MULTIPLE NONTRIVIAL SOLUTIONS OF ELLIPTIC SEMILINEAR EQUATIONS

Kanishka Perera - Martin Schechter

Abstract. We find multiple solutions for semilinear boundary value problems when the corresponding functional exhibits local splitting at zero.

1. Introduction

In his studies of semilinear elliptic problems with jumping nonlinearities, Các [2] proved the following

Theorem 1.1. Let Ω be a bounded domain in \mathbb{R}^{n}, $n \geq 2$, with smooth boundary $\partial \Omega$. Let $0<\lambda_{0}<\ldots<\lambda_{k}<\ldots$ be the sequence of distinct eigenvalues of the eigenvalue problem

$$
\begin{cases}-\Delta u=\lambda u & \text { in } \Omega \tag{1.1}\\ u=0 & \text { on } \partial \Omega .\end{cases}
$$

Let $p(t)$ be a continuous function such that $p(0)=0$ and

$$
p(t) / t \rightarrow a \quad \text { as } t \rightarrow-\infty \quad \text { and } \quad p(t) / t \rightarrow b \quad \text { as } t \rightarrow \infty
$$

[^0]Assume that for some $k \geq 1$, we have $a \in\left(\lambda_{k-1}, \lambda_{k}\right)$, $b \in\left(\lambda_{k}, \lambda_{k+1}\right)$, and the only solution of

$$
\begin{cases}-\Delta u=b u^{+}-a u^{-} & \text {in } \Omega \tag{1.2}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

is $u \equiv 0$, where $u^{ \pm}=\max [\pm u, 0]$. Assume further that

$$
\begin{equation*}
\frac{p(s)-p(t)}{s-t} \leq \nu<\lambda_{k+1}, \quad s, t \in \mathbb{R}, s \neq t \tag{1.3}
\end{equation*}
$$

Assume also that $p^{\prime}(0)$ exists and satisfies $p^{\prime}(0) \in\left(\lambda_{j-1}, \lambda_{j}\right)$ for some $j \leq k$. Then

$$
\begin{cases}-\Delta u=p(u) & \text { in } \Omega \tag{1.4}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

has at least two nontrivial solutions.

This theorem generalizes the work of Gallouët and Kavian [7] which required λ_{k} to be a simple eigenvalue and the left hand side of (1.3) to be sandwiched in between λ_{k-1} and λ_{k+1} and bounded away from both of them. Các proves a counterpart of the theorem in which the inequalities are reversed.

In the present paper we generalize this theorem and its reverse inequality counterpart by not requiring $p(t) / t$ to converge to limits at either $\pm \infty$ or 0 . Rather, we work with the primitive

$$
F(x, t):=\int_{0}^{t} f(x, s) d s
$$

and bound $2 F(x, t) / t^{2}$ near $\pm \infty$ and 0 (we replace $p(t)$ with a function $f(x, t)$ depending on x as well). Our main assumptions are

$$
\begin{gather*}
t\left[f\left(x, t_{1}\right)-f\left(x, t_{0}\right)\right] \leq a\left(t^{-}\right)^{2}+b\left(t^{+}\right)^{2}, \quad t_{j} \in \mathbb{R}, t=t_{1}-t_{0} \tag{1.5}\\
a_{0}\left(t^{-}\right)^{2}+b_{0}\left(t^{+}\right)^{2} \leq 2 F(x, t) \leq a_{1}\left(t^{-}\right)^{2}+b_{1}\left(t^{+}\right)^{2}, \quad|t|<\delta \tag{1.6}
\end{gather*}
$$

for some $\delta>0$,

$$
\begin{equation*}
a_{2}\left(t^{-}\right)^{2}+b_{2}\left(t^{+}\right)^{2}-W_{1}(x) \leq 2 F(x, t), \quad|t|>K \tag{1.7}
\end{equation*}
$$

for some $K>0$ and $W_{1} \in L^{1}(\Omega)$, where the constants $a, a_{0}, a_{1}, a_{2}, b, b_{0}, b_{1}, b_{2}$ are suitably chosen (they include the cases considered by Các). The advantage of such inequalities is that they do not restrict the expression $2 F(x, t) / t^{2}$ or $f(x, t) / t$ to any particular interval. Special cases of our theorems were proved by Li-Willem [9]

2. Statement of the theorems

Let Ω be a smooth, bounded domain in \mathbb{R}^{n}, and let A be a selfadjoint operator on $L^{2}(\Omega)$. We assume that

$$
\begin{equation*}
C_{0}^{\infty}(\Omega) \subset D:=D\left(|A|^{1 / 2}\right) \subset H^{T, 2}(\Omega) \tag{2.1}
\end{equation*}
$$

holds for some $T>0$ (T need not be an integer), and the eigenvalues of A satisfy

$$
0<\lambda_{0}<\ldots<\lambda_{k}<\ldots
$$

We use the notation

$$
a(u, v)=(A u, v), \quad a(u)=a(u, u), \quad u, v \in D
$$

Let $f(x, t)$ be a Carathéodory function on $\Omega \times \mathbb{R}$. This means that $f(x, t)$ is continuous in t for a.e. $x \in \Omega$ and measurable in x for every $t \in \mathbb{R}$. We assume that the function $f(x, t)$ satisfies

$$
\begin{equation*}
|f(x, t)| \leq C(|t|+1), \quad x \in \Omega, t \in \mathbb{R} \tag{2.2}
\end{equation*}
$$

We define

$$
\begin{align*}
\|u\|_{D} & :=\left\|A^{1 / 2} u\right\| \\
F(x, t) & :=\int_{0}^{t} f(x, s) d s \tag{2.3}\\
G(u) & :=\|u\|_{D}^{2}-2 \int_{\Omega} F(x, u) d x .
\end{align*}
$$

It is known that G is a continuously differentiable functional on the whole of D (cf. [17, p. 57]) and

$$
\left(G^{\prime}(u), v\right)_{D}=2(u, v)_{D}-2(f(u), v),
$$

where we write $f(u)$ in place of $f(x, u(x))$. In connection with the operator A, the following quantities are very useful. For each fixed positive integer ℓ we let N_{ℓ} denote the subspace of D spanned by the eigenfunctions corresponding to $\lambda_{0}, \ldots, \lambda_{\ell}$, and let $M_{\ell}=N_{\ell}^{\perp} \cap D$. Then $D=M_{\ell} \oplus N_{\ell}$. For real a, b we define

$$
I(u, a, b)=(A u, u)-a\left\|u^{-}\right\|^{2}-b\left\|u^{+}\right\|^{2},
$$

where $u^{ \pm}(x)=\max \{ \pm u(x), 0\}$.

$$
\begin{aligned}
\gamma_{\ell}(a) & =\sup \left\{I(v, a, 0): v \in N_{\ell},\left\|v^{+}\right\|=1\right\}, \\
\Gamma_{\ell}(a) & =\inf \left\{I(w, a, 0): w \in M_{\ell},\left\|w^{+}\right\|=1\right\}, \\
F_{1 \ell}(w, a, b) & =\sup \left\{I(v+w, a, b): v \in N_{\ell}\right\}, \\
F_{2 \ell}(v, a, b) & =\inf \left\{I(v+w, a, b): w \in M_{\ell}\right\}, \\
M_{\ell}(a, b) & =\inf \left\{F_{1 \ell}(w, a, b): w \in M_{\ell},\|w\|_{D}=1\right\}, \\
m_{\ell}(a, b) & =\sup \left\{F_{2 \ell}(v, a, b): v \in N_{\ell},\|v\|_{D}=1\right\},
\end{aligned}
$$

$$
\begin{aligned}
\nu_{\ell}(a) & =\sup \left\{b: M_{\ell}(a, b) \geq 0\right\} \\
\mu_{\ell}(a) & =\inf \left\{b: m_{\ell}(a, b) \leq 0\right\}
\end{aligned}
$$

Our first result is
Theorem 2.1. Assume that for some integers $l<m$ the following inequalities hold.

$$
\begin{equation*}
t\left[f\left(x, t_{1}\right)-f\left(x, t_{0}\right)\right] \leq a\left(t^{-}\right)^{2}+b\left(t^{+}\right)^{2}, \quad t_{j} \in \mathbb{R}, t=t_{1}-t_{0} \tag{2.4}
\end{equation*}
$$

where $b<\Gamma_{m}(a)$.

$$
\begin{equation*}
a_{0}\left(t^{-}\right)^{2}+b_{0}\left(t^{+}\right)^{2} \leq 2 F(x, t) \leq a_{1}\left(t^{-}\right)^{2}+b_{1}\left(t^{+}\right)^{2}, \quad|t|<\delta \tag{2.5}
\end{equation*}
$$

for some $\delta>0$, with $a_{0}, b_{0}<\lambda_{l+1}, a_{1}, b_{1}>\lambda_{l}, b_{0}>\mu_{l}\left(a_{0}\right)$, and $b_{1}<\nu_{l}\left(a_{1}\right)$.

$$
\begin{equation*}
a_{2}\left(t^{-}\right)^{2}+b_{2}\left(t^{+}\right)^{2}-W_{1}(x) \leq 2 F(x, t), \quad|t|>K \tag{2.6}
\end{equation*}
$$

for some $K \geq 0$, where $a_{2}, b_{2}<\lambda_{m+1}, b_{2}>\mu_{m}\left(a_{2}\right)$, and $W_{1} \in L^{1}(\Omega)$. Then the equation

$$
\begin{equation*}
A u=f(x, u), \quad u \in D \tag{2.7}
\end{equation*}
$$

has at least two nontrivial solutions.
In contrast to this we have
Theorem 2.2. Equation (2.7) will have at least two nontrivial solutions if we assume that for some integers $l>m$ the following inequalities hold:

$$
\begin{equation*}
t\left[f\left(x, t_{1}\right)-f\left(x, t_{0}\right)\right] \geq a\left(t^{-}\right)^{2}+b\left(t^{+}\right)^{2}, \quad t_{j} \in \mathbb{R}, t=t_{1}-t_{0} \tag{2.8}
\end{equation*}
$$

where $b>\gamma_{m}(a)$,

$$
\begin{equation*}
a_{0}\left(t^{-}\right)^{2}+b_{0}\left(t^{+}\right)^{2} \leq 2 F(x, t) \leq a_{1}\left(t^{-}\right)^{2}+b_{1}\left(t^{+}\right)^{2}, \quad|t|<\delta, \tag{2.9}
\end{equation*}
$$

for some $\delta>0$, with $a_{0}, b_{0}<\lambda_{l+1}, b_{0}>\mu_{l}\left(a_{0}\right)$ and $a_{1}, b_{1}>\lambda_{l}, b_{1}<\nu_{l}\left(a_{1}\right)$,

$$
\begin{equation*}
2 F(x, t) \leq a_{2}\left(t^{-}\right)^{2}+b_{2}\left(t^{+}\right)^{2}+W_{2}(x), \quad|t|>K \tag{2.10}
\end{equation*}
$$

for some $K \geq 0$, where $a_{2}, b_{2}>\lambda_{m}, b_{2}<\nu_{m}\left(a_{2}\right)$ and $W_{2} \in L^{1}(\Omega)$.
Immediate consequences of these theorems are
Corollary 2.1. Assume that for some integers $l<m$ the following inequalities hold:

$$
\begin{equation*}
t\left[f\left(x, t_{1}\right)-f\left(x, t_{0}\right)\right] \leq a t^{2}, \quad t_{j} \in \mathbb{R}, t=t_{1}-t_{0} \tag{2.11}
\end{equation*}
$$

where $a<\lambda_{m+1}$,

$$
\begin{equation*}
a_{0} t^{2} \leq 2 F(x, t) \leq a_{1} t^{2}, \quad|t|<\delta \tag{2.12}
\end{equation*}
$$

for some $\delta>0$, with $\lambda_{l}<a_{0} \leq a_{1}<\lambda_{l+1}$,

$$
\begin{equation*}
a_{2} t^{2}-W_{1}(x) \leq 2 F(x, t), \quad|t|>K, \tag{2.13}
\end{equation*}
$$

for some $K \geq 0$, where $a_{2}>\lambda_{m}$ and $W_{1} \in L^{1}(\Omega)$. Then the equation (2.7) has at least two nontrivial solutions.

Corollary 2.2. Equation (2.7) will have at least two nontrivial solutions if we assume that for some integers $l>m$ the following inequalities hold:

$$
\begin{equation*}
t\left[f\left(x, t_{1}\right)-f\left(x, t_{0}\right)\right] \geq a t^{2}, \quad t_{j} \in \mathbb{R}, t=t_{1}-t_{0} \tag{2.14}
\end{equation*}
$$

where $a>\lambda_{m}$,

$$
\begin{equation*}
a_{0} t^{2} \leq 2 F(x, t) \leq a_{1} t^{2}, \quad|t|<\delta \tag{2.15}
\end{equation*}
$$

for some $\delta>0$, with $\lambda_{l}<a_{0} \leq a_{1}<\lambda_{l+1}$,

$$
\begin{equation*}
2 F(x, t) \leq a_{2} t^{2}+W_{2}(x), \quad|t|>K \tag{2.16}
\end{equation*}
$$

for some $K \geq 0$, where $a_{2}<\lambda_{m+1}$ and $W_{2} \in L^{1}(\Omega)$.
It was shown in [15] that the functions $\gamma_{l}, \mu_{l}, \nu_{l-1}, \Gamma_{l-1}$ all emanate from the point $\left(\lambda_{l}, \lambda_{l}\right)$ and satisfy

$$
\Gamma_{l-1}(a) \leq \nu_{l-1}(a) \leq \mu_{l}(a) \leq \gamma_{l}(a)
$$

on their common domains. It would therefore give a weaker result if we assumed in Theorems 2.1 and 2.2 that $b_{0}>\gamma_{l}\left(a_{0}\right)$ and $b_{1}<\Gamma_{l}\left(a_{1}\right)$. However, the functions γ_{l}, Γ_{l} are defined on the whole of \mathbb{R}, while the others are not. For cases in which the other functions are not defined we state the following

TJEOREM 2.3. Theorems 2.1 and 2.2 remain true if we assume that (2.5) holds with $b_{0}>\gamma_{l}\left(a_{0}\right)$, and $b_{1}<\Gamma_{l}\left(a_{1}\right)$ for some $a_{0}, a_{1} \in \mathbb{R}$.

3. Some lemmas

The proofs of the theorems of Section 2 will be based on a series of lemmas.
Lemma 3.1. If $b<\Gamma_{l}(a)$, then there is an $\varepsilon>0$ such that

$$
\begin{equation*}
I(w, a, b) \geq \varepsilon\|w\|_{D}^{2}, \quad w \in M_{l} . \tag{3.1}
\end{equation*}
$$

Proof. By the continuity of Γ_{l}, there is a $t<1$ such that $b / t<\Gamma_{l}(a / t)$. Then,

$$
I(w, a / t, b / t)=\|w\|_{D}^{2}-\frac{a}{t}\left\|w^{-}\right\|^{2}-\frac{b}{t}\left\|w^{+}\right\|^{2} \geq 0, \quad w \in M_{l} .
$$

Therefore,

$$
I(w, a, b)=t\left[\|w\|_{D}^{2}-\frac{a}{t}\left\|w^{-}\right\|^{2}-\frac{b}{t}\left\|w^{+}\right\|^{2}\right]+(1-t)\|w\|_{D}^{2} \geq(1-t)\|w\|_{D}^{2}
$$

Lemma 3.2. If $b>\gamma_{l}(a)$, then there is an $\varepsilon>0$ such that

$$
\begin{equation*}
I(v, a, b) \leq-\varepsilon\|v\|_{D}^{2}, \quad v \in N_{l} . \tag{3.2}
\end{equation*}
$$

Proof. By the continuity of γ_{l}, there is a $t>1$ such that $b / t>\gamma_{l}(a / t)$.
Hence,

$$
I(v, a / t, b / t)=\|v\|_{D}^{2}-\frac{a}{t}\left\|v^{-}\right\|^{2}-\frac{b}{t}\left\|v^{+}\right\|^{2} \leq 0, \quad v \in N_{l},
$$

and

$$
I(v, a, b)=t\left[\|v\|_{D}^{2}-\frac{a}{t}\left\|v^{-}\right\|^{2}-\frac{b}{t}\left\|v^{+}\right\|^{2}\right]+(1-t)\|v\|_{D}^{2} \leq(1-t)\|v\|_{D}^{2}
$$

Lemma 3.3. If

$$
\begin{equation*}
t\left[f\left(x, t_{1}\right)-f\left(x, t_{0}\right)\right] \leq a\left(t^{-}\right)^{2}+b\left(t^{+}\right)^{2}, \quad t_{j} \in \mathbb{R}, t=t_{1}-t_{0} \tag{3.3}
\end{equation*}
$$

then
(3.4) $\left(G^{\prime}\left(v+w_{1}\right)-G^{\prime}\left(v+w_{0}\right), w\right) \geq 2 I(w, a, b), \quad v, w_{j} \in D, w=w_{1}-w_{0}$.

Proof. We have

$$
\left(f\left(x, v+w_{1}\right)-f\left(x, v+w_{0}\right), w\right) \leq a\left\|w^{-}\right\|^{2}+b\left\|w^{+}\right\|^{2} .
$$

Hence,

$$
\begin{aligned}
& \left(G^{\prime}\left(v+w_{1}\right)-G^{\prime}\left(v+w_{0}\right), w\right) / 2 \\
& \quad=\|w\|_{D}^{2}-\left(f\left(x, v+w_{1}\right)-f\left(x, v+w_{0}\right), w\right) \geq I(w, a, b)
\end{aligned}
$$

Lemma 3.4. If $f(x, t)$ satisfies (3.3), and $b<\Gamma_{m}(a)$, then there is a continuous map φ from N_{m} into M_{m} such that

$$
\begin{equation*}
J(v) \equiv G(v+\varphi(v))=\min _{w \in M_{m}} G(v+w) \in C^{1}\left(N_{m}, \mathbb{R}\right), \quad v \in N_{m} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
J^{\prime}(v)=G^{\prime}(v+\varphi(v)), \quad v \in N_{m} . \tag{3.6}
\end{equation*}
$$

Proof. In view of Lemmas 3.1 and 3.3, we have

$$
\left(G^{\prime}\left(v+w_{1}\right)-G^{\prime}\left(v+w_{0}\right), w\right) \geq \varepsilon\|w\|_{D}^{2}, \quad w \in M_{m}
$$

We can now apply a well known theorem of Castro [3] to arrive at the conclusion.

Lemma 3.5. If, in addition,

$$
\begin{equation*}
a_{0}\left(t^{-}\right)^{2}+b_{0}\left(t^{+}\right)^{2} \leq 2 F(x, t), \quad|t|<\delta, \tag{3.7}
\end{equation*}
$$

for some $\delta>0$, with $a_{0}, b_{0}<\lambda_{l+1}, b_{0}>\mu_{l}\left(a_{0}\right), l \leq m$, then there are $\varepsilon>0$, $r>0$ such that

$$
\begin{equation*}
J(v) \leq-\varepsilon\|v\|_{D}^{2}, \quad v \in N_{l} \cap B_{r} \tag{3.8}
\end{equation*}
$$

where $B_{r}=\left\{u \in D:\|u\|_{D} \leq r\right\}$.
Proof. Let q be any number satisfying

$$
\begin{array}{ll}
2<q \leq 2 n /(n-2 T), & 2 T<n \\
2<q<\infty, & n \leq 2 T
\end{array}
$$

It was shown in Schechter [16] that there is a continuous map $\tau: N_{l} \rightarrow M_{l}$ such that

$$
\begin{gather*}
\tau(s v)=s \tau(v), \quad s \geq 0 \tag{3.9}\\
I\left(v+\tau(v), a_{0}, b_{0}\right)=\inf _{w \in M_{l}} I\left(v+w, a_{0}, b_{0}\right), \quad v \in N_{l}, \tag{3.10}\\
\|\tau(v)\|_{D} \leq C\|v\|_{D}, \quad v \in N_{l} \tag{3.11}
\end{gather*}
$$

Then, for $u=v+\tau(v)$, we have by (2.2)

$$
\begin{aligned}
J(v) \leq G(u) & \leq I\left(u, a_{0}, b_{0}\right)+\int_{|u|>\delta}\left[a_{0}\left(u^{-}\right)^{2}+b_{0}\left(u^{+}\right)^{2}-2 F(x, u)\right] d x \\
& \leq F_{2 l}\left(v, a_{0}, b_{0}\right)+C \int_{|u|>\delta}|u|^{q} d x \\
& \leq m_{l}\left(a_{0}, b_{0}\right)\|v\|_{D}^{2}+o\left(\|v\|_{D}^{2}\right) \leq-\varepsilon\|v\|_{D}^{2}
\end{aligned}
$$

for r sufficiently small (cf. [17], p. 159-160).
Lemma 3.6. Assume that

$$
\begin{equation*}
a\left(t^{-}\right)^{2}+b\left(t^{+}\right)^{2}-W_{1}(x) \leq 2 F(x, t), \quad|t|>K \tag{3.12}
\end{equation*}
$$

for some $K \geq 0$, where $a, b<\lambda_{m+1}, b \geq \mu_{m}(a), l \leq m$, and $W_{1} \in L^{1}(\Omega)$. Then there is a $K_{1}<\infty$ such that

$$
\begin{equation*}
J(v) \leq K_{1} \tag{3.13}
\end{equation*}
$$

If $b>\mu_{m}(a)$, then

$$
\begin{equation*}
J(v) \rightarrow-\infty \quad \text { as }\|v\|_{D} \rightarrow \infty \tag{3.14}
\end{equation*}
$$

Proof. For $u=v+w, v \in N_{m}, w \in M_{m}$, we have

$$
G(u) \leq I(u, a, b)+C \int_{|u|<K}|u|^{q} d x+\int_{\Omega} W_{1}(x) d x \leq I(u, a, b)+K^{\prime}
$$

Thus,

$$
\begin{aligned}
J(v) & =\inf _{w \in M_{m}} G(v+w) \leq \inf _{w \in M_{m}} I(v+w, a, b)+K^{\prime} \\
& =F_{2 m}(v, a, b)+K^{\prime} \leq m(a, b)\|v\|_{D}^{2}+K^{\prime} .
\end{aligned}
$$

If $b \geq \mu_{m}(a)$, then $m(a, b) \leq 0$. This proves (3.13). If $b>\mu_{m}(a)$, then $m(a, b)<$ 0 . This proves (3.14).

Lemma 3.7. If $l<m$, and $\lambda_{l}<a, b<\lambda_{m+1}$, then there are continuous functions $\xi: N_{m} \cap M_{l} \rightarrow N_{l}, \eta: N_{m} \cap M_{l} \rightarrow M_{m}$ homogeneous of degree one and such that, for $y \in N_{m} \cap M_{l}$,

$$
\begin{align*}
I(\xi(y)+\eta(y)+y, a, b) & =\sup _{v \in N_{l}} \inf _{w \in M_{m}} I(v+w+y, a, b) \tag{3.15}\\
& =\inf _{w \in M_{m}} \sup _{v \in N_{l}} I(v+w+y, a, b) .
\end{align*}
$$

Proof. Let $L_{y}(v, w)=I(v+w+y, a, b)$. Then L_{y} is a strictly convex lower semicontinuous functional in $w \in M_{m}$, and strictly concave and continuous in $v \in N_{l}$. By a theorem of Ky-Fan (cf. [6]), for each $y_{0} \in N_{m} \cap M_{l}$ there are unique elements $v_{0}=\xi\left(y_{0}\right) \in N_{l}, w_{0}=\eta\left(y_{0}\right) \in M_{m}$ such that (3.15) holds, i.e., that

$$
L_{y_{0}}\left(v, w_{0}\right) \leq L_{y_{0}}\left(v_{0}, w_{0}\right) \leq L_{y_{0}}\left(v_{0}, w\right), \quad v \in N_{l}, w \in M_{m}
$$

The functions ξ, η are clearly homogeneous of degree one. To prove continuity, let $y_{j} \rightarrow y_{0}$ in $N_{l} \cap M_{m}$, and let $v_{j}=\xi\left(y_{j}\right), w_{j}=\eta\left(y_{j}\right)$. We note that the functions v_{j} and w_{j} are bounded in D. For otherwise, it is easy to show that

$$
\begin{array}{lll}
I\left(v+w_{j}+y_{j}, a, b\right) \rightarrow \infty & \text { as } j \rightarrow \infty, & \text { for any } v \in N_{l} \\
I\left(v_{j}+w+y_{j}, a, b\right) \rightarrow-\infty & \text { as } j \rightarrow \infty, & \text { for any } w \in M_{m}
\end{array}
$$

This would contradict (3.15). Thus there are renamed subsequences such that $v_{j} \rightarrow v_{1}, w_{j} \rightharpoonup w_{1}$ in D. Since

$$
I\left(v+w_{j}+y_{j}, a, b\right) \leq I\left(v_{j}+w_{j}+y_{j}, a, b\right) \leq I\left(v_{j}+w+y_{j}, a, b\right)
$$

for $v \in N_{l}, w \in M_{m}$, we have in the limit

$$
I\left(v+w_{1}+y_{0}, a, b\right) \leq I\left(v_{1}+w_{1}+y_{0}, a, b\right) \leq I\left(v_{1}+w+y_{0}, a, b\right)
$$

for $v \in N_{l}, w \in M_{m}$, showing that $v_{1}=v_{0}, w_{1}=w_{0}$. Since this is true for any subsequence, the result follows.

Lemma 3.8. If

$$
\begin{equation*}
2 F(x, t) \leq a_{1}\left(t^{-}\right)^{2}+b_{1}\left(t^{+}\right)^{2}, \quad|t| \leq \delta, \tag{3.16}
\end{equation*}
$$

for some $\delta>0$, with $a_{1}, b_{1}>\lambda_{l}, b_{1}<\nu_{l}\left(a_{1}\right), l<m$, then there are $\varepsilon>0, r>0$ such that

$$
\begin{equation*}
J(y+\xi(y)) \geq \varepsilon\|y\|_{D}^{2}, \quad y \in N_{m} \cap M_{l} \cap B_{r} . \tag{3.17}
\end{equation*}
$$

Proof. By Lemma 3.7 we have

$$
\begin{equation*}
\inf _{w \in M_{m}} I\left(\xi(y)+y+w, a_{1}, b_{1}\right)=\inf _{w \in M_{m}} \sup _{v \in N_{l}} I\left(v+y+w, a_{1}, b_{1}\right), \tag{3.18}
\end{equation*}
$$

for $y \in N_{m} \cap M_{l}$. Then for $y \in\left(N_{m} \cap M_{l} \cap B_{r}\right) \backslash\{0\}$,

$$
\begin{align*}
J(\xi(y)+y) & =G(\xi(y)+y+\varphi(\xi(y)+y)) \tag{3.19}\\
& \geq I\left(\xi(y)+y+\varphi(\xi(y)+y), a_{1}, b_{1}\right)-o\left(\|y\|_{D}^{2}\right) \\
& \geq \inf _{w \in M_{m}} I\left(\xi(y)+y+w, a_{1}, b_{1}\right)-o\left(\|y\|_{D}^{2}\right) \\
& =\inf _{w \in M_{m}} \sup _{v \in N_{l}} I\left(v+y+w, a_{1}, b_{1}\right)-o\left(\|y\|_{D}^{2}\right) \\
& \geq \inf _{w \in M_{m}} M_{l}(a, b)\|y+w\|_{D}^{2}-o\left(\|y\|_{D}^{2}\right) \\
& =M_{l}(a, b)\|y\|_{D}^{2}-o\left(\|y\|_{D}^{2}\right) \geq \varepsilon\|y\|_{D}^{2}
\end{align*}
$$

Lemma 3.9. Assume

$$
\begin{equation*}
t\left[f\left(x, t_{1}\right)-f\left(x, t_{0}\right)\right] \geq a\left(t^{-}\right)^{2}+b\left(t^{+}\right)^{2}, \quad t_{j} \in \mathbb{R}, t=t_{1}-t_{0} \tag{3.20}
\end{equation*}
$$

Then
(3.21) $\quad\left(G^{\prime}\left(v_{1}+w\right)-G^{\prime}\left(v_{0}+w\right), v\right) \leq 2 I(v, a, b), \quad v_{j}, w \in D, v=v_{1}-v_{0}$.

Proof. We have

$$
\left(f\left(x, v_{1}+w\right)-f\left(x, v_{0}+w\right), v\right) \geq a\left\|v^{-}\right\|^{2}+b\left\|v^{+}\right\|^{2}
$$

Hence
$\left(G^{\prime}\left(v_{1}+w\right)-G^{\prime}\left(v_{0}+w\right), v\right) / 2=\|v\|_{D}^{2}-\left(f\left(x, v_{1}+w\right)-f\left(x, v_{0}+w\right), v\right) \leq I(v, a, b)$.

Lemma 3.10. If $f(x, t)$ satisfies (3.20), and $b>\gamma_{m}(a)$, then there is a continuous map ψ from $M_{m} \rightarrow N_{m}$ such that

$$
\begin{equation*}
J(w) \equiv G(w+\psi(w))=\max _{v \in N_{m}} G(v+w) \in C^{1}\left(M_{m}, \mathbb{R}\right), \quad w \in M_{m} \tag{3.22}
\end{equation*}
$$

and

$$
\begin{equation*}
J^{\prime}(w)=G^{\prime}(w+\psi(w)), \quad w \in M_{m} . \tag{3.23}
\end{equation*}
$$

Proof. In view of Lemmas 3.2 and 3.9 we have

$$
\left(G^{\prime}\left(v_{1}+w\right)-G^{\prime}\left(v_{0}+w\right), v\right) \leq-\varepsilon\|v\|_{D}^{2}, \quad v \in N_{m}
$$

We can now apply the theorem of Castro [3] to obtain the conclusion.
Lemma 3.11. If, in addition,

$$
\begin{equation*}
a_{0}\left(t^{-}\right)^{2}+b_{0}\left(t^{+}\right)^{2} \leq 2 F(x, t), \quad|t|<\delta, \tag{2.24}
\end{equation*}
$$

for some $\delta>0$, with $a_{0}, b_{0}<\lambda_{l+1}, b_{0}>\mu_{l}\left(a_{0}\right), l>m$, then there are $\varepsilon>0$, $r>0$ such that

$$
\begin{equation*}
J(y+\eta(y)) \leq-\varepsilon\|y\|_{D}^{2}, \quad y \in N_{l} \cap M_{m} \cap B_{r} . \tag{3.25}
\end{equation*}
$$

Proof. For $y \in M_{m} \cap N_{l}$, let $u=y+\eta(y) \in M_{m}$. By (2.2),

$$
\begin{align*}
J(u) & =G(u+\psi(u)) \leq I\left(u+\psi(u), a_{0}, b_{0}\right)+o\left(\|u\|_{D}^{2}\right) \tag{3.26}\\
& \leq \sup _{v \in N_{m}} I\left(u+v, a_{0}, b_{0}\right)+o\left(\|u\|_{D}^{2}\right) \\
& =I\left(y+\eta(y)+\xi(y), a_{0}, b_{0}\right)+o\left(\|u\|_{D}^{2}\right) \\
& =\sup _{v \in N_{m}} \inf _{w \in M_{l}} I\left(y+v+w, a_{0}, b_{0}\right)+o\left(\|u\|_{D}^{2}\right) \\
& =\sup _{v \in N_{m}} F_{2 l}\left(y+v, a_{0}, b_{0}\right)+o\left(\|u\|_{D}^{2}\right) \\
& \leq \sup _{v \in N_{m}} m_{l}\left(a_{0}, b_{0}\right)\|y+v\|_{D}^{2}+o\left(\|u\|_{D}^{2}\right) \leq-\varepsilon\|y\|_{D}^{2}
\end{align*}
$$

for r sufficiently small (cf. [17, p. 159]).
Lemma 3.12. If

$$
\begin{equation*}
2 F(x, t) \leq a_{1}\left(t^{-}\right)^{2}+b_{1}\left(t^{+}\right)^{2}, \quad|t| \leq \delta \tag{3.27}
\end{equation*}
$$

for some $\delta>0$, with $a_{1}, b_{1}>\lambda_{l}, b_{1}<\nu_{l}\left(a_{1}\right), l>m$, then there are $\varepsilon>0, r>0$ such that

$$
\begin{equation*}
J(w) \geq \varepsilon\|w\|_{D}^{2}, \quad w \in M_{l} \cap B_{r} . \tag{3.28}
\end{equation*}
$$

Proof. We recall from Schechter [16] that there is a continuous map θ : $M_{l} \rightarrow N_{l}$ such that

$$
\begin{align*}
& \theta(s w)=s \theta(w), \quad s \geq 0 \tag{3.29}\\
& I\left(\theta(w)+w, a_{1}, b_{1}\right)=\sup _{v \in N_{l}} I\left(v+w, a_{1}, b_{1}\right), \quad w \in M_{l} . \tag{3.30}
\end{align*}
$$

Thus,

$$
\begin{aligned}
J(w) & \geq G\left(w+\theta(w), a_{1}, b_{1}\right) \geq I\left(w+\theta(w), a_{1}, b_{1}\right)-o\left(\|w\|_{D}^{2}\right) \\
& =\sup _{v \in N_{l}} I\left(v+w, a_{1}, b_{1}\right)-o\left(\|w\|_{D}^{2}\right) \\
& =F_{1 l}\left(w, a_{1}, b_{1}\right)-o\left(\|w\|_{D}^{2}\right) \\
& \geq M_{l}\left(a_{1}, b_{1}\right)\|w\|_{D}^{2}-o\left(\|w\|_{D}^{2}\right) \geq \varepsilon\|w\|_{D}^{2}
\end{aligned}
$$

for r sufficiently small.
Lemma 3.13. Assume that

$$
\begin{equation*}
2 F(x, t) \leq a\left(t^{-}\right)^{2}+b\left(t^{+}\right)^{2}+W_{1}(x), \quad|t|>K \tag{3.31}
\end{equation*}
$$

for some $K \geq 0$, where $a, b>\lambda_{m}, b \leq \nu_{m}(a), l \geq m$, and $W_{1} \in L^{1}(\Omega)$. Then there is a $K_{1}<\infty$ such that

$$
\begin{equation*}
J(w) \geq-K_{1}, \quad w \in M_{m} . \tag{3.32}
\end{equation*}
$$

If $b<\nu_{m}(a)$, then

$$
\begin{equation*}
J(w) \rightarrow \infty \quad \text { as }\|w\|_{D} \rightarrow \infty \tag{3.33}
\end{equation*}
$$

Proof. For $u=v+w, v \in N_{m}, w \in M_{m}$, we have

$$
G(u) \geq I(u, a, b)-C \int_{|u|<K}|u|^{q} d x-\int_{\Omega} W_{1}(x) d x \geq I(u, a, b)-K^{\prime} .
$$

Thus,

$$
\begin{aligned}
J(w) & =\sup _{v \in N_{m}} G(v+w) \geq \sup _{v \in N_{m}} I(v+w, a, b)-K^{\prime} \\
& =F_{1 m}(w, a, b)-K^{\prime} \geq M_{m}(a, b)\|w\|_{D}^{2}-K^{\prime} .
\end{aligned}
$$

If $b \leq \nu_{m}(a)$, then $M_{m}(a, b) \geq 0$. This proves (3.32). If $b<\nu_{m}(a)$, then $M_{m}(a, b)>0$. This proves (3.33).

Lemma 3.14. If

$$
\begin{equation*}
a_{0}\left(t^{-}\right)^{2}+b_{0}\left(t^{+}\right)^{2} \leq 2 F(x, t), \quad|t|<\delta \tag{3.34}
\end{equation*}
$$

for some $\delta>0$, with $b_{0}>\gamma_{l}\left(a_{0}\right), l \leq m$, then there are $\varepsilon>0, r>0$ such that

$$
\begin{equation*}
J(v) \leq-\varepsilon\|v\|_{D}^{2}, \quad v \in N_{l} \cap B_{r}, \tag{3.35}
\end{equation*}
$$

where $B_{r}=\left\{u \in D:\|u\|_{D} \leq r\right\}$.
Proof. Let q be any number satisfying

$$
\begin{array}{ll}
2<q \leq 2 n /(n-2 T), & 2 T<n \\
2<q<\infty, & n \leq 2 T
\end{array}
$$

By (2.2),

$$
\begin{aligned}
J(v) & \leq G(v) \leq I\left(v, a_{0}, b_{0}\right)+\int_{|v|>\delta}\left[a_{0}\left(v^{-}\right)^{2}+b_{0}\left(v^{+}\right)^{2}-2 F(x, v)\right] d x \\
& \leq-\varepsilon\|v\|_{D}^{2}+C \int_{|v|>\delta}|v|^{q} d x \leq-\varepsilon\|v\|_{D}^{2}+o\left(\|v\|_{D}^{2}\right) \leq-\varepsilon\|v\|_{D}^{2}
\end{aligned}
$$

for r sufficiently small (cf. [17, p. 60]).
Lemma 3.15. If

$$
\begin{equation*}
2 F(x, t) \leq a_{1}\left(t^{-}\right)^{2}+b_{1}\left(t^{+}\right)^{2}, \quad|t| \leq \delta \tag{3.36}
\end{equation*}
$$

for some $\delta>0$, with $b_{1}<\Gamma_{l}\left(a_{1}\right), l<m$, then there are $\varepsilon>0, r>0$ such that

$$
\begin{equation*}
J(v) \geq \varepsilon\|v\|_{D}^{2}, \quad v \in N_{m} \cap M_{l} \cap B_{r} . \tag{3.37}
\end{equation*}
$$

Proof. Let $u=v+\varphi(v) \in M_{l}$. Then

$$
\begin{aligned}
J(v)=G(u) & \geq I\left(u, a_{1}, b_{1}\right)+\int_{|u|>\delta}\left[a_{0}\left(u^{-}\right)^{2}+b_{0}\left(u^{+}\right)^{2}-2 F(x, u)\right] d x \\
& \geq \varepsilon\|u\|_{D}^{2}-C \int_{|u|>\delta}|u|^{q} d x \geq \varepsilon\|u\|_{D}^{2}-o\left(\|u\|_{D}^{2}\right) \\
& \geq \varepsilon\|v\|_{D}^{2}-o\left(\|v\|_{D}^{2}\right) \geq \varepsilon\|v\|_{D}^{2}
\end{aligned}
$$

for r sufficiently small, since $\|v\|_{D} \leq\|u\|_{D} \leq C\|v\|_{D}$.
Lemma 3.16. If

$$
\begin{equation*}
a_{0}\left(t^{-}\right)^{2}+b_{0}\left(t^{+}\right)^{2} \leq 2 F(x, t), \quad|t|<\delta, \tag{3.38}
\end{equation*}
$$

for some $\delta>0$ with $b_{0}>\gamma_{l}\left(a_{0}\right), l \geq m$, then there are $\varepsilon>0, r>0$ such that

$$
\begin{equation*}
J(w) \leq-\varepsilon\|w\|_{D}^{2}, \quad w \in N_{l} \cap M_{m} \cap B_{r} \tag{3.39}
\end{equation*}
$$

Proof. For $w \in M_{m} \cap N_{l}$, let $u=w+\psi(w) \in N_{l}$. By (2.2),

$$
\begin{aligned}
J(w) & =G(w+\psi(w))=G(u) \\
& \leq I\left(u, a_{0}, b_{0}\right)+\int_{|u|>\delta}\left[a_{0}\left(v^{-}\right)^{2}+b_{0}\left(u^{+}\right)^{2}-2 F(x, u)\right] d x \\
& \leq-\varepsilon\|u\|_{D}^{2}+C \int_{|u|>\delta}|u|^{q} d x \leq-\varepsilon\|u\|_{D}^{2}+o\left(\|u\|_{D}^{2}\right) \leq-\varepsilon\|u\|_{D}^{2}
\end{aligned}
$$

for r sufficiently small (cf. [17, p. 60]). Since $\|w\|_{D} \leq\|u\|_{D} \leq C\|w\|_{D}$, the result follows.

Lemma 3.17. If

$$
\begin{equation*}
2 F(x, t) \leq a_{1}\left(t^{-}\right)^{2}+b_{1}\left(t^{+}\right)^{2}, \quad|t| \leq \delta \tag{3.40}
\end{equation*}
$$

for some $\delta>0$, with $b_{1}<\Gamma_{l}\left(a_{1}\right), l>m$, then there are $\varepsilon>0, r>0$ such that

$$
\begin{equation*}
J(w) \geq \varepsilon\|w\|_{D}^{2}, \quad w \in M_{l} \cap B_{r} . \tag{3.41}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
G(w) & \geq I\left(w, a_{1}, b_{1}\right)+\int_{|w|>\delta}\left[a_{0}\left(u^{-}\right)^{2}+b_{0}\left(w^{+}\right)^{2}-2 F(x, w)\right] d x \\
& \geq \varepsilon\|w\|_{D}^{2}-C \int_{|w|>\delta}|w|^{q} d x \geq \varepsilon\|w\|_{D}^{2}-o\left(\|w\|_{D}^{2}\right) \\
& \geq \varepsilon\|w\|_{D}^{2}-o\left(\|w\|_{D}^{2}\right) \geq \varepsilon\|w\|_{D}^{2}
\end{aligned}
$$

for r sufficiently small. Since $J(w)=\sup _{v \in N_{l}} G(v+w) \geq G(w)$, the result follows.

4. The proofs

We prove the theorems of Section 2.
Proof of Theorem 2.1. By Lemma 3.4, it suffices to show that $J(v)$ has two nontrivial solutions. Now J is bounded from above by Lemma 3.6 and it satisfies (PS) by (3.14). Moreover,

$$
\begin{equation*}
J(v)<0, \quad v \in N_{l} \cap B_{r} \backslash\{0\} \tag{4.1}
\end{equation*}
$$

by Lemma 3.5, and

$$
\begin{equation*}
J(\xi(y)+y)>0, \quad y \in N_{m} \cap M_{l} \cap B_{r} \backslash\{0\} \tag{4.2}
\end{equation*}
$$

by Lemma 3.8. Thus J has a positive maximum on N_{m}. We can now apply a theorem of Perera [11] to obtain the desired conclusion.

Proof of Theorem 2.2. By Lemma 3.10, it suffices to show that $J(w)$ given by (3.22) has two nontrivial solutions. Now J is bounded from below by Lemma 3.13 and it satisfies (PS) by (3.33). Moreover,

$$
\begin{equation*}
J(w+\eta(w))<0, \quad w \in N_{l} \cap M_{m} \cap B_{r} \backslash\{0\} \tag{4.3}
\end{equation*}
$$

by Lemma 3.11, and

$$
\begin{equation*}
J(w)>0, \quad w \in M_{l} \cap B_{r} \backslash\{0\} \tag{4.4}
\end{equation*}
$$

by Lemma 3.12. Thus J has a negative minimum on M_{m}. We can now apply the theorem of Perera [11] to obtain the desired conclusion.

Proof of Theorem 2.3. With reference to Theorem 2.1, we note that by Lemma 3.4, it suffices to show that $J(v)$ has two nontrivial solutions. Now J is bounded from above by Lemma 3.6 and it satisfies (PS) by (3.14). Moreover,

$$
\begin{equation*}
J(v)<0, \quad v \in N_{l} \cap B_{r} \backslash\{0\} \tag{4.5}
\end{equation*}
$$

by Lemma 3.14, and

$$
\begin{equation*}
J(v)>0, \quad v \in N_{m} \cap M_{l} \cap B_{r} \backslash\{0\}, \tag{4.6}
\end{equation*}
$$

by Lemma 3.15. Thus J has a positive maximum on N_{m}. We can now apply a theorem of Brézis-Nirenberg [1] to obtain the desired conclusion. With respect to Theorem 2.2, we note that by Lemma 3.10, it suffices to show that $J(w)$ given by (3.22) has two nontrivial solutions. Now J is bounded from below by Lemma 3.13 and it satisfies (PS) by (3.33). Moreover,

$$
\begin{equation*}
J(w)<0, \quad w \in N_{l} \cap M_{m} \cap B_{r} \backslash\{0\}, \tag{4.7}
\end{equation*}
$$

by Lemma 3.16, and

$$
\begin{equation*}
J(w)>0, \quad w \in M_{l} \cap B_{r} \backslash\{0\}, \tag{4.8}
\end{equation*}
$$

by Lemma 3.17. Thus J has a negative minimum on M_{m}. We can now apply the theorem of Brézis-Nirenberg [1] to obtain the desired conclusion.

References

[1] H. Brézis and L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991), 939-964.
[2] N. P. CÁc, On nontrivial solutions of a Dirichlet problem whose jumping nonlinearity crosses a multiple eigenvalue, J. Differential Equations 80 (1989), 379-404.
[3] A. Castro, Hammerstein integral equations with indefinite kernel, Internat. J. Math. Math. Sci. 1 (1978), 187-201.
[4] K. C. Chang, Infinite-Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser Boston, Inc., Boston, MA, 1993.
[5] D. G. Costa and E. A. Silva, On a class of resonant problems at higher eigenvalues, Differential Integral Equations 83 (1995), 663-671.
[6] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North Holland, Amsterdam, 1976.
[7] T. Gallouët and O. Kavian, Résultats d'existence et de non-existence pour certains problèmes demi-linéaires à l'infini, Ann. Fac. Sci. Toulouse Math. (5) 3 (1981), 201-246.
[8] N. Hirano and T. Nishimura, Multiplicity results for semilinear elliptic problems at resonance and with jumping nonlinearities, J. Math. Anal. Appl. 180 (1993), 566-586.
[9] S. Li and M. Willem, Multiple solutions for asymptotically linear boundary value problems in which the nonlinearity crosses at least one eigenvalue, NoDEA Nonlinear Differential Equations Appl. 5 (1998), 479-490.
[10] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, SpringerVerlag, New York-Berlin, 1989.
[11] K. Perera, Homological local linking, Abstr. Appl. Anal. 3 (1998), 181-189.
[12] \qquad , Applications of local linking to asymptotically linear elliptic problems at resonance, NoDEA Nonlinear Differential Equations Appl. 6 (1999), 55-62.
[13] K. Perera and M. Schechter, The Fučik spectrum and critical groups, Proc. Amer. Math. Soc. (to appear).
[14] , Type (II) regions between curves of the Fučik spectrum and critical groups, Topol. Methods Nonlinear Anal. 12 (1998), 227-243.
[15] M. Schechter, The Fučik spectrum, Indiana Univ. Math. J. 43 (1994), 1139-1157.
[16] \qquad , Type (II) regions between curves of the Fučik spectrum, NoDEA Nonlinear Differential Equations Appl. 4 (1997), 459-476.
[17] , Linking Methods in Critical Point Theory, Birkhäuser Boston, Inc., Boston, MA, 1999.

Kanishka Perera

Department of Mathematical Sciences
Florida Institute of Technology
Melbourne, FL 32901-6997, USA
E-mail address: kperera@winnie.fit.edu
Martin Schechter
Department of Mathematics
University of California, Irvine
Irvine, CA 92697-3875, USA
E-mail address: mschecht@math.uci.edu

[^0]: 2000 Mathematics Subject Classification. Primary 35J65, 58E05, 49J27.
 Key words and phrases. Semilinear elliptic PDE, variational methods, critical point theory, local splitting.

