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PERIODIC SOLUTIONS
OF DIFFERENTIAL INCLUSIONS WITH RETARDS

Grzegorz Gabor — Rados law Pietkun

Abstract. The paper is devoted to study the existence of periodic solu-

tions for retarded differential inclusions. The nonsmooth guiding potential
method is used and topological degree theory for multivalued maps is ap-

plied.

The present paper concerns the existence of periodic solutions for differential
inclusions with retarded arguments of the form

(QF )

{ .
x(t) ∈ F (t, x(t− τ1), . . . , x(t− τm)) for t ∈ [0, T ] a.e.
x(t) = x(t+ T ) for every t ∈ [−τ, 0],

where F : [0, T ] × Rmn ( Rn is a multivalued map. The solvability of prob-
lem (QF ) is closely related to the existence of fixed points for the multivalued
Poincaré operator PF : C([−τ, 0],Rn) ( C([−τ, 0],Rn), which associates with
each function y the set {x( ·+T ) ∈ C([−τ, 0],Rn) : .x(t) ∈ F (t, x(t−τ1), . . . , x(t−
τm)) for t ∈ [0, T ] a.e. and x(t) = y(t) for every t ∈ [−τ, 0]}. Adopting the clas-
sical Liapunov–Krasnosel’skĭı guiding potential method to retarded differential
inclusions we are able to calculate the topological degree of the decomposable
compact vector field I−PF . If on some ball of C([−τ, 0],Rn) the degree of I−PF
turns out to be different from zero, then problem (QF ) has a solution.
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The idea of using the topological degree for the translation map along tra-
jectories of ODE’s in the study of periodic solutions comes from Krasnosel’skĭı
[16], [17]. The generalization of the Poincaré translation map to an admissible
multivalued operator is due to Dylawerski and Górniewicz [6]. There are several
papers concerning periodic solutions for various differential equations and inclu-
sions making use of the topological degree theory (see e.g. [3], [5], [7], [8], [12],
[21], [20]).

In Section 1 we prove (see Theorem 1.1) that the so called solution set map
SF associated to the boundary value problem

(CF )

{ .
x(t) ∈ F (t, x(t− τ1), . . . , x(t− τm)) for t ∈ [0, T ] a.e.
x|[−τ,0] = y

is Rδ-valued.

The acyclicity of SF is an important property since it allows us to use the
topological degree theory for the Poincaré operator PF . The structure of the
solution set for retarded and functional differential inclusions was investigated
by Lasry–Robert [18], [19], Haddad [13], Haddad–Lasry [14] and recently Hu–
Papageorgiou [15].

In Section 2 we remind the notion of the topological degree for the class
of decomposable compact vector fields in Banach spaces. Necessary properties
of the degree are gathered in Theorem 2.1. In this section we state the new
definition of the guiding potential V for the right-hand side F of a retarded
differential inclusion. In particular, Definition 3.2 includes the case of nontrivial
delay differential problem:

.
x(t) ∈ F (t, x(t − τ)). Since we assume that V is

only locally Lipschitzean function, the notion of guiding potential is given in
terms of Clarke generalized gradient. Nonsmooth guiding potentials have been
recently introduced by de Blasi, Górniewicz and Pianigiani [3] to study periodic
problems for differential inclusions of the type

.
x(t) ∈ F (t, x(t)), with F convex

or nonconvex valued.

Section 3 contains Theorem 3.1, which ensures the existence of periodic solu-
tions for problem (QF ), with F an upper semicontinuous map taking nonempty
compact convex values. This is the main result of the paper and should be con-
sidered as an extension, to the multivalued case, of the method presented by
Dylawerski and Jodel in [7]. The proof is based on the construction of suitable
homotopies reducing the calculation of the degree of the vector field I − PF de-
fined on an infinite dimensional functional Banach space to comparision with
the index of the guiding potential V : Rn → R associated with the multimap F .
Assuming that the index of V is nonzero we establish a sufficient condition for
finding periodic solutions of (QF ).
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It should be noted that the existence of periodic solutions for functional
differential inclusions satisfying Nagumo type tangential condition has been es-
tablished by Haddad–Lasry [14] (autonomous case) and Hu–Papageorgiou [15]
(nonautonomous case).

We will use the following notations. Let E be a Banach space and A ⊂
E. Then bdA denotes the boundary of A and coA the convex hull of A. If
A ⊂ Rn is a nonempty and bounded set then |A|+ = sup{‖a‖ : a ∈ A}. A
closed ball in Rn (resp. in E) with center x (resp. zero) and radius r > 0 is
denoted by Bn(x, r) (resp.Kr). Further, we set Bn(r) = Bn(0, r) and Sn−1(r) =
bdBn(0, r). Z denotes the set of integers and 〈 · , · 〉 the inner product in Rn.
By f : X → Y (resp. F : X ( Y ) we denote a single valued (resp. multival-

ued) map from X to Y . Throughout this paper we will consider only multivalued
maps (multimaps) having nonempty values. The set of all fixed points of the
multivalued map F : X ( X is denoted by Fix(F ). The symbol C(X,Y ) stands
for the space of all continuous functions from X to Y and Cn[a, b] denotes the
space C([a, b],Rn) equiped with the usual supremum norm.
We will say that a space X is contractible, if there is a continuous map

(homotopy) h : X × [0, 1] → X and some point x0 ∈ X such that h(x, 0) = x,
h(x, 1) = x0 for any x ∈ X.
A nonempty compact space X is called an Rδ-set, if there is a decreasing

sequence {Xn} of compact contractible spaces Xn satisfying X =
⋂∞
n=1Xn.

A metric space X is called an absolute neighbourhood retract (X ∈ ANR), if
for every metric space Y and any closed subset A ⊂ Y and every f ∈ C(A,X),
there is an open neighbourhood U of A in Y and f̃ ∈ C(U,X) such that f̃(x) =
f(x) for any x ∈ A.
A multimap F : X ( Y is called upper semicontinuous (u.s.c.), if {x ∈ X :

F (x) ⊂ U} is open in X for every open U in Y . If the image F (X) is relatively
compact in Y , then we say that F : X ( Y is a compact multivalued map. A
multimap F : [a, b]( Rn is called measurable, if {t ∈ [a, b] : F (t) ⊂ A} belongs
to the Lebesgue σ-field of [a, b] for every closed A ⊂ Rn.
We will say that a multivalued map F : [a, b]×Rk ( Rn is u-Carathéodory,

if it satisfies:

(i) the multimap t 7→ F (t, x) is measurable for every fixed x ∈ Rk,
(ii) the multimap x 7→ F (t, x) is u.s.c. for t ∈ [a, b] a.e.

Of course, any u.s.c. map F : [a, b]× Rk ( Rn is u-Carathéodory.
A multimap F : [a, b]× Rk ( Rn with compact values is called µ-integrably

bounded, if µ : [a, b]→ [0,∞) is a Lebesgue integrable function such that

|F (t, x)|+ ≤ µ(t) for every (t, x) ∈ [a, b]× Rk.
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We shall say that F is integrably bounded, if it is µ-integrably bounded
for some µ. As usual L1([a, b],Rn) stands for the Banach space of Lebesgue
integrable maps with the norm ‖ · ‖1.
Finally, a single valued function f : [a, b]×X → Y is said to be measurable-

locally Lipschitzean provided for every x ∈ X the map f( · , x) is measurable
and for each x ∈ X there exists a neighbourhood Ux of x in X and a Lebesgue
integrable map Lx : [a, b]→ [0,∞) such that

‖f(t, x1)− f(t, x2)‖ ≤ Lx(t)‖x1 − x2‖ for every t ∈ [a, b] and x1, x2 ∈ Ux.

1. Regularity of the solution set

For a given τ1, . . . , τm ≥ 0, let τ = max{τi : i = 1, . . . ,m}. Assume that
F : [0, T ] × Rmn ( Rn and y ∈ Cn[−τ, 0] are given. The goal of this section is
to verify that under some suitable assumptions about the multivalued map F ,
all Carathéodory solutions of the following problem

(CF )

{ .
x(t) ∈ F (t, x(t− τ1), . . . , x(t− τm)) for t ∈ [0, T ] a.e.
x|[−τ,0] = y

form a set of Rδ-type. Below we give some preliminary results, which will allow
us to show that the correspondence depending on the initial value condition for
the considered inclusion (CF ) is an u.s.c. multivalued map with Rδ values.

Proposition 1.1. Let F : [0, T ] × Rmn ( Rn be an integrably bounded
multimap. Suppose that F has a measurable-locally Lipschitzean selector. Then
the set SF (y) = {x ∈ Cn[−τ, T ] : x is a solution of problem (CF )} is nonempty
and contractible for every y ∈ Cn[−τ, 0].

Proof. If x ∈ Cn[−τ, T ] is given, then for every t ∈ [0, T ] the symbol xt
denotes the shift of x at t, i.e. the function in Cn[−τ, 0] such that xt(s) = x(t+s)
for each s ∈ [−τ, 0]. In particular the boundary condition of (CF ) could be
rewritten in the form: x0 = y.
Fix y ∈ Cn[−τ, 0]. Let f : [0, T ] × Rmn → Rn be a measurable-locally

Lipschitzean selection of F . It is then easy to check that the following problem

(Ca,y)

{ .
x(t) = f(t, x(t− τ1), . . . , x(t− τm)) for t ∈ [a, T ] a.e.
xa = y

has exactly one solution x = x(a, y) ∈ Cn[a − τ, T ] for every a ∈ [0, T ] and
y ∈ Cn[−τ, 0]. Thanks to this we are able to define the map h : SF (y)× [0, 1]→
SF (y) by

(1.1) h(z, s)(t) =

{
z(t) for t ∈ [−τ, sT ],
x(sT, zsT )(t) for t ∈ [sT, T ] ,
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where x(sT, zsT ) is a unique solution of the problem (CsT,zsT ). Since the mapping
(a, y) 7→ x(a, y) is continuous, the formula (1.1) defines a homotopy contracting
the solution set SF (y) to the unique point x(0, y) in SF (y). This completes the
proof. �

Lemma 1.1. Let X, Y be metric spaces. Let F : Y ×X ( Y be a compact
multimap with closed graph. Suppose that Fix(F ( · , x)) 6= φ for every x ∈ X.
Then the multimap Φ : X ( Y such that Φ(x) = Fix(F ( · , x)) is u.s.c.

Proof. Suppose that Φ is not u.s.c in some point x0 ∈ X. Let U be an
open neighbourhood of Φ(x0) such that for every n ≥ 1 there exists xn in the
ball around x0 with radius 1/n and yn ∈ Φ(xn) such that yn 6∈ U . Since
(yn)∞n=1 is a sequence of elements of a relatively compact set F (Y × X), there
is a subsequence (ykn)

∞
n=1 converging to some point y0. The closedness of the

graph of F implies that y0 ∈ Φ(x0). On the other hand we have ykn 6∈ U for
every n ≥ 1. So y0 6∈ U . From this a contradiction follows, completing the
proof. �

Lemma 1.2 below can be proved as in [10, Theorem 4.13].

Lemma 1.2. Let X be a metric space. If F : [0, T ] × X ( Rn is a µ-
integrably bounded u-Carathéodory multimap with compact convex values, then
there exists a sequence (Fk : [0, T ]×X ( Rn)∞k=1 such that for every k ≥ 1
(i) Fk is a µ-integrably bounded u-Carathéodory multivalued map with non-
empty compact convex values,

(ii) Fk+1(t, x) ⊂ Fk(t, x) for every (t, x) ∈ [0, T ]×X,
(iii) F (t, x) =

∞⋂
k=1

Fk(t, x) for every x ∈ X and for t ∈ [0, T ] a.e.

(iv) Fk has a measurable–locally Lipschitzean selection.

Theorem 1.1. Let F : [0, T ] × Rmn ( Rn be a µ-integrably bounded u-
Carathéodory multimap with convex compact values. Then the solution set map
SF : Cn[−τ, 0]( Cn[−τ, T ] given by

SF (y) = {x ∈ Cn[−τ, T ] : x is a solution of problem (CF )}

is u.s.c. with nonempty Rδ values. Moreover, the map Kr 3 y 7→ SF (y) is
compact (for any r > 0).

Proof. At first we will show that SF (y) is nonempty, Rδ-set for every y ∈
Cn[−τ, 0]. Applying Lemma 1.2 to the map F we obtain a sequence (Fk : [0, T ]×
Rmn ( Rn)∞k=1 satisfying (i)–(iv). By virtue of Proposition 1.1, the solution set
SFk(y) of inclusion (CFk) is nonempty, contractible for every y ∈ Cn[−τ, 0] and
k ≥ 1. Moreover, SFk(y) is compact. To see this, let (xn)∞n=1 be a sequence of
elements from SFk(y). Since the set {xn(t) : n ≥ 1} is bounded for every t ∈ [0, T ]
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and ‖ .xn(t)‖ ≤ µ(t) for almost all t ∈ [0, T ] it follows from Theorem 4 ([2], p. 13)
that there exists a subsequence (again denoted by) (xn) converging uniformly
on the interval [0, T ] to an absolutely continuous function x. Furthermore, the
sequence of derivatives (

.
xn) converges weakly to

.
x in L1([0, T ],Rn). By yx we

will denote a function in Cn[−τ, T ] given by the formula

yx(t) =

{
y(t) for t ∈ [−τ, 0],
x(t) for t ∈ [0, T ],

which is well defined as x(0) = y(0). Clearly, the subsequence (xn) converges
uniformly to yx. We will show that yx ∈ SFk(y). From Mazur’s Theorem it
follows that

.
x belongs to the strong closure of co{ .xn : n ≥ l} for every l ≥ 1.

Thus there is a sequence (zl) converging to
.
x in the norm topology of L1 such

that zl ∈ co{
.
xn : n ≥ l} for every l ≥ 1. Further, there is a subsequence (again

denoted by) (zl) converging to
.
x a.e. in [0, T ]. Let I be a set of full measure in

the segment [0, T ] satisfying

(1.2) zl(t) −−−→
l→∞

.
x(t) for every t ∈ I,

(1.3) Rmn 3 (ξ1, . . . , ξm) 7→ Fk(t, ξ1, . . . , ξm) is u.s.c. for every t ∈ I

and

(1.4)
.
xn(t) ∈ Fk(t, xn(t− τ1), . . . , xn(t− τm)) for every t ∈ I, n ≥ 1.

Take an arbitrary t ∈ I and ε > 0. From (1.3) we get δ > 0 such that

Fk(t, ξ1, . . . , ξm) ⊂ Fk(t, yx(t− τ1), . . . , yx(t− τm)) +Bn(ε)

for every (ξ1, . . . , ξm) ∈ Bmn((yx(t − τ1), . . . , yx(t − τm)), δ). Since (xn(t −
τ1), . . . , xn(t−τm)) −−−→

n→∞
(yx(t−τ1), . . . , yx(t−τm)), there is N ∈ N such that

.
xn(t) ∈ Fk(t, yx(t− τ1), . . . , yx(t− τm)) +Bn(ε) (by (1.4))

for every n ≥ N . Observe that (zl)∞l=N ⊂ co{
.
xn : n ≥ N}. By virtue of (1.2) it

follows that

.
x(t) ∈ Fk(t, yx(t− τ1), . . . , yx(t− τm)) +Bn(ε).

Since ε > 0 and t ∈ I was arbitrary, we have
.
x(t) ∈ Fk(t, yx(t − τ1), . . . ,

yx(t− τm)) for almost all t ∈ [0, T ]. Whence, yx ∈ SFk(y).
Let us notice that SF (y) =

⋂∞
k=1 SFk(y), by (iii) and SFk+1(y) ⊂ SFk(y), by

(ii) for every y ∈ Cn[−τ, 0] and k ≥ 1. Therefore SF (y) appears as a countable
intersection of the decreasing family {SFk(y)} of nonempty, compact contractible
spaces SFk(y), i.e. SF (y) is a nonempty Rδ-set.
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Now, we are able to prove that the map Kr 3 y 7→ SF (y) is u.s.c. for a given
radius r > 0. Define the operator Ψ : Cn[−τ, T ] × Kr ( Cn[−τ, T ], by the
formula

Ψ(x, y) =
{
z : z(t) = y(0) +

∫ t

0
f(s) ds for every t ∈ [0, T ], z|[−τ,0] = y

}
,

where f(s) ∈ F (s, x(s−τ1), . . . , x(s−τm)) a.e. in [0, T ]. Observe that the function
[0, T ] 3 t 7→ (x(t− τ1), . . . , x(t− τm)) is continuous. In view of Theorem 7 ([1],
p. 124) the map F ( · , x( · − τ1), . . . , x( · − τm)) has a measurable selection. Since
F is integrably bounded, this selection is integrable. Thus Ψ is a well defined
multimap.
It is easy to see that

(1.5) SF (y) = Fix(Ψ( · , y)) for every y ∈ Kr.

It left to check, whether the map Ψ fulfiles assumptions of Lemma 1.1.
The compactness of Ψ easily follows from the classical Arzelá–Ascoli Theo-
rem. On the other hand the graph of Ψ is closed. Indeed, take a sequence
((zn, xn, yn))∞n=1 such that zn ∈ Ψ(xn, yn) for every n ≥ 1, converging to some
(z, x, y) ∈ Cn[−τ, T ]×Cn[−τ, T ]×Kr. Observe that functions zn are absolutely
continuous on [0, T ] and

‖zn(t)‖ ≤ ‖yn(0)‖+
∫ t

0
‖fn(s)‖ ds ≤ r + ‖µ‖1

for every t ∈ [0, T ] and n ≥ 1. Furthermore, ‖żn(t)‖ ≤ ‖fn(t)‖ ≤ µ(t) for almost
all t ∈ [0, T ]. Again, by Theorem 4 ([2], p. 13), there is a subsequence (zn) such
that (żn) converges weakly to z in L1([0, T ],Rn). Similiar argumentation as in
the proof of the compactness of the set SFk(y) implies that ż(t) ∈ F (t, x(t −
τ1), . . . , x(t− τm)) a.e. in [0, T ]. Since

z(t) = y(0) +
∫ t

0
ż(s) ds for every t ∈ [0, T ]

and z|[−τ,0] = y, we have z ∈ Ψ(x, y).
By virtue of Lemma 1.1 the map Kr 3 y 7→ Fix(Ψ( · , y)) is u.s.c. Conse-

quently, the upper semicontinuity of SF follows from (1.5). The compactness of
Kr 3 y 7→ SF (y) is obvious in view of Arzelá–Ascoli Theorem. This completes
the proof. �

Corollary 1.1. Let F : [0, T ] × Rmn × Λ ( Rn, Λ a metric space, be a
map with nonempty compact convex values satisfying:

(i) t 7→ F (t, x, λ) is measurable, for every (x, λ) ∈ Rmn × Λ,
(ii) (x, λ) 7→ F (t, x, λ) is u.s.c. for t ∈ [0, T ] a.e.
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(iii) |F (t, x, λ)|+ ≤ µ(t) for every (t, x, λ) ∈ [0, T ] × Rmm × Λ, where µ :
[0, T ]→ [0,+∞) is an integrable function.

Then the operator H : Cn[−τ, 0]× Λ( Cn[−τ, T ] defined by

H(y, λ) = SF ( · , · ,λ)(y)

is u.s.c. with nonempty Rδ values. Moreover, the map Kr × Λ 3 (y, λ) 7→
SF ( · , · ,λ)(y) is compact (for any r > 0).

2. Topological degree and guiding potentials

In this section we recall the notion of the topological degree for multivalued
maps, which will be applied in the next section to establishing the existence of
periodic trajectories of a retarded inclusion.
Let us consider a Banach space E, not necessarily finite dimensional, and

a closed ball Kr in E.
For any X ∈ ANR we denote by J(Kr, X) the class of u.s.c. multivalued

maps F : Kr ( X with compact, Rδ-values.
A compact map Φ : Kr ( E is called decomposable (Φ ∈ D(Kr, E)) if there

exists a space X ∈ ANR and two maps F ∈ J(Kr, X), f ∈ C(X,E) such that
Φ = f ◦ F . The diagram DΦ : Kr

F ◦ X f−→ E associated to the map Φ is
called the decomposition of Φ.
It is known (see [9], [11]) that using approximation methods for multivalued

maps it is possible to define the topological degree for the class

FD(Kr, E) = {I − Φ : Φ ∈ D(Kr, E), (I − Φ)(bdKr) ⊂ E \ {0}}

of compact vector fields (without singular points on the boundary of Kr) asso-
ciated to decomposable maps.

Remark 2.1. Let us notice that, if we set

D0(Bn(r),Rn) = {Φ ∈ D(Bn(r),Rn) : Φ(Sn−1(r)) ⊂ Rn \ {0}},

then D0(Bn(r),Rn) = FD(Bn(r),Rn).
By i0, i1 : X → X × [0, 1] we denote the maps given by the formulae i0(x) =

(x, 0) and i1(x) = (x, 1) for every x ∈ Kr and any space X.

Definition 2.1. Let I −Φ, I −Ψ ∈ FD(Kr, E) be two vector fields with Φ
and Ψ having decompositions of the form

DΦ : Kr
F1◦ X f1−→ E, DΨ : Kr

F2◦ Y f2−→ E.

We shall say that I−Φ and I−Ψ are homotopic in FD(Kr, E) if there exist maps
Ξ ∈ D(Kr × [0, 1], E) (with DΞ : Kr × [0, 1]

H◦ Z h−→ E) and g1 ∈ C(X,Z),
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g2 ∈ C(Y, Z) such that x 6∈ Ξ(x, λ) for every (x, λ) ∈ bdKr × [0, 1] and the
following diagram is commutative:

Kr
F1 ◦ X

i0

y yg1 ↘f1
Kr × [0, 1]

H ◦ Z
h−−→ E

i1

x xg2 ↗f2
Kr ◦

F2
Y

Below we formulate a result which summarizes some useful properties of the
degree.

Theorem 2.1. The topological degree function Deg : FD(Kr, E)→ Z satis-
fies:

(i) (Existence) If Deg(I − Φ,Kr) 6= 0, where I − Φ ∈ FD(Kr, E), then
there exists y ∈ Kr such that y ∈ Φ(y).

(ii) (Localization) If I−Φ ∈ FD(Kr, E) is such that 0 6∈ (I−Φ)(Kr\intKr0)
for some r > r0 > 0, then Deg(I − Φ,Kr) = Deg(I − Φ,Kr0).

(iii) (Homotopy) If I−Φ, I−Ψ are homotopic in FD(Kr, E), then Deg(I−
Φ,Kr) = Deg(I −Ψ,Kr).

(iv) (Contractivity) Let I − Φ ∈ D(Kr, E) and DΦ : Kr
F ◦ X f−→ E be

the decomposition of Φ. If there is a finite dimensional subspace E1 of
E such that f(X) ⊂ E1 then Deg(I −Φ,Kr) = Deg(I −Φ|E1 ,Kr ∩E1).

(v) Let En be an n-dimensional space, Kr ⊂ En and Θ : Rn → En be
a linear isometry. If I − Φ ∈ FD(Kr, E

n), then I − Θ−1 ◦ Φ ◦ Θ ∈
FD(Bn(r),Rn) and Deg(I −Θ−1 ◦ Φ ◦Θ, Bn(r)) = Deg(I − Φ,Kr).

(vi) If Φ ∈ D0(Bn(r),Rn), then Deg(Φ, Bn(r)) = (−1)n+1Deg(−Φ, Bn(r)).
(vii) Let F ∈ J(Kr, X) and h ∈ C(X × [0, 1], E). Suppose that h(F (Kr) ×

[0, 1]) is a relatively compact set and 0 6∈ (I − hλ ◦ F )(x) for every
(x, λ) ∈ bdKr × [0, 1], where hλ(x) = h(x, λ). Then Deg(I − h0 ◦
F,Kr) = Deg(I − h1 ◦ F,Kr).

(viii) Let I−Φ, I−Ψ ∈ FD(Kr, E) be two vector fields with Φ and Ψ having
decompositions of the form

DΦ : Kr
F1◦ X f1−→ E, DΨ : Kr

F2◦ Y f2−→ E.

If there exists a map g ∈ C(X,Y ) such that the diagram

Kr
F1 ◦ X

F2◦
g↙

yf1
Y −−→

f2
E
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is commutative, then Deg(I − Φ,Kr) = Deg(I −Ψ,Kr).
(ix) Let I−Φ, I−Ψ ∈ FD(Kr, E) be two vector fields with Φ and Ψ having
decompositions of the form

DΦ : Kr
F1◦ X1

f1−→ E, DΨ : Kr
F2◦ X2

f2−→ E.

Suppose that

(2.1) 0 6∈ λ(I − Φ)(x) + (1− λ)(I −Ψ)(x)

for every (x, λ) ∈ bdKr×[0, 1]. Then Deg(I−Φ,Kr) = Deg(I−Ψ,Kr).

Proof. Properties (i)–(v) can be proved as in [9], [11], while (vi) is a variant
of a well known property of the ordinary Brouwer degree and follows directly from
the construction of the degree in FD(Bn(r),Rn).
In order to verify (vii), consider the diagram

Kr
F−−→ X

i0

y yi0 ↘h0
Kr × [0, 1]

F×I◦ Z
h−−→ E

i1

x xi1 ↗h1
Kr ◦

F
X

where (F × I)(x, λ) = F (x)× {λ}. Observe that X × [0, 1] ∈ ANR and F × I ∈
J(Kr × [0, 1], X × [0, 1]).Thus the composition h ◦ (F × I) is a decomposable
map satisfying x 6∈ (h ◦ (F × I))(x, λ) for every (x, λ) ∈ bdKr × [0, 1]. Since the
above diagram is commutative the maps I −h0 ◦F , I −h1 ◦F ∈ FD(Kr, E) are
homotopic in the sense of Definition 2.1, proving (vii).

To see (viii), let F : Kr × [0, 1] ( Y be a map such that F (x, λ) = F2(x).
Then the following diagram

Kr
F1 ◦ X

i0

y yg ↘f1
Kr × [0, 1]

H ◦ Y
f2−−→ E

i1

x xI ↗f2
Kr ◦

F2
Y

is commutative. Obviously, f2 ◦ F is a decomposable map (f2 ◦ F ∈ D(Kr ×
[0, 1], E)) and x 6∈ (f2 ◦F )(x, λ) for every (x, λ) ∈ bdKr× [0, 1]. Therefore I−Φ
and I −Ψ are homotopic in FD(Kr, E), and (viii) follows.
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According to the last property let us consider the following two commutative
diagrams

Kr
G ◦ X1 ×X2

Fi◦
πi↙

ygi
Xi −−→

fi
E

where G(x) = F1(x) × F2(x), gi(x1, x2) = fi(xi), πi(x1, x2) = xi and i = 1, 2.
Observe that I − g1 ◦G and I − g2 ◦G are in FD(Kr, E). By virtue of (viii) we
have

(2.2)
Deg(I − Φ,Kr) = Deg(I − g1 ◦G,Kr),

Deg(I −Ψ,Kr) = Deg(I − g2 ◦G,Kr).

Define a continuous path h : X1 × X2 × [0, 1] → E, connecting g2 with g1, by
the formula h(x1, x2, λ) = λg1(x1, x2) + (1− λ)g2(x1, x2). Then we have

hλ(x1, x2) = λf1(x1) + (1− λ)f2(x2) ∈ λΦ(x) + (1− λ)Ψ(x)

for every (x, λ) ∈ bdKr × [0, 1] and (x1, x2) ∈ G(x). Hence, in view of (2.1), it
follows that 0 6∈ (I −hλ ◦G)(bdKr) for every λ ∈ [0, 1]. Applying property (vii)
one obtains Deg(I − g1 ◦G,Kr) = Deg(I − g2 ◦G,Kr). Comparing this equality
with (2.2) we get (ix). This completes the proof. �

Let us recall the notion of Clarke generalized gradient. If V : Rn → R is
a locally Lipschitzean function, then the generalized gradient ∂V (x0) of V at x0
is the set given by
(2.3)

∂V (x0) =
{
y ∈ Rn : lim sup

x→x0,t→0+

V (x+ tv)− V (x)
t

≥ 〈y, v〉 for every v ∈ Rn
}
.

Proposition 2.1 ([4], pp. 27, 29). The multivalued map ∂V : Rn ( Rn

defined by (2.3) is u.s.c. with nonempty compact convex values.

The symbol 〈A,B〉− we use below stands for the lower inner product of
nonempty compact subsets of Rn, i.e.

〈A,B〉− = inf{〈a, b〉 : a ∈ A, b ∈ B}.

Definition 2.2. A locally Lipschitzean function V : Rn → R is called
a nonsingular potential, provided there exists a nonzero radius r0 such that

(2.4) 〈∂V (x), ∂V (x)〉− > 0 for every ‖x‖ ≥ r0.

Observe that the condition: 0 6∈ ∂V (x) for ‖x‖ ≥ r0, is weaker than (2.4). If
we assume the continuous differentiability of the potential V , then ∂V (x) reduces
to the singleton {gradV (x)} (see [4]) and Definition 2.2 receives the following
form:
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A C1-map V : Rn → R is called a nonsingular potential, if for some r0 > 0,
V satisfies gradV (x) 6= 0 for every ‖x‖ ≥ r0.
Let V : Rn → R be a nonsingular potential. Then ∂V ∈ D0(Bn(r),Rn)

for every r ≥ r0. In view of Theorem 2.1(ii), the topological degree of ∂V is
independent of the choice of a radius r. Therefore the number

Ind(V ) = Deg(∂V,Bn(r)) (r ≥ r0),

called the index of the nonsingular potential V , is well defined. When V ∈ C1,
then the index of V is simply the Brouwer degree of gradV . For examples of
nonsingular potentials with nonzero index we refer reader to [17]. One of them
is contained in the following

Proposition 2.2. If V : Rn → R is a nonsingular potential satisfying

lim
‖x‖→∞

V (x) =∞,

then Ind(V ) = 1.

The classical method of guiding C1 functions, introduced by Liapunov, was
developed by Krasnosel’skii, Mawhin and other authors to studying the periodic
problems for ODE’s and differential inclusions of the form

.
x(t) ∈ F (t, x(t)), x(0) = x(T ).

In comparison with earlier papers (see [12], [22]) the guiding potentials employed
in [3] were supposed to be only locally Lipschitzean. Following this conception
we admit Definitions 2.3, used subsequently in the study of periodic problem for
retarded differential inclusions.

Definition 2.3. Let F : [0, T ] × Rmn ( Rn be a µ-integrably bounded
multimap with compact values andM = max{‖µ‖1, T}. A nonsingular potential
V : Rn → R is called a guiding potential for F , if there is r0 > 0 such that for
every (t, x, x1, . . . , xm) ∈ (0, T )× Rn × Rmn, with ‖x‖ ≥ r0 and xi ∈ Bn(x,M)
for i = 1, . . . ,m, we have

(2.5) 〈∂V (x), F (t, x1, . . . , xm)〉− ≥ 0.

In the case when V is a nonsingular potential of C1 class, the condition (2.5)
is equivalent to

〈gradV (x), F (t, x1, . . . , xm)〉− ≥ 0.

Example. Let F : [0, T ]×Rmn ( Rn be a µ-integrably bounded multimap
with compact values. Suppose that there exist positive constants c, r such that
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for every (t, x1, . . . , xm) ∈ (0, T )× Rmn with ‖x1‖, . . . , ‖xm‖ ≥ r and for every
y ∈ F (t, x1, . . . , xm) there exists i ∈ {1, . . . ,m} such that

〈y, xi〉 ≥ c · ‖y‖ ‖xi‖.

Then the C1 nonsingular potential V : Rn → R given by V (x) = ‖x‖2/2 is
a guiding potential for F . Indeed, set r0 = max{r +M,M/(1− sin(arccos c))}.
It is not difficult to see that with this choice of r0 the statement of Definition 2.3
is satisfied. Moreover, Ind(V ) = 1, by Proposition 2.2.

3. Periodic problem

In the present section we discuss the periodic problem for retarded differential
inclusion of the form

(QF )

{ .
x(t) ∈ F (t, x(t− τ1), . . . , x(t− τm)) for t ∈ [0, T ] a.e.
x(t) = x(t+ T ) for every t ∈ [−τ, 0],

where F : [0, T ]×Rmn ( Rn is a multivalued map and solutions are understood
in the sense of Carathéodory.
Consider the following diagram

Cn[−τ, 0]
SF◦ Cn[−τ, T ]

S−→ Cn[−τ, 0],

where SF is the solution set map associated to the problem

(CF )

{ .
x(t) ∈ F (t, x(t− τ1), . . . , x(t− τm)) for t ∈ [0, T ] a.e.
x|[−τ,0] = y

and the function S is given by

S(x)(t) = x(t+ T )

for every t ∈ [−τ, 0]. In the study of problem (QF ) an important role will be
played by a multivalued map PF : Cn[−τ, 0]( Cn[−τ, 0] defined by PF = S◦SF
and called the Poincaré operator for the problem (CF ).
To establish an existence theorem for the periodic problem (QF ) we will

show that the degree of a compact vector field I−PF associated to the Poincaré
operator for the boundary problem (CF ) is nonzero on some ballKr in Cn[−τ, 0].
This idea is illustrated in the following

Proposition 3.1. Let F : [0, T ] × Rmn ( Rn be an integrably bounded
u-Carathéodory multimap with compact convex values and PF be the Poincaré
operator for problem (CF ). If 0 6∈ (I − PF )(bdKr) for some r > 0 and Deg(I −
PF ,Kr) 6= 0, then the periodic problem (QF ) has a solution.

Proof. By Theorem 1.1, the solution set map SF : Kr ( Cn[−τ, T ] as-
sociated to the Cauchy problem (CF ) is compact, u.s.c. with Rδ-values. The
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function S : Cn[−τ, T ]→ Cn[−τ, 0] is continuous. Therefore the Poincaré oper-
ator PF = S ◦ SF is decomposable and the compact vector field I − PF belongs
to the class FD(Kr, Cn[−τ, 0]). If Deg(I −PF ,Kr) 6= 0, then by Theorem 2.1(i)
there exist y ∈ Kr and x ∈ SF (y) such that y = S(x). Obviously, x is the
solution of (QF ), completing the proof. �

In order to check that Deg(I − PF ,Kr) 6= 0, we will use the method of
guiding potentials defined in the previous section. At first we list some auxiliary
lemmas. The following revokes the notion of a generalized Jacobian of a vector-
valued function (see paragraph 2.6 in [4] for details).

Lemma 3.1. Let F : [0, T ]×Rmn ( Rn be an integrably bounded u.s.c. map
with nonempty compact convex values. Let x : [−τ, T ] → Rn be any solution of
the problem (CF ). Then, for every t ∈ (0, T ), we have

∂x(t) ⊂ F (t, x(t− τ1), . . . , x(t− τm)),

where ∂x(t) stands for a generalized Jacobian of x at point t.

Proof. Let t0 ∈ (0, T ) and ε > 0 be arbitrary. Since F is u.s.c and x is
continuous, there is δ > 0 such that

(3.1) F (t, x(t− τ1), . . . , x(t− τm)) ⊂ F (t0, x(t0 − τ1), . . . , x(t0 − τm)) +Bn(ε)

for every t ∈ B(t0, δ) ∩ (0, T ). In particular, x is locally Lipschitzean. As
a consequence of Proposition 2.6.4 in [4] it follows that

∂x(t0) = co
{
lim
k→∞

.
x(tk) : tk −−−→

k→∞
t0, tk 6∈ (Ωx ∪ S)

}
,

where S ⊂ R is a set of Lebesgue measure zero and Ωx is a set of points, where x
is not differentiable. Put S := {t ∈ [0, T ] : .x(t) 6∈ F (t, x(t− τ1), . . . , x(t− τm))}.
Now from (3.1), we obtain

∂x(t0) ⊂ F (t0, x(t0 − τ1), . . . , x(t0 − τm)) +Bn(ε).

As ε > 0 was arbitrary, the proof is complete. �

Let V : Rn → R be a nonsingular potential. The generalized gradient ∂V
of V can be unbounded, in general. Therefore we quote the following observation,
made in [3].

Lemma 3.2. Let Mk = sup{|∂V (x)|+ : x ∈ Bn(k)} and η : Rn → R be
a function defined by

η(x) = 1 + (‖x‖ − k)Mk+2 + (k + 1− ‖x‖)Mk+1
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for k ≤ ‖x‖ ≤ k + 1, k = 0, 1, . . . Then η is continuous and a multimap W :
Rn ( Rn given by

(3.2) W (x) =
∂V (x)
η(x)

is u.s.c. with nonempty compact convex values, satisfying |W (x)|+ ≤ 1 for every
x ∈ Rn.

In the sequel we will also use the following lemma proved in [3].

Lemma 3.3. Let V : Rn → R be a nonsingular potential and let W (x) =
∂V (x)/η(x), x ∈ Rn. Then for each r > r0 there exists tr ∈ (0, T ] such that, for
every (x0, λ) ∈ Sn−1(r)× [0, 1] and any solution x : [0, T ]→ Rn of the following
problem

(CW )

{ .
x(t) ∈W (x(t)) for t ∈ [0, T ] a.e.
x(0) = x0,

we have

0 6∈ λ(x(t)− x0) + (1− λ)∂V (x0) for every t ∈ (0, tr].

Now, we formulate the main result of the paper. The calculation of Deg(I −
PF ,Kr) carried out in the proof of this theorem rests on some homotopy argu-
ments, which will allow us to compare this degree with the index of a guiding
potential.

Theorem 3.1. Let F : [0, T ] × Rmn ( Rn be a µ-integrably bounded u.s.c.
multimap with compact convex values and V : Rn → R be a guiding potential for
F with Ind(V ) 6= 0. Then the periodic problem (QF ) has a solution.

Proof. Let r0 > 0 be such that (2.4) and (2.5) are fulfilled. Take r >
r0 +max{‖µ‖1, T}.
Step 1. Consider the family (Cλ) of boundary value problems{ .
x(t) ∈ (1− λ)W (x(t)) + λF (t, x(t− τ1), . . . , x(t− τm)) for t ∈ [0, T ] a.e.
x|[−τ,0] = y,

and let Sλ : Cn[−τ, 0]( Cn[−τ, T ] be a multivalued map such that

Sλ(y) = {x ∈ Cn[−τ, T ] : x is a solution of problem (Cλ)}.

Now, define the multivalued homotopy H : Kr× [0, 1]( Cn[−τ, T ] by H(y, λ) =
Sλ(y). In view of Corollary 1.1, the map H is compact, u.s.c. with Rδ-values.
Thus the superposition S ◦H belongs to D(Kr× [0, 1], Cn[−τ, 0]). We claim that

(3.3) 0 6∈ (I − S ◦H)(x, λ) for every (x, λ) ∈ bdKr × [0, 1].
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Suppose that 0 6∈ (I − S ◦ H( · , 1))(bdKr), otherwise (QF ) has a solution and
there is nothing to prove. Assume on the contrary that there exist λ ∈ [0, 1)
and a function y ∈ bdKr such that y ∈ S(H(y, λ)). Then there is a solution
x of the problem (Cλ) satisfying x(t + T ) = y(t) for every t ∈ [−τ, 0]. Thus
x(t) = x(t + T ) for each t ∈ [−τ, 0] and ‖x(t0)‖ = r for some t0 ∈ [0, T ]. Since
‖x(t)− x(s)‖ ≤ (1− λ)T + λ‖µ‖1 for every t, s ∈ [−τ, T ], we have

(3.4) ‖x(t)‖ ≥ ‖x(t0)‖ − (1− λ)T − λ‖µ‖1 ≥ r −max{‖µ‖1, T} ≥ r0

for every t ∈ [−τ, T ] and ‖x(t) − x(t − τi)‖ ≤ max{‖µ‖1, T} for any t ∈ [0, T ],
i = 1, . . . ,m. From Definition 2.3 it follows that

(3.5) 〈 ∂V (x(t)), F (t, x(t− τ1), . . . , x(t− τm)) 〉− ≥ 0

for every t ∈ (0, T ).
The function V ◦ x is continuous and V ◦ x(0) = V ◦ x(T ), hence it attains

a global extremum at some t? ∈ (0, T ). Since x is Lipschitzean near point t? (see
Lemma 3.1), we have

(3.6) 0 ∈ ∂(V ◦ x)(t?),

by Proposition 2.3.2 in [4]. Applying a Jacobian chain rule (Theorem 2.6.6, p. 72
in [4]) we get

∂(V ◦ x)(t?) ⊂ co〈 ∂V (x(t?)), ∂x(t?)〉,

where 〈 ∂V (x(t?)), ∂x(t?) 〉 = {〈ζ, ξ〉 : ζ ∈ ∂V (x(t?)), ξ ∈ ∂x(t?)}. The u.s.c.
multimap (1−λ)W +λF is integrably bounded and has compact convex values.
Hence, by Lemma 3.1,

(3.7) ∂x(t?) ⊂ (1− λ)W (x(t?)) + λF (t?, x(t? − τ1), . . . , x(t? − τm)).

Using some properties of the lower inner product (see Proposition 3.1, p. 224
in [3]), we get

〈 ∂V (x(t?)), ∂x(t?) 〉− ≥〈 ∂V (x(t?)), (1− λ)W (x(t?))
+ λF (t?, x(t? − τ1), . . . , x(t? − τm)) 〉− (by (3.7))

≥ (1− λ)〈 ∂V (x(t?)),W (x(t?)) 〉−

+ λ〈 ∂V (x(t?)), F (t?, x(t? − τ1), . . . , x(t? − τm)) 〉−

≥ 1− λ
η(x(t?))

〈 ∂V (x(t?)), ∂V (x(t?)) 〉− (by (3.5)).

From (2.4) (by (3.4)) it follows that the last quantity is strictly positive, which
yields a contradiction with (3.6). Hence (3.3) is verified.
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If we denote by SW : Cn[−τ, 0]( Cn[−τ, T ] the solution set map S0 and by
PW : Cn[−τ, 0] ( Cn[−τ, 0] the composition S ◦ SW , then PW is the Poincaré
operator associated to the following problem

(C′W )

{ .
x(t) ∈W (x(t)) for t ∈ [0, T ] a.e.
x|[−τ,0] = y.

Observe that vector fields I − PW = I − S ◦ H0 and I − PF = I − S ◦ H1
are homotopic in FD(Kr, Cn[−τ, 0]) (see Definition 2.1). By virtue of Theo-
rem 2.1(iii), it follows that

(3.8) Deg(I − PF ,Kr) = Deg(I − PW ,Kr).

Step 2. Let ψ : Cn[−τ, 0] → Cn[−τ, 0] be given by the formula ψ(y)(t)
= y(0) and Ψ = ψ ◦ PW . Define a homotopy h : Cn[−τ, T ] × [0, 1] → Cn[−τ, 0]
by h(x, λ) = (1− λ)S(x) + λ(ψ ◦ S)(x). Clearly h is continuous. Let us remind
that the multifunction SW is compact and belongs to the class J(Kr, Cn[−τ, T ]).
We assert that

(3.9) 0 6∈ (I − hλ ◦ SW )(x) for all (x, λ) ∈ bdKr × [0, 1].

Suppose there is λ ∈ [0, 1] and y ∈ bdKr satisfying y ∈ h(SW (y), λ). Then
we get x : [−τ, T ] → Rn which is a solution of (C′W ), with an initial condition
given by y. Moreover, y(t) = (1− λ)x(t+ T ) + λx(T ) for every t ∈ [−τ, 0]. Let
t0 ∈ [−τ, 0] be such that ‖y(t0)‖ = r. Obviously, there is a natural number k,
with t0+kT ∈ [0, T ]. Since y(t0) = (1−λ)kx(t0+kT )+(1−λ)k−1λx(T )+ . . .+
(1− λ)λx(T ) + λx(T ), we have

‖y(t0)− x(t)‖ ≤ (1− λ)k‖x(t0 + kT )− x(t)‖+ (1− λ)k−1λ‖x(T )− x(t)‖
+ . . .+ (1− λ)λ‖x(T )− x(t)‖+ λ‖x(T )− x(t)‖

≤ (1− λ)k
∫ T

0
‖ .x(s)‖ ds+ . . .+ λ

∫ T

0
‖ .x(s)‖ ds

≤ (1− λ)kT + (1− λ)k−1λT + . . .+ λT = T

for every t ∈ [0, T ]. Thus

(3.10) ‖x(t)‖ ≥ ‖y(t0)‖ − T ≥ r0 for every t ∈ [0, T ].

Let us remark that the statement of Lemma 3.1 for autonomous differential
inclusions without retards is valid, too. Thus, using this lemma for the solution x,
we get

(3.11) ∂x(t) ⊂W (x(t)) for every t ∈ (0, T ).

Analogously, like in Step 1, there is t? ∈ (0, T ), as V ◦x(0) = V ◦x(T ), such that

0 ∈ co 〈 ∂V (x(t?)), ∂x(t?) 〉.
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On the other hand, we have

〈 ∂V (x(t?)), ∂x(t?) 〉− ≥ 〈 ∂V (x(t?)),W (x(t?)) 〉− (by (3.11))

=
1

η(x(t?))
〈 ∂V (x(t?)), ∂V (x(t?))〉− > 0

(by (3.10) and (2.4)). From this a contradiction follows immediately and (3.9)
is verified.

Now, from Theorem 2.1(vii) we obtain

Deg(I − PW ,Kr) = Deg(I − h0 ◦ SW ,Kr)(3.12)

= Deg(I − h1 ◦ SW ,Kr) = Deg(I −Ψ,Kr).

Step 3. Consider the n-dimensional subspace En = {y ∈ Cn[−τ, 0] : y =
const} of Cn[−τ, 0]. The map Ψ ∈ D(Kr, Cn[−τ, 0]) has a decomposition of
the form DΨ : Kr

SW◦ Cn[−τ, T ]
ψ◦S−−→ Cn[−τ, 0]. Let us notice that (ψ ◦

S)(Cn[−τ, T ]) ⊂ En. As a consequence of the contractivity property (Theo-
rem 2.1(iv)) we get

(3.13) Deg(I −Ψ,Kr) = Deg(I −Ψ|En ,Kr ∩ En).

Step 4. Let P̃W : Rn ( Rn be the Poincaré operator for the problem (CW ),
i.e. P̃W = evT ◦S̃W , where S̃W : Rn ( Cn[0, T ] is the solution set map for (CW )
and evT is the evaluation at point T . If we denote by Θ : En → Rn a natural
isometry, then Ψ|En = Θ−1 ◦ P̃W ◦Θ. In view of Theorem 2.1(v) it follows that

Deg(I −Ψ|En ,Kr ∩ En) = Deg(I −Θ ◦Ψ|En ◦Θ−1, Bn(r))(3.14)

= Deg(I − P̃W , Bn(r)).

Step 5. Let tr be the point in the statement of Lemma 3.3. Define the maps
k : Cn[0, T ] × [0, 1] → Rn, P̃ trW : Rn ( Rn by k(x, λ) = x((1 − λ)T + λtr) and
P̃ trW = evtr ◦S̃W , where evtr is the evaluation at point tr. It is easy to prove that

(3.15) 0 6∈ (I − kλ ◦ S̃W )(x) for every (x, λ) ∈ Sn−1(r)× [0, 1].

Indeed, in the contrary case, there is (x0, λ) ∈ Sn−1(r) × [0, 1] and a solution
x : [0, T ] → Rn of (CW ) such that x(0) = x((1 − λ)T + λtr). Thus V ◦ x(0) =
V ◦x(tλ) for some tλ ∈ (0, T ]. The function V ◦x is continuous in [0, tλ], hence it
has a global extremum at some point t? ∈ (0, tλ). Observe that ‖x(t?)‖ ≥ r0, as
‖x(0)‖ = r. By the same reason as in Step 2, we have 0 ∈ co 〈 ∂V (x(t?)), ∂x(t?) 〉
and 〈 ∂V (x(t?)), ∂x(t?) 〉− > 0. The contradiction is evident and (3.15) follows.
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The maps k and S̃W satisfy the assumptions of Theorem 2.1(vii). Therefore
we get

Deg(I − P̃W , Bn(r)) = Deg(I − k0 ◦ S̃W , Bn(r))(3.16)

= Deg(I − k1 ◦ S̃W , Bn(r))
= Deg(I − P̃ trW , B

n(r)).

Step 6. With the choice of r we have guaranteed that ∂V ∈ FD(Bn(r),Rn).
From (3.15) it follows that P̃ trW − I is in the class FD(Bn(r),Rn) too. In view
of Lemma 3.3 it is clear that

0 6∈ λ(P̃ trW − I)(x) + (1− λ)∂V (x) for every (x, λ) ∈ S
n−1(r)× [0, 1].

Applying properties (ix) and (vi) of the degree (Theorem 2.1), we gather

(3.17) Deg(∂V,Bn(r)) = Deg(P̃ trW − I,B
n(r)) = (−1)n+1Deg(I − P̃ trW , B

n(r)).

Remind that Deg(∂V,Bn(r)) = Ind(V ) and the index of the nonsingular poten-
tial V is nonzero. Thus Deg(I − P̃ trW , Bn(r)) 6= 0.
Combining calculations in above steps (compare (3.8), (3.12)–(3.14), (3.16)

and (3.17)) one obtains Deg(I − PF ,Kr) 6= 0. By Proposition 3.1, the periodic
problem (QF ) has a solution. This completes the proof. �

Corollary 3.1. Let F : [0, T ] × Rmn ( Rn be a bounded u-Carathéodory
multimap with compact convex values and V : Rn → R be a guiding potential of
C1 class for F with Ind(V ) 6= 0. Then the periodic problem (QF ) has a solution.

Proof. Let us remind that Theorem 1.1 characterizes the solution set of
problem (CF ) with the right-hand side F of u-Carathéodory type. Therefore the
proof becomes strictly analogous to that of Theorem 1.1. The only difference
is that by the current assumptions of F we can’t apply Lemma 3.1 to the map
(1 − λ)W + λF . Thus we don’t know, whether the condition (3.7) in step one
of the previous proof is true or not. However, it is sufficient to know that the
generalized Jacobian ∂x(t?) satisfies

(3.18) 〈gradV (x(t?)), ∂x(t?)〉− ≥
1− λ
η(x(t?))

〈gradV (x(t?)), gradV (x(t?))〉.

To show this, take a sequence tk → t? such that tk ∈ Ix = {s ∈ (0, T ) :
.
x(s) ∈

(1−λ)W (x(s))+λF (s, x(s− τ1), . . . , x(s− τm))} and lim
.
x(tk) exists. Then, for

each of the point tk ∈ Ix, we have

〈 gradV (x(tk)),
.
x(tk) 〉 ≥

1− λ
η(x(tk))

〈gradV (x(tk)), gradV (x(tk))〉.

The way to estimate the inner product 〈gradV (x(tk)),
.
x(tk)〉 remains the same

as for the term 〈∂V (x(t?)), ∂x(t?)〉− in Step 1 of the proof of Theorem 3.1.
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Using the continuous differentiability of the guiding potential V and passing to
the limit one obtains

〈gradV (x(t?)), lim
.
x(tk)〉 ≥

1− λ
η(x(t?))

〈gradV (x(t?)), gradV (x(t?))〉.

Since ∂x(t?) = co {lim
.
x(tk) : tk → t?, tk ∈ Ix}, the last inequality justifies

(3.18) and completes the proof. �

Corollary 3.2. Let F : R × Rmn ( Rn be an integrably bounded u.s.c.
and T-periodic with respect to the first variable multimap with compact convex
values. If V : Rn → R is a guiding potential for F |[0,T ]×Rmn with Ind(V ) 6= 0,
then there exists a T-periodic Carathéodory solution on R for the inclusion

.
x(t) ∈ F (t, x(t− τ1), . . . , x(t− τm)).
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