1
: Â1 → A and

p|
bA2

: Â2 → A are both onto, they are also injective, and then, homeomorphisms.
Therefore, as an orientation of A one can define the map α which assigns to every
L ∈ A the orientation α(L) of L in such a way that (L,α(L)) ∈ Â1. Equivalently,
according to Definition 3.9, (p|

bA1
)−1 is an orientation of A. �

Let us now recall some basic results in covering space theory that will be
useful in the sequel (see, for example, [10]). Theorem 3.11 below implies, in
particular, that any continuous map h : Λ → Φ0(E,F ) is orientable, provided
that Λ is simply connected and locally path connected.

Theorem 3.11. Let π : Z → X be a covering space and let h : Λ → X

be a continuous map defined on a connected space Λ. Then, given two liftings
of h, either they coincide or they have disjoint images. Moreover, if Λ is simply
connected and locally path connected, then, given λ0 ∈ Λ and z0 ∈ π−1(h(λ0)),
h admits a lifting ĥ such that ĥ(λ0) = z0.

Theorem 3.12. Let π : Z → X be a covering space and consider a continu-
ous map h : Λ → X which admits a lifting ĥ. Given a homotopy H : Λ× [0, 1] →
X with H( · , 0) = h, there exists a unique lifting Ĥ of H such that Ĥ( · , 0) = ĥ.

From Theorem 3.11 we deduce the following characterization of the ori-
entability. Observe first that, according to this theorem, given a covering space
π : Z → X, given a path σ : [0, 1] → X and given a point z0 ∈ π−1(σ(0)), there
exists a unique lifting σ̂ such that σ̂(0) = z0. Moreover, if σ̂′ is a different lifting
of σ, then σ̂([0, 1]) and σ̂′([0, 1]) are disjoint. In particular, when π : Z → X

is a 2-fold covering space, any closed path in X admits two liftings which are
either both closed or both not closed.

Proposition 3.13. Let h : Λ → Φ0(E,F ) be a continuous map defined on
a locally path connected topological space Λ. Then h is orientable if and only
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if, given any closed path γ : [0, 1] → Λ, the two liftings of h ◦ γ are closed. In
particular, an open subset A of Φ0(E,F ) is orientable if and only if the two
liftings of any closed path in A are closed.

Proof. Since any connected component of Λ is also locally path connected,
without loss of generality we may suppose that Λ is connected.

Assume first that h is orientable and let ĥ1 and ĥ2 denote the two orientations
of h. Given a closed path γ : [0, 1] → Λ, the two liftings of h ◦ γ are ĥ1 ◦ γ and
ĥ2 ◦ γ, which are clearly closed.

Conversely, assume that for any closed path γ : [0, 1] → Λ, the two liftings
of h ◦ γ are closed. Choose λ0 ∈ Λ and an orientation ω0 of h(λ0). Let us
show that there exists a unique orientation ĥ of h such that ĥ(λ0) = (h(λ0), ω0).
Given λ ∈ Λ, consider any path σ : [0, 1] → Λ such that σ(0) = λ0 and σ(1) = λ

(recall that a connected, locally path connected space is path connected). Define
ĥ(λ) := ĥ ◦ σ(1), where ĥ ◦ σ is the unique lifting of h ◦ σ such that ĥ ◦ σ(0) =
(h(λ0), ω0). As a consequence of the assumption, ĥ(λ) does not depend on the
path joining λ0 with λ. Thus ĥ : Λ → Φ0(E,F ) is well defined. The continuity
of ĥ is an easy consequence of the fact that Λ is locally path connected. �

The following straightforward consequence of Theorem 3.12 states a crucial
property of our notion of orientation. In particular, it implies that, given a ho-
motopy H : Λ× [0, 1] → Φ0(E,F ), the partial maps Hs = H( · , s) are either all
orientable or all nonorientable.

Theorem 3.14. Let H : Λ × [0, 1] → Φ0(E,F ) be a homotopy. Then H is
orientable if and only if so is the partial map H0 = H( · , 0). In particular, if H0

is oriented with orientation Ĥ0, there exists a unique orientation Ĥ of H such
that Ĥ( · , 0) = Ĥ0.

We conclude this section with a result that should clarify our notion of ori-
entation (Theorem 3.15 below). As we have already seen, Φ0(E,F ) is locally
orientable. However, if E and F have the same finite dimension, then Φ0(E,F )
coincides with L(E,F ), and thus, being simply connected, it is actually globally
orientable. If otherwise E and F are infinite dimensional, Φ0(E,F ) has a more
complicated topological structure, and, as we shall see below, it may happen to
be nonorientable.

An interesting result of Kuiper (see [12]) asserts that the linear group GL(E)
of an infinite dimensional separable Hilbert space is contractible. It is also known
that GL(lp), 1 ≤ p < ∞, and GL(c0) are contractible as well. There are,
however, examples of infinite dimensional Banach spaces whose linear group is
disconnected (see [5], [15] and references therein).
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The following result shows, in particular, that when GL(E) is connected, then
Φ0(E) is not orientable. We do not know if Φ0(E) turns out to be nonorientable
with the weaker assumption that E is infinite dimensional.

Theorem 3.15. Assume Iso(E,F ) is nonempty and connected. Then there
exists a nonorientable map γ : S1 → Φ0(E,F ) defined on the unit circle of R2.
In particular Φ0(E,F ) is nonorientable and, consequently, it is connected and
not simply connected.

Proof. Let S1
+ and S1

− denote, respectively, the two arcs of S1 with nonneg-
ative and nonpositive second coordinate. By Lemma 3.7 there exists an oriented
open connected subset U of Φ0(E,F ) containing two points in Iso(E,F ), say
L− and L+, such that signL− = −1 and signL+ = 1. Let γ+ : S1

+ → U be
a path such that γ+(−1, 0) = L− and γ+(1, 0) = L+. Since Iso(E,F ) is an open
connected subset of L(E,F ), it is also path connected. Therefore there exists
a path γ− : S1

− → Iso(E,F ) such that γ−(−1, 0) = L− and γ−(1, 0) = L+.
Define γ : S1 → Φ0(E,F ) by

γ(x, y) =

{
γ+(x, y) if y ≥ 0,

γ−(x, y) if y ≤ 0,

and assume, by contradiction, it is orientable. This implies that also the image
γ(S1) of γ is orientable, with just two possible orientations. Orient, for example,
γ(S1) with the unique orientation compatible with the oriented subset U of
Φ0(E,F ). Thus, being γ(S1

+) ⊂ U , we get signL− = −1 and signL+ = 1. On
the other hand, since the image of γ− is contained in Iso(E,F ), from Proposition
3.5 it follows signL− = signL+, which is a contradiction.

Clearly, since γ is not orientable, any subset of Φ0(E,F ) containing γ([0, 1])
is not orientable as well. Thus, Φ0(E,F ) is not simply connected, since otherwise
it would be orientable.

Finally, Φ0(E,F ) is connected, as contained in the closure of the connected
set Iso(E,F ). �

4. Orientation for Fredholm maps
between Banach manifolds and degree

This section is devoted to a notion of orientation for Fredholm maps of index
zero between Banach manifolds based on the concept of orientation for contin-
uous maps into Φ0(E,F ). This concept was introduced in [1] in order to define
a topological degree for oriented Fredholm maps of index zero between Banach
manifolds. We give here just the general idea of this notion of degree, since our
interest is mainly dedicated to the properties of the orientation.

From now on M and N will denote two differentiable manifolds modeled on
two real Banach spaces E and F respectively. We recall that a map f : M → N
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is Fredholm of index n if it is C1 and its derivative Df(x) : TxM → Tf(x)N is
a linear Fredholm operator of index n for all x ∈M (here, given a point x ∈M ,
TxM denotes the tangent space of M at x).

Consider first the special case when f is a Fredholm map of index zero from
an open subset Ω of E into F . An orientation of f is, by definition, just an
orientation of the continuous map Df : x 7→ Df(x), and f is orientable (resp.
oriented) is so is Df according to Definition 3.9.

Let now f : M → N be a Fredholm map of index zero between two manifolds.
For any x ∈ M one can choose an orientation ωx of the derivative Df(x) ∈
Φ0(TxM,Tf(x)N). However, in order to define an orientation of f , we need
a notion of continuity for the map x 7→ ωx, and this cannot be immediately
stated as in the flat case. For this purpose we make the following construction.

Consider the set

J(M,N) = {(x, y, L) : (x, y) ∈M ×N, L ∈ L(TxM,TyN)},

and denote by π : (x, y, L) 7→ (x, y) the natural projection of J(M,N) onto
M ×N . The set J(M,N) has a natural topology defined as follows. Given two
charts φ : U → E and ψ : V → F of M and N respectively, and given an open
subset W of L(E,F ), consider the (possibly empty) set

(4.1) Q(φ,ψ,W ) = {(x, y, L) ∈ π−1(U × V ) : Dψ(y) ◦ L ◦Dφ−1(φ(x)) ∈W}.

Clearly, the collection of the sets obtained in this way is a basis for a topology
on J(M,N), and π is continuous. Moreover, given two charts (U, φ) and (V, ψ)
as above, the map

Γ(φ,ψ) : π−1(U × V ) → E × F × L(E,F )

defined by (x, y, L) 7→ (φ(x), ψ(y), Dψ(y)◦L◦Dφ−1(φ(x))) is a homeomorphism
onto the open subset φ(U)×ψ(V )×L(E,F ) of the Banach space E×F×L(E,F ).
Actually – but it is not important for our purposes – the family of maps Γ(φ,ψ),
with φ and ψ local charts of M and N , is a vector bundle atlas for the natural
projection π. The reader who is familiar with the notion of space of jets has
probably noticed that J(M,N) is just the bundle of first order jets from M into
N , usually denoted J1(M,N) (see e.g. [11]).

Consider now the subset Φ0J(M,N) of J(M,N) defined as

Φ0J(M,N) = {(x, y, L) ∈ J(M,N) : L ∈ Φ0(TxM,TyN)},

which is clearly open in J(M,N) and, consequently, inherits the structure of
a Banach manifold. As a topological space, Φ0J(M,N) is essential in the defi-
nition of oriented Fredholm map of index zero f : M → N . In fact, analogously
to the flat case, where an orientation of f : Ω → F is just an orientation of the
derivative Df : Ω → Φ0(E,F ), in the general case we associate to f : M → N
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the continuous map jf : M → Φ0J(M,N) given by jf(x) = (x, f(x), Df(x))
and we define a concept of orientation for such a map (or, more generally, for
continuous maps into Φ0J(M,N)). The task will be accomplished by introduc-
ing the following 2-fold covering space of Φ0J(M,N), which plays the same role
as Φ̂0(E,F ) in the flat case:

Φ̂0J(M,N) = {(x, y, L, ω) : (x, y, L) ∈ Φ0J(M,N), ω an orientation of L}.

The topology of Φ̂0J(M,N) is defined as follows. Let φ : U → E and ψ : V → F

be two charts of M and N respectively, and let W be an open subset of L(E,F ).
Consider the associated open subsetQ(φ,ψ,W ) of J(M,N) defined in formula (4.1)
and let A be a given operator in F(E,F ). Define the (possibly empty) set

O(φ,ψ,W,A) = {(x, y, L, ω) ∈ Φ̂0J(M,N) : (x, y, L) ∈ Q(φ,ψ,W ),

Dψ−1(ψ(y)) ◦A ◦Dφ(x) ∈ ω}.

The family of sets obtained in this way is clearly a basis for a topology on
Φ̂0J(M,N), and the natural projection p : (x, y, L, ω) 7→ (x, y, L) is a double
covering of Φ0J(M,N). Thus Φ̂0J(M,N) inherits (from Φ0J(M,N)) the struc-
ture of Banach manifold (on E × F × L(E,F )).

We can now introduce our notion of orientation for a Fredholm map of index
zero f : M → N . Consider first a continuous map h : Λ → Φ0J(M,N), where
Λ is a topological space. We say that h is orientable when it admits a lifting
ĥ : Λ → Φ̂0J(M,N), and a chosen lifting is an orientation of h, which, in this
case, is called oriented.

Definition 4.1. A map f : M → N between two real Banach manifolds is
said to be orientable if it is Fredholm of index zero and jf : M → Φ0J(M,N)
admits a lifting ĵf : M → Φ̂0J(M,N). A lifting of jf is an orientation of f , and
f is oriented when it is orientable and one of its orientations has been chosen.

Let us see now some properties of this notion of orientation.
First of all observe that, as in the flat case, an orientation of f : M →

N can be regarded as a continuous map α which assigns to any x ∈ M an
orientation α(x) of the derivative Df(x) : TxM → Tf(x)N , where “continuous”
means that the map ĵf : M → Φ̂0J(M,N) given by x 7→ (x, f(x), Df(x), α(x))
is continuous.

Clearly, if a map f : M → N is orientable, it admits at least two orientations,
and exactly two when M is connected.

Notice also that any local diffeomorphism f : M → N is orientable. In fact,
f can be naturally oriented by choosing, for any x ∈M , the natural orientation
of the isomorphism Df(x).
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The simplest example of a nonorientable Fredholm map (of index zero) con-
sists of a constant function from a finite dimensional nonorientable manifold M
into a manifold N of the same dimension as M . The following less trivial exam-
ple provides a nonorientable Fredholm map in the flat case, i.e. acting between
open sets of Banach spaces.

Example 4.2. Let E be a Banach space with GL(E) connected, S1 be the
unit circle in R2, and γ : S1 → Φ0(E) be a nonorientable C1 path. Consider the
open subset Ω = E × (R2 \ {0}) of E × R2 and define the map f : Ω → E × R2

by f(x, y) = (γ(y/‖y‖)x, y), which is clearly of class C1. Let us show that
f is actually Fredholm of index zero. The Fréchet derivative of f at a point
(x0, y0) ∈ Ω is given by

Df(x0, y0)(u, v) = (γ(y0/‖y0‖)u+K(x0, y0)v, v)

where K(x0, y0) = D2f1(x0, y0) is the second partial derivative of the first
component f1 : Ω → E of f (i.e. f1(x, y) = γ(y/‖y‖)x). Since the operator
L = γ(y0/‖y0‖) is Fredholm of index zero, so is J2(L) : E×R2 → E×R2, where
J2 is the natural embedding of Φ0(E) into Φ0(E×R2), i.e. J2(L)(u, v) = (Lu, 0).
Consequently, since the difference Df(x0, y0) − J2(L) has finite dimensional
range, Df(x0, z0) is Fredholm of the same index as J2(L). Thus, as claimed,
the nonlinear map f is Fredholm of index zero.

Let us prove that f is not orientable. By the definition of orientability for
Fredholm maps of index zero, we need to show that it is not orientable the
derivative Df : Ω → Φ0(E × R2) of f . Now the map h : Ω → Φ0(E) given by
h(x, y) = γ(y/‖y‖) is nonorientable, since so is its restriction γ : S1 → Φ0(E).
(Here the unit circle S1 of R2 is regarded as a subset of {0} × R2 ⊂ E × R2.)
Thus, Proposition 3.8 ensures that also the composition J2 ◦ h : Ω → Φ0(E ×
R2) is nonorientable. Finally, the non-orientability of Df is a straightforward
consequence of Theorem 3.14, since Df and J2 ◦ h are homotopic (as maps into
Φ0(E × R2)) via the map

H(x, y, s) = Df(x, y) + s((J2 ◦ h)(x, y)−Df(x, y)), s ∈ [0, 1].

To see that the homotopy H is actually a map into Φ0(E × R2), observe that,
given (x, y) ∈ Ω, the difference (J2 ◦ h)(x, y)−Df(x, y) is a compact operator.

Consider a homotopy of Fredholm maps of index zero from M into N , i.e.
a continuous map H : M × [0, 1] → N which is continuously differentiable
with respect to the first variable and such that, for any (x, s) ∈ M × [0, 1],
the partial derivative D1H(x, s) is a Fredholm operator of index zero from
TxM into TH(x,s)N . We say that H is orientable if so is the continuous map
j1H : M × [0, 1] → Φ0J(M,N) defined by j1H(x, s) = (x,H(x, s), D1H(x, s)),
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and oriented when an orientation of H has been assigned. Clearly, an oriented
H : M× [0, 1] → N induces, by restriction, an orientation to any partial map Hs.

The following direct consequence of Theorem 3.12 implies, in particular, that
the partial maps of a Fredholm homotopy are either all orientable or all nonori-
entable.

Theorem 4.3. Let H : M × [0, 1] → N be a homotopy of Fredholm maps
of index zero and assume that H0 is orientable. Then H is orientable and an
orientation of H0 is the restriction of a unique orientation of H.

In the remaining part of this section we give a brief idea of our notion of
degree (for a complete discussion see [1]).

Definition 4.4. Let M and N be two Banach manifolds and f : M → N

be an oriented map. Given an open subset U of M and an element y ∈ N , we
say that the triple (f, U, y) is admissible (or, equivalently, f is y-admissible in U)
if f−1(y) ∩ U is compact.

Our topological degree is an integer valued function defined in the class of
admissible triples and satisfying the following main properties:

(i) (Normalization) If f : M → N is a naturally oriented diffeomorphism
and y ∈ N , then

deg (f,M, y) = 1.

(ii) (Additivity) If (f,M, y) is an admissible triple and U1, U2 are two open
disjoint subsets of M such that f−1(y) ⊂ U1 ∪ U2, then

deg (f,M, y) = deg (f, U1, y) + deg (f, U2, y).

(iii) (Homotopy invariance) Let H : M×[0, 1] → N be an oriented homotopy
of Fredholm maps of index zero. Then, given any path y : [0, 1] → N

such that the set {(x, t) ∈ M × [0, 1] : H(x, t) = y(t)} is compact,
deg (Ht,M, y(t)) does not depend on t.

The degree of an admissible triple (f, U, y) is preliminary defined when y is
a regular value for f in U . In this case

deg(f, U, y) =
∑

x∈f−1(y)

signDf(x).

This restrictive assumption on y is then removed by means of the following
Lemma of [1].

Lemma 4.5. Let (f, U, y) be admissible and let W1 and W2 be two open
neighbourhoods of f−1(y) such that W 1 ∪W 2 ⊂ U and f is proper in W 1 ∪W 2.
Then there exists a neighbourhood V of y such that for any pair of regular values
y1, y2 ∈ V one has

deg(f,W1, y1) = deg(f,W2, y2).
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Lemma 4.5 justifies the following definition of degree for general admissible
triples (recall first that Fredholm maps are locally proper).

Definition 4.6. Let (f, U, y) be admissible and let W be any open neigh-
bourhood of f−1(y) such that W ⊂ U and f is proper on W . The degree of
(f, U, y) is given by

deg(f, U, y) := deg(f,W, z),

where z is any regular value for f in W , sufficiently close to y.

As pointed out in [1], no infinite dimensional version of the Sard Theorem is
needed in the above definition, since the existence of a sequence of regular values
for f |W which converges to y is a consequence of the Implicit Function Theorem
and the classical Sard–Brown Lemma.

Observe that, in particular, our degree is defined for any oriented map be-
tween compact (not necessarily orientable) manifolds. In a forthcoming paper
we will show that, in the finite dimensional context and for C1 maps, our degree
coincides with the extension of the Brouwer degree given by Dold in [2]. More-
over, our notion of oriented map between finite dimensional manifolds will be
easily interpreted in the continuous case in order to coincide with the concept of
continuous oriented map given by Dold (see [2], exercise 6, p. 271).

5. Comparison with other notions of orientability

In this section we compare our concept of orientation with two strictly related
notions: the first one due to Elworthy–Tromba and the other one to Fitzpatrick–
Pejsachowicz–Rabier. As pointed out in the Introduction, the first Z-valued de-
gree theory in the context of Banach manifolds is due to Elworthy and Tromba
(see [3] and [4]). Their construction is based on an extension to the infinite di-
mensional case of the usual notion of orientation for finite dimensional manifolds.
We give here a brief summary of their ideas and results.

Let M be a differentiable manifold modeled on a real Banach space E.
A Fredholm structure on M is an atlas A which satisfies the following property
and is maximal with respect to this property:

• for any (U, φ), (V, ψ) ∈ A, and for each x ∈ U ∩ V , the derivative
D(ψ ◦ φ−1)(φ(x)) of ψ ◦ φ−1 at φ(x) is of the form I − Kx, where
Kx : E → E is a compact linear operator.

A Fredholm manifold is a Banach manifold with a Fredholm structure, and
the charts of the structure are the Fredholm charts of the manifold. A Fredholm
manifold (M,A) is orientable (or, equivalently, A is orientable) if there exists
a subatlas U of A such that, given any two charts (U1, φ1) and (U2, φ2) in U , one
has

(5.1) degLS(D(φ1 ◦ φ−1
2 )(φ2(x))) = 1
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for all x ∈ U1∩U2, where degLS(D(φ1◦φ−1
2 )(φ2(x))) denotes the Leray–Schauder

degree of D(φ1 ◦ φ−1
2 )(φ2(x)). A subatlas of A which is maximal with respect

to condition (5.1) is called an orientation of M , and M is said to be an oriented
manifold when one of its orientations is assigned. In this case, the charts of the
selected orientation are said to be the oriented charts of M .

Notice that an infinite dimensional (real) Banach space admits infinitely
many Fredholm structures. One of these, the trivial structure, is defined as
the unique Fredholm structure containing the identity. From the properties of
the Leray–Schauder degree it follows immediately that such a structure admits
exactly two orientations, and one of these is the unique orientation containing
the identity. The fact that in this case one of the two orientations is distinguished
is a peculiarity of the Elworthy–Tromba theory (observe that with the classical
notion, a finite dimensional Banach space has no distinguished orientations).

Let M and N be two Fredholm manifolds based on the same Banach space
E. A Fredholm map of index zero f : M → N is said to be admissible if, for
every pair of oriented charts (U, φ) and (V, ψ) of M and N respectively, and for
any x ∈ U ∩ f−1(V ), one has

(5.2) D(ψ ◦ f ◦ φ−1)(φ(x)) = I −Kx,

where Kx is a compact endomorphism of E.
In the case of a Fredholm map of index zero f : M → E, where M is a real

Banach manifold modeled on a Banach space E, there exists a unique Fredholm
structure on M in such a way that f becomes admissible as a map into E with
its trivial structure.

The topological degree introduced by Elworthy and Tromba is defined for
the class of proper C2 admissible maps between oriented Fredholm manifolds.
The following is the first fundamental step in their definition (see the two cited
papers [3] and [4] for the complete construction).

Definition 5.1. Let M and N be two oriented manifolds and f : M → N

be C2, proper and admissible. The degree of f with respect to a regular value
y, written degET (f, y), is defined as

degET (f, y) =
∑

x∈f−1(y)

signDf(x),

where signDf(x) = 1 or −1, depending on whether degLS D(ψ◦f ◦φ−1)(φ(x)) =
1 or −1, for any given pair of oriented charts φ and ψ at x and f(x) respectively.

In [3] it is shown that when N is connected degET (f, y) does not depend on
the regular value y ∈ N . Notice that the infinite dimensional version of Sard’s
Theorem due to Smale ([17]) ensures that the regular values of f are almost all
of N (in the sense of Baire category).
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The following result shows that the class of maps for which the Elworthy–
Tromba degree is well defined is strictly contained in the class of orientable maps
according to our definition.

Proposition 5.2. If f : M → N is an admissible map between two ori-
entable Fredholm manifolds, then it is orientable in the sense of Definition 4.1.

Proof. Assume that M and N are oriented. Given x ∈ M , define the
orientation α(x) of Df(x) in such a way that

degLS(Dψ(f(x)) ◦ (Df(x) +A) ◦Dφ−1(φ(x))) = 1

for any A ∈ α(x) and any pair of oriented charts φ and ψ at x and f(x) respec-
tively. From the properties of the Leray–Schauder degree it follows that α(x)
is well defined. One can check that the map ĵf : M → Φ̂0J(M,N) given by
ĵf(x) = (x, f(x), Df(x), α(x)) is continuous, which means it is a lifting of jf .�

Since our notion of orientation is defined for the class of Fredholm maps of
index zero between Banach manifolds and not merely for the subclass of admis-
sible maps between Fredholm manifolds, the converse of the above proposition
does not make sense, unless M and N are finite dimensional. However, even
in the restricted context of finite dimensional compact manifolds, one may find
smooth orientable maps for which the Elworthy–Tromba degree is not defined,
as shown by the following two classes of maps.

According to our construction, given a finite dimensional manifold M ,

• the canonical projection p : M̂ →M of the oriented double covering M̂
of M is orientable, being a local diffeomorphism,

• the identity I : M →M is orientable.

Thus, in the above cases, if M is compact, our degree is well defined, no
matter whether or not M is orientable. This is not the case for the Elworthy–
Tromba degree, since in the finite dimensional context their notion of orientation
coincides with the classical one and their degree is just the Brouwer degree.

A deep analysis of the Elworthy–Tromba theory is not the object of this
paper. We only point out that their theory encounters some difficulties. First
of all, it is not easy to verify when an infinite dimensional Banach manifold
admits a Fredholm structure. Moreover, even when a manifold admits such
a structure, this is not necessarily unique, and one could find both orientable
and nonorientable structures on the same manifold (as the two authors observe).
In addition, the Elworthy–Tromba degree does not verify a general homotopy
invariance property. In fact, given two oriented manifolds M and N , and given
a C2 proper Fredholm homotopy of index one, H : M × [0, 1] → N , with ad-
missible partial end-maps H0 and H1, it does not necessarily follow that each
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Ht is admissible. However, an absolute value homotopy invariance property is
verified. That is, given a regular value y ∈ N for both H0 and H1, one has

degET (H0, y) = ±degET (H1, y),

and not necessarily
degET (H0, y) = degET (H1, y),

unless each Ht is admissible.
Finally, still regarding the comparison with the Elworthy–Tromba theory, we

point out that their construction depends on the Leray–Schauder degree, while
our definition is merely based on the Brouwer degree.

The theory of Elworthy and Tromba has been recently and considerably
improved by Fitzpatrick, Pejsachowicz and Rabier in [8] and [9], where they
introduce a topological degree for C2 Fredholm maps of index zero between Ba-
nach (and not merely Fredholm) manifolds. In their construction, rather than
defining a concept of orientation for some class of infinite dimensional differen-
tiable manifolds, they develop a general theory of orientation for C2 Fredholm
maps of index zero which, as they observe, is more general and simpler than the
Elworthy–Tromba theory. Before comparing their notion of orientation with our
one, we summarize their ideas.

Consider two Banach spaces E and F and a path γ : [0, 1] → Φ0(E,F ).
There exists a continuous path k : [0, 1] → L(E,F ) such that k(t) is compact
for every t ∈ [0, 1], and γ(t) + k(t) ∈ Iso(E,F ) (see for instance [13]). Define
g : [0, 1] → Iso(E,F ) by g(t) = γ(t) + k(t). One has g(t)−1 ◦ γ(t) = I − h(t),
where h(t) is a compact operator from E into itself. The path t 7→ g(t)−1 is
called a parametrix of γ. Assume now that γ(0) and γ(1) are isomorphisms.
Given a parametrix β : [0, 1] → Iso(F,E) of γ, the number

σ(γ, [0, 1]) = degLS(β(0) ◦ γ(0)) degLS(β(1) ◦ γ(1)),

which is either 1 or −1, does not depend on the parametrix β and, consequently,
it can be actually associated to γ (as before degLS stands for the Leray–Schauder
degree). The number σ(γ, [0, 1]) is called parity of γ.

The parity of a path of Fredholm operators verifies some interesting proper-
ties, discussed in [6] and [7]. In the sequel we will need the following two:

• (Homotopy invariance) Given a homotopy Γ : [0, 1]× [0, 1] → Φ0(E,F )
such that Γ(0, s) and Γ(1, s) are isomorphisms for all s ∈ [0, 1], one has
σ(Γ( · , 0), [0, 1]) = σ(Γ( · , 1), [0, 1]).

• (Multiplicativity under partition) Given a continuous path γ : [0, 1] →
Φ0(E,F ) such that γ(0), γ(1) ∈ Iso(E,F ), and given t0 ∈ [0, 1] such
that γ(t0) ∈ Iso(E,F ), one has

σ(γ, [0, 1]) = σ(γ, [0, t0])σ(γ, [t0, 1]).
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By means of the parity, Fitzpatrick, Pejsachowicz and Rabier introduce the
following notion of orientability for a continuous map h : Λ → Φ0(E,F ) defined
on a topological space Λ.

A point λ ∈ Λ is said to be regular for h if h(λ) ∈ Iso(E,F ). The set of regular
points for h is denoted Rh. The map h is said to be orientable if there exists a
map ε : Rh → {−1, 1}, called orientation, such that, given any continuous path
γ : [0, 1] → Λ with γ(0), γ(1) ∈ Rh, it follows

σ(h ◦ γ, [0, 1]) = ε(γ(0)) ε(γ(1)).

If h has no regular points, then it is clearly orientable with the unique orientation
given by ε : ∅ → {−1, 1}. A subset A of Φ0(E,F ) is orientable if so is the
inclusion i : A ↪→ Φ0(E,F ).

By Multiplicativity under partition of the parity, one can prove that h is
orientable if and only if, given a continuous path γ : [0, 1] → Λ such that γ(0) =
γ(1) ∈ Rh, one has σ(h ◦ γ, [0, 1]) = 1.

Remark 5.3. If Λ is simply connected, then (because of the Homotopy
invariance of the parity) any continuous map h : Λ → Φ0(E,F ) is orientable.

The following proposition states that the orientation can be transported
along a homotopy (provided it admits at least a regular point).

Proposition 5.4. Let H : Λ× [0, 1] → Φ0(E,F ) be a continuous homotopy
and assume that, for some t ∈ [0, 1], Ht = H( · , t) : Λ → Φ0(E,F ) admits
regular points and is orientable. Then H is orientable (in particular every Hs is
orientable).

The successive step in the construction of Fitzpatrick, Pejsachowicz and Ra-
bier concerns a notion of orientability for nonlinear Fredholm maps of index zero
between Banach spaces.

Definition 5.5. Given two Banach spaces E and F , and an open subset Ω
of E, let f : Ω → F be a Fredholm map of index zero. Then f is said to be
orientable if so is the derivative Df : Ω → Φ0(E,F ). An orientation of f is an
orientation of Df , and f is oriented when an orientation is chosen.

The final step in their construction is the extension of the notion of ori-
entability and degree for Fredholm maps between Banach manifolds. To make
this paper not too long we omit this construction, which can be found in [9]. For
the same reason we limit our comparison to the case of maps between Banach
spaces.

The following is the first step in the construction of the Fitzpatrick–Pejsa-
chowicz–Rabier degree (FPR-degree for short). Consider an open subset U of E
and a C2 Fredholm map f : U → F which is proper on closed bounded subsets
of U . Let f be oriented with orientation ε. Let Ω be an open bounded subset of



Orientability for Fredholm Maps 301

U , with Ω ⊂ U . If y 6∈ f(∂Ω) and it is a regular value for f |Ω, then the degree
of f in Ω with respect to y is defined as

degFPR(f,Ω, y) =
∑

x∈(f |Ω)−1(y)

ε(x).

After this preliminary definition, the assumption that y is a regular value is
removed by means of the infinite dimensional version of Sard’s Theorem (see [9]
for the complete construction and the properties of the FPR-degree).

Since terms such as “orientable map” and “orientation” are used in both our
sense and the Fitzpatrick–Pejsachowicz–Rabier theory, to avoid confusion, from
now on we will add the prefix FPR to any term whose meaning is in the sense
of Fitzpatrick, Pejsachowicz and Rabier. Thus, for example, a map is FPR-
orientable when it is orientable in their theory. Clearly, when no prefix is used,
the meaning is according to us.

Our notion of orientation has close links with the FPR-theory. One of these
concerns the parity, as the following proposition shows.

Proposition 5.6. Let γ : [0, 1] → Φ0(E,F ) be continuous and such that
γ(0) and γ(1) are isomorphisms. Given any orientation of γ, one has

σ(γ, [0, 1]) = sign γ(0) sign γ(1).

Consequently, when γ(0) = γ(1), then σ(γ, [0, 1]) = 1 if and only if the two
liftings of γ are closed paths in Φ̂0(E,F ).

Proof. Let β : [0, 1] → L(E,F ) be a continuous path of correctors of γ
(whose existence is ensured by Lemma 34.4 in [13]). Without loss of generality
assume that β(0) is a positive corrector of γ(0). From Lemma 3.1 it follows that
β(t) is a positive corrector of γ(t) for all t ∈ [0, 1]. Now, sign γ(0) = 1 if and only
if only if β(0) is γ(0)-equivalent to the trivial operator 0 and (by the definition
of the Leray–Schauder degree) if and only if degLS((γ(0)+β(0))−1γ(0)) = 1. In
other words degLS((γ(0)+β(0))−1γ(0)) = sign γ(0). Analogously, degLS((γ(1)+
β(1))−1γ(1)) = sign γ(1), and the statement follows easily. �

By the above proposition it follows that an orientable map h : Λ → Φ0(E,F )
is also FPR-orientable. In fact, an orientation of h induces an FPR-orientation
by the formula ε(λ) = signh(λ), λ ∈ Rh (here Rh may be empty). The converse
is not true since, given for example a Banach space E with Φ0(E) nonorientable,
as a consequence of Proposition 3.8 the natural image J1(Φ0(E)) ⊂ Φ0(E×R) is
still nonorientable, but clearly FPR-orientable (as totally composed of singular
operators). However, the following result holds.
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Proposition 5.7. Let Λ be a connected, locally path connected topological
space and let h : Λ → Φ0(E,F ) be a continuous map with Rh 6= ∅. Then h is
orientable if and only if it is FPR-orientable.

Proof. As pointed out above, if h has an orientation, one can define an
FPR-orientation ε : Rh → {−1, 1} of h by ε(λ) = signh(λ). Proposition 5.6
ensures that ε is actually an FPR-orientation.

Assume h is not orientable. By Proposition 3.13 there is a closed path γ1 :
[0, 1] → Λ such that the two liftings of h ◦ γ1 (which, we recall, are paths in
Φ̂0(E,F ) ) are not closed. By assumption, there exists a point λ0 ∈ Λ such that
h(λ0) ∈ Iso(E,F ). Since Λ is connected and locally path connected, it is also
path connected. Therefore there exists a path γ0 : [0, 1] → Λ joining λ0 with
γ1(0) = γ1(1). Define the closed path γ : [0, 1] → Λ by

γ(t) =


γ0(3t) if t ∈ [0, 1/3],

γ1(3t− 1) if t ∈ [1/3, 2/3],

γ0(3− 3t) if t ∈ [2/3, 1].

Since (h ◦ γ)(0) = (h ◦ γ)(1) ∈ Iso(E,F ), it makes sense to consider the parity
σ(h ◦ γ, [0, 1]). Let us show that this parity is −1, which implies that h is not
FPR-orientable. By Proposition 5.6 it is enough to show that one of the two
liftings of h ◦ γ is not closed (in this case also the other one is not closed). Let
β+

0 and β−0 be the two liftings of h ◦ γ0, and consider the unique lifting β1 of
h ◦ γ1 such that β1(0) = β+

0 (1). Define β : [0, 1] → Φ̂0(E,F ) by

β(t) =


β+

0 (3t) if t ∈ [0, 1/3],

β1(3t− 1) if t ∈ [1/3, 2/3],

β−0 (3− 3t) if t ∈ [2/3, 1].

The continuity of β is ensured by the fact that β1 is not closed and β+
0 (1) 6=

β−0 (1). Thus β is a lifting of γ. Since, by construction, β is not closed, Propo-
sition 5.6 implies σ(h ◦ γ, [0, 1]) = −1, and this shows that h is not FPR-
orientable. �

Simply connected subsets of Φ0(E,F ) are FPR-orientable. However, the fol-
lowing example shows that without the assumption of local path connectedness,
a simply connected subset of Φ0(E,F ) may be nonorientable.

Example 5.8. Let E be a Banach space with GL(E) connected and consider
a closed path γ : [0, 1] → Φ0(E) with nonorientable image (whose existence is
ensured by Theorem 3.15). Assume also that γ is simple (so that its image is
homeomorphic to S1). The two arcs C0 = γ([0, 1/2]) and C1 = γ([1/2, 1]) are
orientable, being connected and locally path connected. Notice that these arcs
have exactly two common points: γ(0) and γ(1/2). Now, let us fix an orientation
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ω of γ(0) and denote by α0 and α1 the orientations induced by ω on C0 and C1

respectively. Observe that, γ([0, 1]) being not orientable, the two orientations
α0(1/2) and α1(1/2) of γ(1/2) must be opposite one to the other. Let U be an
open connected orientable neighbourhood of γ(1/2) in Φ0(E) with the property
that C ′

0 = C0 ∪ U and C ′
1 = C1 ∪ U turn out to be orientable. Let δ > 0 be

such that γ(t) belongs to U for all t ∈ [1/2− δ, 1/2 + δ], and define the function
g : [0, 1] → Φ0(E) by

g(t) =


γ(t) if t ∈ [0, 1/2− δ] ∪ [1/2 + δ, 1],(

1 + ε sin
δπ

t− 1/2

)
γ(t) if t ∈ [1/2− δ, 1/2) ∪ (1/2, 1/2 + δ],

γ(1/2) if t = 1/2,

where ε is such that g(t) ∈ U for all t ∈ [1/2 − δ, 1/2 + δ]. Notice that g is
discontinuous at t = 1/2 and its image, g([0, 1]), is simply connected, hence FPR-
orientable. Let us show that g([0, 1]) is not orientable. Observe that g([0, 1/2])
and g([1/2, 1]) are contained in C0 and C1 respectively. Thus, they are orientable
and, being connected, they can be oriented with orientations α′0 and α′1 induced
by the orientation ω of γ(0). Since U is orientable and connected, it admits
exactly two orientations. Thus, α′0(1/2) = α0(1/2) and α′1(1/2) = α1(1/2), and
this implies that the two orientations α′0(1/2) and α′1(1/2) of γ(1/2) are opposite
one to the other. Consequently g([0, 1]) is not orientable.

As we have seen above, any orientable map h : Λ → Φ0(E,F ) is FPR-
orientable as well. This fact suggests that the notion of orientability defined by
Fitzpatrick, Pejsachowicz and Rabier is more general than our one. However, our
concept is simpler and has a sort of stability property which is not valid for the
FPR-orientability. First of all observe that the Fitzpatrick–Pejsachowicz–Rabier
notion of orientability (as well as the Elworthy–Tromba theory) is based on the
Leray–Schauder degree, while our concept is strictly related to the purely alge-
braic notion of orientation of a Fredholm linear operator of index zero. Moreover,
our simple definition, in some sense, contains the concept of FPR-orientation
(which, consequently, could be freed from the Leray–Schauder dependence). In
fact, as previously pointed out, given h : Λ → Φ0(E,F ), the assignment of an
orientation α(λ) of h(λ) for each λ ∈ Λ induces a sign function on the regular
subset Rh of Λ. Consequently, when the assignment is continuous (namely, when
it is actually an orientation of h), because of Proposition 5.6, this sign function
is actually an FPR-orientation.

By slightly modifying the proof of Proposition 5.7 one can easily show that
when Λ is locally path connected there is a one-to-one correspondence between
the orientations and the FPR-orientations of h, provided that any connected
component of Λ contains a regular point. Of course if Λ is connected and totally
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composed of singular points, this correspondence breaks down, since h admits
exactly one FPR-orientation, but either two orientations (if orientable) or no
one (if nonorientable). This shows that our concept of orientation goes insight
the structure of the singular maps, and this is conceived in such a way to make
the orientability a stable property under small perturbations, as shown in The-
orem 3.14. Of course we could change our definition (gaining in generality and
loosing in properties) by saying that any continuous mapping h : Λ → Φ0(E,F )
is orientable except those which do not admit a lifting ĥ and have at least a
regular point (but we think this is not convenient).

We emphasize that the FPR-orientability does not verify a general property
of continuous transport along a homotopy (as Theorem 3.14 for the orientability).
To see this, consider a Banach space E with GL(E) connected and let γ : [0, 1] →
Φ0(E) be a closed path with γ(0) ∈ GL(E) and parity σ(γ, [0, 1]) = −1. Thus γ,
if regarded as a map defined on the circle S1, is not FPR-orientable (and neither
orientable because of Propositions 3.13 and 5.6). Given the product space E×R,
consider the homotopy Γ : S1 × [0, 1] → Φ0(E × R) with block decomposition

Γ(λ, s) =
(
γ(λ) 0

0 s

)
,

and observe that the partial map Γ0 is FPR-orientable (since any Γ(λ, 0) is
a singular operator) while Γ1 is not FPR-orientable (since, as one can check,
σ(Γ1, [0, 1]) = −1). This is, of course, in accord with our theory, since all the
maps Γs, s ∈ [0, 1], are nonorientable. Notice also that the FPR-nonorientable
maps Γs, 0 < s ≤ 1, are arbitrarily close to Γ0, and this is a sort of instability
in the FPR-theory of orientation.

So far we have compared the relationship between the notions of orientation
according to us and to Fitzpatrick, Pejsachowicz and Rabier in the case of maps
from a topological space Λ into Φ0(E,F ). This automatically gives a comparison
for Fredholm maps of index zero acting between open sets of Banach spaces.
Indeed, in both the two notions, a map f : Ω → F is orientable if so is the
Fréchet derivative Df : Ω → Φ0(E,F ). Here, as usual in this paper, E and F

are real Banach spaces, Ω is an open subset of E and f is Fredholm of index zero.
Recalling that Ω (as an open subset of a Banach space) is locally path connected,
the comparison in this case can be easily carried out. For a complete analysis
for maps acting between real Banach manifolds we should have reported here
the FPR-notion of orientation in such a case. However, taking into account that
Banach manifolds are locally path connected, the interested reader can check
that in this context the situation is similar to the special local case of maps
between open sets of Banach spaces. Namely, for a map f : M → N between
real Banach manifolds which is Fredholm of index zero, there is a one-to-one
correspondence between the orientations and the FPR-orientations, provided
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that any connected component of M contains a regular point. If M is connected
and f has no regular points, then f is FPR-orientable with only one FPR-
orientation, no matter whether or not it is orientable.

The simplest example of a map f : M → N which is FPR-orientable but not
orientable is given by taking M finite dimensional and nonorientable, N with
the same dimension as M , and f constant. Clearly, in this case, small perturba-
tions of f may produce maps with regular points which are FPR-nonorientable.
An example in the infinite dimensional context of an FPR-orientable Fredholm
map f that is not orientable can be given by repeating the construction in Ex-
ample 4.2 starting from a nonorientable curve γ : S1 → Φ0(E) with image in the
set of singular operators (this is possible by Proposition 3.8).
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Università degli studi Firenze

Via S. Marta 3
50139, Firenze, ITALY

E-mail address: benevieri@dma.unifi.it, furi@dma.unifi.it

TMNA : Volume 16 – 2000 – No 2


