ATTRACTOR AND DIMENSION FOR DISCRETIZATION
 OF A DAMPED WAVE EQUATION WITH PERIODIC NONLINEARITY

Shengfan Zhou

Abstract

The existence and Hausdorff dimension of the global attractor for discretization of a damped wave equation with the periodic nonlinearity under the periodic boundary conditions are studied for any space dimension. The obtained Hausdorff dimension is independent of the mesh sizes and the space dimension and remains small for large damping, which conforms to the physics.

1. Introduction

Consider the damped wave equation with periodic nonlinearity

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}+\alpha \frac{\partial u}{\partial t}-\triangle u+g(u)=f, \quad x \in \Omega, t \geq 0 \tag{1}
\end{equation*}
$$

with the periodic boundary conditions

$$
\left\{\begin{array}{l}
\left.u(x, t)\right|_{x \in \Gamma_{j}}=\left.u(x, t)\right|_{x \in \Gamma_{j+n}}, \tag{2}\\
\left.\left(-\left.\frac{\partial u}{\partial \nu}(x, t)\right|_{x \in \Gamma_{j}}=\right) \frac{\partial u}{\partial x_{j}}(x, t)\right|_{x \in \Gamma_{j}} \\
=\left.\frac{\partial u}{\partial x_{j}}(x, t)\right|_{x \in \Gamma_{j+n}}\left(=\left.\frac{\partial u}{\partial \nu}(x, t)\right|_{x \in \Gamma_{j+n}}\right), \\
j=1, \ldots, n, t>0,
\end{array}\right.
$$

2000 Mathematics Subject Classification. 35L05, 35L20.
Key words and phrases. Wave equation, finite difference, global attractor, Hausdorff dimension.
and the initial value conditions

$$
u(x, 0)=u_{0}(x), \quad \frac{\partial u}{\partial t}(x, 0)=u_{1}(x), \quad x \in \Omega
$$

where $u=u(x, t)$ is a real-valued function on $\Omega \times[0, \infty), f=f(x) \in L^{2}(\Omega)$, $\alpha>0, D(-\triangle)=H_{\text {per }}^{2}(\Omega)$, the space of H^{2} functions which are spatially periodic, $\Omega=\prod_{j=1}^{n}(0,1) \subset \mathbb{R}^{n}, n \in \mathbb{N}$,

$$
\Gamma_{j}=\partial \Omega \cap\left\{x_{j}=0\right\}, \quad \Gamma_{j+n}=\partial \Omega \cap\left\{x_{j}=1\right\}
$$

are the faces of the boundary $\partial \Omega$ on $\Omega, j=1, \ldots, n$, and $g(u) \in C^{2}(\mathbb{R} ; \mathbb{R})$ satisfies:

$$
\begin{equation*}
|g(u)| \leq c, \quad g(u+T)=g(u), \quad T>0, \quad\left|g^{\prime}(u)\right| \leq C(\text { constant }) \tag{3}
\end{equation*}
$$

We consider the spatially finite difference discretized version of problem (1)-(2).
Let $m \in \mathbb{N}, h=1 / m$. We approximate a function $u(x): \Omega \rightarrow \mathbb{R}$ by $u=u_{k}$:

$$
u_{k}=u\left(k_{1} h, \ldots, k_{n} h\right)=u\left(\frac{k_{1}}{m}, \ldots, \frac{k_{n}}{m}\right)
$$

where $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n} \cap\left\{1 \leq k_{1}, \ldots, k_{n} \leq m\right\}$.
We can think of u_{k} as a vector in $\mathbb{R}^{m^{n}}$. For convenience, we reorder the subscripts of components of any $v \in \mathbb{R}^{m^{n}}$ as follows:
(4) $v=\left(v_{1 \ldots 111}, v_{1 \ldots 112}, \ldots, v_{1 \ldots 11 m}, \ldots, v_{1 \ldots 1 m 1}, v_{1 \ldots 1 m 2}, \ldots, v_{1 \ldots 1 m m}\right.$,

$$
\left.\ldots, v_{m m \ldots m 1}, v_{m m \ldots m 2}, \ldots, v_{m m \ldots m m}\right)^{T} \in \mathbb{R}^{m^{n}}
$$

where " T " is the transpose operation for matrixes. Let

$$
M=\left\{v \in \mathbb{R}^{m^{n}} \mid \text { subscripts of components of } v \text { are ordered as in (4) }\right\}
$$

Since we consider the periodic boundary conditions, we extend the indexes of any $v \in M$ by periodicity:

$$
\begin{equation*}
v_{k}=v_{\left(k_{1} \bmod (m)\right), \ldots,\left(k_{n} \bmod (m)\right)}, \quad \text { for all } k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n} \tag{5}
\end{equation*}
$$

where

$$
p \bmod (m)= \begin{cases}m & p \text { is a multiple of } m \\ p \bmod m & \text { otherwise }\end{cases}
$$

Let $D_{1}, \ldots, D_{n}, D, A$ denote the finite difference discretizations of the linear operators $\partial / \partial x_{1}, \ldots, \partial / \partial x_{n}, \nabla,-\Delta$ of the continuous version, respectively. For
$v \in M$, the $\left(k_{1}, \ldots, k_{n}\right)$-th component of v is denoted by $v_{\left(k_{1}, \ldots, k_{n}\right)}$, we define the linear operators $D_{1}, \ldots, D_{n}, A: M \rightarrow M$ by:

$$
\begin{aligned}
\left(D_{1} v\right)_{\left(k_{1}, \ldots, k_{n}\right)} & =m\left(v_{\left(k_{1}, \ldots, k_{n}\right)}-v_{\left(k_{1}-1, k_{2}, \ldots, k_{n}\right)}\right), \\
\left(D_{2} v\right)_{\left(k_{1}, \ldots, k_{n}\right)} & =m\left(v_{\left(k_{1}, \ldots, k_{n}\right)}-v_{\left(k_{1}, k_{2}-1, \ldots, k_{n}\right)}\right),
\end{aligned}
$$

$$
\begin{align*}
\left(D_{n} v\right)_{\left(k_{1}, \ldots, k_{n}\right)}= & m\left(v_{\left(k_{1}, \ldots, k_{n}\right)}-v_{\left(k_{1}, \ldots, k_{n}-1\right)}\right) \tag{6}\\
(A v)_{\left(k_{1}, \ldots, k_{n}\right)}= & m^{2}\left(2 n v_{\left(k_{1}, \ldots, k_{n}\right)}-v_{\left(k_{1}+1, k_{2}, \ldots, k_{n}\right)}-v_{\left(k_{1}-1, k_{2}, \ldots, k_{n}\right)}\right. \\
& \left.-\ldots-v_{\left(k_{1}, \ldots, k_{n}+1\right)}-v_{\left(k_{1}, \ldots, k_{n}-1\right)}\right)
\end{align*}
$$

and $D: M \rightarrow M \times \ldots \times M$ as

$$
D v=\left(\begin{array}{c}
D_{1 v} \\
\vdots \\
D_{n v}
\end{array}\right)
$$

where $\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n} \cap\left\{1 \leq k_{j} \leq m, j=1, \ldots, n\right\}$.
The spacially finite difference discretized version of the systems (1)-(2) can be written as

$$
\begin{equation*}
\frac{d^{2} u}{d t^{2}}+\alpha \frac{d u}{d t}+A u+G_{0}(u)=\Gamma \tag{7}
\end{equation*}
$$

and the initial value conditions as

$$
\begin{equation*}
u(0)=u^{(0)}, \quad \frac{d u}{d t}(0)=u^{(1)} \tag{8}
\end{equation*}
$$

where

$$
\begin{aligned}
u= & \left(u_{1 \ldots 111}, \ldots, u_{1 \ldots 11 m}, \ldots, u_{1 \ldots 1 m 1}, \ldots, u_{1 \ldots 1 m m}\right. \\
& \left.\ldots, u_{m m \ldots m 1}, \ldots, u_{m m \ldots m m}\right)^{T} \in M \\
u^{(i)}= & \left(u_{11 \ldots 11}^{(i)}, u_{11 \ldots 12}^{(i)}, \ldots, u_{m m \ldots m m}^{(i)}\right)^{T} \in M, \quad(i=0,1),
\end{aligned}
$$

and

$$
\Gamma=\left(\Gamma_{11 \ldots 11}, \ldots, \Gamma_{m m \ldots m m}\right)^{T} \in M
$$

the sampling of f with $\left(1 / m^{n}\right) \sum_{k_{1}, \ldots, k_{n}=1}^{m} \Gamma_{k_{1}, \ldots, k_{n}}^{2}$ uniformly bounded with respect to m, and

$$
G_{0}(u)=\left(g\left(u_{11 \ldots 11}\right), g\left(u_{11 \ldots 12}\right), \ldots, g\left(u_{m m \ldots m m}\right)\right)^{T} \in M
$$

the sampling of $g(u)$.
For system (7)-(8) where the nonlinearity $g(u)=\sin u$ in one space dimension $n=1$, Yin Yan in [1] proved the existence of the global attractor and gave an upper bound of Hausdorff dimension of the attractor for $\alpha>0$. But this upper bound is directly proportional to the coefficient α of damping when $\alpha \geq \sqrt{6}$, and tends to infinity as $\alpha \rightarrow \infty$, which are not precise in the physical sense. S. Zhou in [2] improved the estimate in [1] and obtained a more strict upper bound of
the dimension for the global attractor by carefully estimating and splitting the positivity of the linear operator in the corresponding evolution equation of the first order in time. The obtained Hausdorff dimension of the global attractor is independent of the mesh sizes and space dimension remains small for large damping.

In this paper, by using similar technique in [2], we generalize the estimate of [2] to any space dimension $n \in \mathbb{N}$ and obtain an upper bound of the Hausdorff dimension of the global attractor for system (7)-(8). The result is the following theorem.

Theorem 1. The semigroup determined by (7)-(8) possesses a global attractor in M and the Hausdorff dimension d_{H} of the global attractor satisfies:
(9) $d_{H} \leq 2+\min \left\{\ell \mid \ell \in \mathbb{N}, \frac{1}{\ell} \sum_{j=1}^{[\ell / 2]+1} \frac{1}{\widetilde{\lambda}_{j}} \leq \frac{\lambda_{1} \alpha^{2}}{4 C^{2} \sqrt{\alpha^{2}+4 \lambda_{1}}\left(\alpha+\sqrt{\alpha^{2}+4 \lambda_{1}}\right)}\right\}$,

$$
\begin{equation*}
\leq 2+\min \left\{\ell \mid \ell \in \mathbb{N}, \frac{1}{\ell} \sum_{j=1}^{[\ell / 2]+1} \frac{1}{\widetilde{\lambda}_{j}} \leq \frac{4 \alpha^{2}}{C^{2} \sqrt{\alpha^{2}+16 \pi^{2}}\left(\alpha+\sqrt{\alpha^{2}+16 \pi^{2}}\right)}\right\} \tag{10}
\end{equation*}
$$

Where $\lambda_{1}=4 m^{2} \sin ^{2} \pi / m$ and $16 \leq \lambda_{1}=\widetilde{\lambda}_{1} \leq \widetilde{\lambda}_{2} \leq \ldots \leq \widetilde{\lambda}_{\ell} \leq \ldots \leq \widetilde{\lambda}_{[m / 2]^{n}+1}$ are the ordering, from small to large, of set

$$
\begin{equation*}
\left\{16\left(l_{1}^{2}+\ldots+l_{n}^{2}\right) \mid 0 \leq l_{1}, \ldots, l_{n} \leq[m / 2] \quad \text { but } l_{1}+\ldots+l_{n} \geq 1\right\} \tag{11}
\end{equation*}
$$

Particularly, if

$$
\lambda_{1}^{2} \alpha^{2}>4 C^{2} \sqrt{\alpha^{2}+4 \lambda_{1}}\left(\alpha+\sqrt{\alpha^{2}+4 \lambda_{1}}\right),
$$

then $d_{H} \leq 2$.
It is easy to see from (9) that d_{H} is uniformly bounded for sufficiently large α because

$$
\begin{equation*}
\frac{\lambda_{1}^{2} \alpha^{2}}{4 C^{2} \sqrt{\alpha^{2}+4 \lambda_{1}}\left(\alpha+\sqrt{\alpha^{2}+4 \lambda_{1}}\right)} \rightarrow \frac{\lambda_{1}^{2}}{8 C^{2}} \tag{12}
\end{equation*}
$$

as $\alpha \rightarrow \infty$.

2. Preliminaries

At first, we consider the properties of operator A. Obviously, the linear operator $A: M \rightarrow M$ defined by (6) is symmetric, so it can be diagonalized. For the eigenvalues of A, we have the following information.

Let

$$
e(l, i)= \begin{cases}1 & \text { if } l=0 \tag{13}\\ \sin \left(\frac{2 l \pi}{m} i\right) & \text { if } 1 \leq l \leq\left[\frac{m}{2}\right] \\ \cos \left(\frac{2(m-l) \pi}{m} i\right) & \text { if }\left[\frac{m}{2}\right]+1 \leq l \leq m-1\end{cases}
$$

where $[m / 2]$ is the largest integer not greater than $m / 2$, and for any $0 \leq$ $l_{1}, \ldots, l_{n} \leq m-1$ and $1 \leq k_{1}, \ldots, k_{n} \leq m$, define $e\left(l_{1}, \ldots, l_{n}\right) \in M$ by

$$
\begin{equation*}
e\left(l_{1}, \ldots, l_{n}\right)_{\left(k_{1}, \ldots, k_{n}\right)}=e\left(l_{1}, k_{1}\right) \cdot \ldots \cdot e\left(l_{n}, k_{n}\right) \tag{14}
\end{equation*}
$$

Lemma 1. The eigenvalues of A are as follows:

$$
\begin{equation*}
\lambda_{\left(l_{1}, \ldots, l_{n}\right)}=4 m^{2}\left(\sin ^{2} \frac{l_{1} \pi}{m}+\ldots+\sin ^{2} \frac{l_{n} \pi}{m}\right) \tag{15}
\end{equation*}
$$

and the corresponding eigenvectors are $e\left(l_{1}, \ldots, l_{n}\right)$, i.e.,

$$
\begin{equation*}
A e\left(l_{1}, \ldots, l_{n}\right)=4 m^{2}\left(\sin ^{2} \frac{l_{1} \pi}{m}+\ldots+\sin ^{2} \frac{l_{n} \pi}{m}\right) e\left(l_{1}, \ldots, l_{n}\right) \tag{16}
\end{equation*}
$$

for any $l_{1}, \ldots, l_{n}=0, \ldots, m-1$. Particularly, 0 is a simple eigenvalue of A with the corresponding eigenvector

$$
\begin{equation*}
e=\left(e_{\left(k_{1}, \ldots, k_{n}\right)}\right) \in M, \quad \text { where } e_{\left(k_{1}, \ldots, k_{n}\right)}=1\left(1 \leq k_{1}, \ldots, k_{n} \leq m\right) \tag{17}
\end{equation*}
$$

Proof. It is easy to see from (13)-(14) that for any $0 \leq l_{1}, \ldots, l_{n} \leq m-1$, $k_{1}, \ldots, k_{n} \in \mathbb{Z}$,

$$
e\left(l_{1}, \ldots, l_{n}\right)_{\left(k_{1}, \ldots, k_{n}\right)}=e\left(l_{1}, \ldots, l_{n}\right)_{\left(k_{1} \bmod (m), \ldots, k_{n} \bmod (m)\right)} .
$$

Here we consider the case $0 \leq l_{1}, \ldots, l_{n} \leq[m / 2]$ only. In other cases, we can prove the lemma similarly.

Write $\beta_{i}=2 l_{i} \pi / m, i=1, \ldots, n$. By (6), (13) and (14), it is easy to check that for any $0 \leq l_{1}, \ldots, l_{n} \leq m-1, k_{1}, \ldots, k_{n} \in \mathbb{Z}$,
$\frac{1}{m^{2}} A e\left(l_{1}, \ldots, l_{n}\right)_{\left(k_{1}, \ldots, k_{n}\right)}=4\left(\sin ^{2} \frac{l_{1} \pi}{m}+\ldots+\sin ^{2} \frac{l_{n} \pi}{m}\right) e\left(l_{1}, \ldots, l_{n}\right)_{\left(k_{1}, \ldots, k_{n}\right)}$.
The proof is completed.
Let q_{1} and q_{2} are two different arrangements of $l_{1}, \ldots, l_{n}, 0 \leq l_{1}, \ldots, l_{n} \leq$ $m-1$, then by (15), we have $\lambda_{q_{1}}=\lambda_{q_{2}}$. Since $\sin x \geq 2 x / \pi$ for $x \in[0, \pi / 2]$,

$$
\begin{align*}
16 & \leq \lambda_{(1,0, \ldots, 0)}=\lambda_{(0,1, \ldots, 0)}=\ldots=\lambda_{(0, \ldots, 0,1)}=\lambda_{(m-1,0, \ldots, 0)} \tag{18}\\
& =\lambda_{(0, m-1, \ldots, 0)}=\ldots=\lambda_{(0, \ldots, 0, m-1)}=4 m^{2} \sin ^{2} \frac{\pi}{m} \\
& \leq \lambda_{\left(l_{1}, \ldots, l_{n}\right)} \leq 4 m^{2}
\end{align*}
$$

and it is easy to see that if one/ones of l_{1}, \ldots, l_{n} is/are replaced by $m-l_{1}$ or $m-l_{2}$ or \ldots or $m-l_{n}$, respectively, then the corresponding eigenvalue of A remains invariant for any $0 \leq l_{1}, \ldots, l_{n} \leq[m / 2]$ and $l_{1}+\ldots+l_{n} \geq 1$. For example, we have
$\lambda_{\left(l_{1}, \ldots, l_{n}\right)}=\lambda_{\left(m-l_{1}, \ldots, m-l_{n}\right)}, \quad$ for all $0 \leq l_{1}, \ldots, l_{n} \leq[m / 2]$ but $l_{1}+\ldots+l_{n} \geq 1$.
So, we need to consider the case of $0 \leq l_{1}, \ldots, l_{n} \leq[m / 2]$ only.
Let $z, z^{(1)}, z^{(2)} \in M$ with their components $z_{k_{1} \ldots k_{n}}, z_{k_{1} \ldots k_{n}}^{(1)}, z_{k_{1} \ldots k_{n}}^{(2)}$ for $1 \leq$ $k_{1}, \ldots, k_{n} \leq m$. We define the weighted inner products and norms as

$$
\begin{align*}
\left(z^{(1)}, z^{(2)}\right) & =\frac{1}{m^{n}} \sum_{k_{1}, \ldots, k_{n}=1}^{m} z_{k_{1} \ldots k_{n}}^{(1)} z_{k_{1} \ldots k_{n}}^{(2)} \\
|z| & =(z, z)^{1 / 2}=\left(\frac{1}{m^{n}} \sum_{k_{1} \ldots k_{n}=1}^{m} z_{k_{1} \ldots k_{n}}^{2}\right)^{1 / 2}, \tag{19}\\
\|z\| & =(A z, z)^{1 / 2}=(D z, D z)^{1 / 2}
\end{align*}
$$

Write $E=\{e\}^{\perp M}$, the orthogonal complement of $\operatorname{span}\{e\}$ in M, which is an invariant subspace of the linear operator A. It is easy to see that $|\cdot|$ is a norm in $M,\|\cdot\|$ is only a semi-norm in M, but it is a norm in E. We also have the following inequality:

$$
\begin{equation*}
\|z\|^{2} \geq \lambda_{(1,0, \ldots, 0)}|z|^{2} \geq 16|z|^{2}, \quad \text { for all } z \in E \tag{20}
\end{equation*}
$$

which corresponds to the Poincáre inequality.
Let

$$
E_{0}=(E,|\cdot|), \quad E_{1}=(E,\|\cdot\|)
$$

and

$$
V_{0}=\left(E_{1} \times S^{1}\right) \times\left(E_{0} \times R\right), \quad V_{1}=E_{1} \times E_{0}
$$

where $S^{1}=R^{1} / T Z$ is the one-dimensional torus. Introduce a orthogonal projector

$$
P: M \mapsto\{e\}^{\perp M}=E,
$$

which induces a projector from V_{0} to V_{1} (also denoted by P). Write $\bar{u}=P u$, $\bar{\Gamma}=P \Gamma$, then

$$
\begin{aligned}
& \bar{u}=u-\left(\frac{1}{m^{n}} \sum_{k_{1}, \ldots, k_{n}=1}^{m} u_{k_{1} \ldots k_{n}}\right) e, \\
& \bar{\Gamma}=\Gamma-\left(\frac{1}{m^{n}} \sum_{k_{1}, \ldots, k_{n}=1}^{m} \Gamma_{k_{1} \ldots k_{n}}\right) e,
\end{aligned}
$$

and the projection of system (7) to E is

$$
\begin{equation*}
\frac{d^{2} \bar{u}}{d t^{2}}+\alpha \frac{d \bar{u}}{d t}+A \bar{u}+G_{0}(u)-\left(\frac{1}{m^{n}} \sum_{k_{1}, \ldots, k_{n}=1}^{m} g\left(u_{k_{1} \ldots k_{n}}\right)\right) e=\bar{\Gamma} \tag{21}
\end{equation*}
$$

and the initial value conditions (8) is

$$
\begin{equation*}
\bar{u}(0)=\overline{u^{(0)}}, \quad \frac{d \bar{u}}{d t}(0)=\overline{u^{(1)}} \tag{22}
\end{equation*}
$$

where

$$
\overline{u^{(i)}}=u^{(i)}-\left(\frac{1}{m^{n}} \sum_{k_{1}, \ldots, k_{n}=1}^{m} u_{k_{1} \ldots k_{n}}^{(i)}\right) e, \quad(i=0,1) .
$$

Since $G_{0}(u)$ in (7) is globally Lipschitzian continuous with respect to u in M and equation (7) can be solved backwards in time t, globally existence and uniqueness of solutions of (7) are evident for any $t \in R$. If $u(t) \in M$ is a solution of (7), then $u(t)$ can be decomposed into

$$
\begin{equation*}
u(t)=\bar{u}(t)+m(t) e \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
m(t)=\frac{1}{m^{n}} \sum_{k_{1}, \ldots, k_{n}=1}^{m} u_{k_{1} \ldots k_{n}} \tag{24}
\end{equation*}
$$

Since (7) is invariant if we add an amount $l T e(l \in \mathbb{Z})$ to u for any integer l, the solution $u(t)$ of (7) induces a nonlinear flow

$$
S(t):\left(u^{(0)}, u^{(1)}\right) \in V_{0} \rightarrow\left(u(t), \frac{d u}{d t}(t)\right) \in V_{0}, \quad t \geq 0
$$

3. Global attractor

Firstly, we consider the absorbing properties of flow $\left.S(t)\right|_{V_{1}}, t \geq 0$, in V_{1}. Let $\varphi=(\bar{u}, \bar{v})^{T}, \bar{v}=d \bar{u} / d t+\varepsilon \bar{u}$, where ε is chosen as

$$
\begin{equation*}
\varepsilon=\frac{\lambda_{1} \alpha}{\alpha^{2}+4 \lambda_{1}} \tag{25}
\end{equation*}
$$

where $\lambda_{1}=\lambda_{(1,0, \ldots, 0)}=4 m^{2} \sin ^{2} \pi / m$, then system (21) can be written as

$$
\begin{equation*}
\varphi_{t}+\Lambda \varphi+G(\varphi)=H \tag{26}
\end{equation*}
$$

where

$$
\begin{gather*}
H=(0, \bar{\Gamma})^{T}, \quad G(\varphi)=\left(0, G_{0}(u)-\left(\frac{1}{m^{n}} \sum_{k_{1}, \ldots, k_{n}=1}^{m} g\left(u_{k_{1} \ldots k_{n}}\right)\right) e\right)^{T} \\
\Lambda=\left(\begin{array}{cc}
\varepsilon I & -I \\
A-\varepsilon(\alpha-\varepsilon) I & (\alpha-\varepsilon) I
\end{array}\right) . \tag{27}
\end{gather*}
$$

By (19) and (20), we can define the inner product and norm in V_{1} as

$$
\begin{equation*}
(\varphi, \psi)_{V_{1}}=\left(\left.A\right|_{E} \overline{u_{1}}, \overline{u_{2}}\right)+\left(\overline{v_{1}}, \overline{v_{2}}\right), \quad|\varphi|_{V_{1}}=(\varphi, \varphi)_{V_{1}}^{1 / 2} \tag{28}
\end{equation*}
$$

for $\varphi=\left(\overline{u_{1}}, \overline{v_{1}}\right)^{T}, \psi=\left(\overline{u_{2}}, \overline{v_{2}}\right)^{T} \in V_{1}$.
Lemma 2. For any $\varphi=(\bar{u}, \bar{v})^{T} \in V_{1}$,

$$
\begin{equation*}
(\Lambda \varphi, \varphi)_{V_{1}} \geq \sigma|\varphi|_{V_{1}}^{2}+\frac{\alpha}{2}|\bar{v}|^{2} \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma=\frac{\lambda_{1} \alpha}{\sqrt{\alpha^{2}+4 \lambda_{1}}\left(\alpha+\sqrt{\alpha^{2}+4 \lambda_{1}}\right)} . \tag{30}
\end{equation*}
$$

Proof. From (27) and (28), for any $\varphi=(\bar{u}, \bar{v})^{T} \in V_{1}$, we have

$$
\begin{aligned}
& (\Lambda \varphi, \varphi)_{V_{1}}-\sigma|\varphi|_{V_{1}}^{2}-\frac{\alpha}{2}|\bar{v}|^{2} \\
& \quad=(\varepsilon-\sigma)\|\bar{u}\|^{2}+\left(\frac{\alpha}{2}-\varepsilon-\sigma\right)|\bar{v}|^{2}-\varepsilon(\alpha-\varepsilon)(\bar{u}, \bar{v}) \quad \text { by }(20) \\
& \quad \geq(\varepsilon-\sigma)\|\bar{u}\|^{2}+\left(\frac{\alpha}{2}-\varepsilon-\sigma\right)|\bar{v}|^{2}-\frac{\varepsilon(\alpha-\varepsilon)}{\sqrt{\lambda_{1}}}\|\bar{u}\| \cdot|\bar{v}| \\
& \quad \geq(\varepsilon-\sigma)\|\bar{u}\|^{2}+\left(\frac{\alpha}{2}-\varepsilon-\sigma\right)|\bar{v}|^{2}-\frac{\varepsilon \alpha}{\sqrt{\lambda_{1}}}\|\bar{u}\| \cdot|\bar{v}| .
\end{aligned}
$$

A simple computation by (25) and (30) shows

$$
4(\varepsilon-\sigma)\left(\frac{\alpha}{2}-\varepsilon-\sigma\right)=\frac{\varepsilon^{2} \alpha^{2}}{\lambda_{1}} .
$$

Thus, the proof is completed.

Let $\varphi=(\bar{u}, \bar{v})^{T} \in V_{1}$ be the solution of (26). Taking the inner product $(\cdot, \cdot)_{V_{1}}$ of (26) with $\varphi=(\bar{u}, \bar{v})^{T} \in V_{1}$ in which $\bar{v}=d \bar{u} / d t+\varepsilon \bar{u}$, we have

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}|\varphi|_{V_{1}}^{2}=-(\Lambda \varphi, \varphi)_{V_{1}}-(G(\varphi), \varphi)_{V_{1}}+(H, \varphi)_{V_{1}} \tag{31}
\end{equation*}
$$

By (28) and (29),

$$
\begin{equation*}
-2(\Lambda \varphi, \varphi)_{V_{1}} \leq-2 \sigma|\varphi|_{V_{1}}^{2}-\alpha|\bar{v}|^{2} \tag{32}
\end{equation*}
$$

(33) $-2(G(\varphi), \varphi)_{V_{1}}+2(H, \varphi)_{V_{1}}$

$$
\begin{aligned}
& =-2\left(G_{0}(u)-\left(\frac{1}{m^{n}} \sum_{k_{1}, \ldots, k_{n}=1}^{m} g\left(u_{k_{1} \ldots k_{n}}\right)\right) e, \bar{v}\right)+2(\bar{\Gamma}, \bar{v}) \\
& =2(\bar{\Gamma}, \bar{v})-2 \frac{1}{m^{n}} \sum_{l_{1}, \ldots, l_{n}=1}^{m}\left(g\left(u_{l_{1} \ldots l_{n}}\right)-\frac{1}{m^{n}} \sum_{k_{1}, \ldots, k_{n}=1}^{m} g\left(u_{k_{1} \ldots k_{n}}\right)\right) \bar{v}_{l_{1} \ldots l_{n}}
\end{aligned}
$$

$$
\leq 2|\bar{\Gamma}||\bar{v}|
$$

$$
+2|\bar{v}|\left(\frac{1}{m^{n}} \sum_{l_{1}, \ldots, l_{n}=1}^{m}\left(g\left(u_{l_{1} \ldots l_{n}}\right)-\frac{1}{m^{n}} \sum_{k_{1}, \ldots, k_{n}=1}^{m} g\left(u_{k_{1} \ldots k_{n}}\right)\right)^{2}\right)^{1 / 2}
$$

$$
\leq 2(|\bar{\Gamma}|+2 c) \cdot|\bar{v}| \leq \alpha|\bar{v}|^{2}+\frac{(|\bar{\Gamma}|+2 c)^{2}}{\alpha}
$$

where c is defined by (3), thus by (31), (32) and (33), we have

$$
\begin{equation*}
\frac{d}{d t}|\varphi|_{V_{1}}^{2} \leq-2 \sigma|\varphi|_{V_{1}}^{2}+\frac{(|\bar{\Gamma}|+2 c)^{2}}{\alpha} \tag{34}
\end{equation*}
$$

Applying the Gronwall inequality, we obtain the following absorbing inequality in the space V_{1} :
(35) $|\varphi(t)|_{V_{1}}^{2} \leq\left(\left\|\overline{u^{(0)}}\right\|^{2}+\left|\overline{u^{(1)}}+\varepsilon \overline{u^{(0)}}\right|^{2}\right) \exp (-2 \sigma t)+\frac{(|\bar{\Gamma}|+2 c)^{2}}{2 \sigma \alpha}[1-\exp (-2 \sigma t)]$, or

$$
\lim \sup _{t \rightarrow+\infty}|\varphi(t)|_{V_{1}}^{2} \leq \frac{(|\bar{\Gamma}|+2 c)^{2}}{2 \sigma \alpha}
$$

Now, we consider the existence of the global attractor of $S(t), t \geq 0$ in V_{1}.
If $u=u(t)$ is the solution of (7), then $\bar{u}=P u$, the orthogonal projection of $u \in M$ into $\bar{u} \in E$, satisfies (35). Thus we have

$$
u(t)=\bar{u}(t)+m(t) e
$$

and

$$
\begin{equation*}
\frac{d u}{d t}(t)=\frac{d \bar{u}}{d t}(t)+\frac{d m}{d t}(t) e \tag{36}
\end{equation*}
$$

where

$$
\begin{equation*}
m(t)=\frac{1}{m^{n}} \sum_{k_{1}, \ldots, k_{n}=1}^{m} u_{k_{1} \ldots k_{n}} \tag{37}
\end{equation*}
$$

By (7) and (37),

$$
\frac{d^{2} m}{d t^{2}}(t)+\alpha \frac{d m}{d t}(t)+\frac{1}{m^{n}} \sum_{k_{1}, \ldots, k_{n}=1}^{m} g\left(u_{k_{1} \ldots k_{n}}\right)=\frac{1}{m^{n}} \sum_{k_{1}, \ldots, k_{n}=1}^{m} \Gamma_{k_{1} \ldots k_{n}}
$$

Integrating this equality,
(38) $\left|\frac{d m}{d t}(t)\right|$

$$
\begin{aligned}
& =\left|\frac{d m}{d t}(0) e^{-\alpha t}+\frac{1}{m^{n}} \int_{0}^{t} \sum_{k_{1}, \ldots, k_{n}=1}^{m}\left(\Gamma_{k_{1} \ldots k_{n}}-g\left(u_{k_{1} \ldots k_{n}}(\tau)\right)\right) e^{-\alpha(t-\tau)} d \tau\right| \\
& \leq\left|\frac{d m}{d t}(0)\right| e^{-\alpha t}+\frac{1}{\alpha}(|\Gamma|+c)\left(1-e^{-\alpha t}\right) .
\end{aligned}
$$

By the definition of V_{0},

$$
\begin{equation*}
\left|\left(u(t), \frac{d u}{d t}(t)\right)\right|_{V_{0}}^{2}=\|\bar{u}(t)\|^{2}+|m(t)|^{2}+\left|\frac{d \bar{u}}{d t}(t)\right|^{2}+\left|\frac{d m}{d t}(t)\right|^{2} \tag{39}
\end{equation*}
$$

By the fact that $m(t) \in S^{1}=R / T Z$,

$$
\begin{equation*}
|m(t)|^{2} \leq T^{2} \tag{40}
\end{equation*}
$$

and, by (38),

$$
\begin{equation*}
\left|\frac{d m}{d t}(t)\right| \leq\left|u^{(1)}\right| e^{-\alpha t}+\frac{1}{\alpha}(|\Gamma|+c)\left(1-e^{-\alpha t}\right) \tag{41}
\end{equation*}
$$

By (20),
(42) $\|\bar{u}(t)\|^{2}+\left|\frac{d \bar{u}}{d t}(t)\right|^{2} \leq\|\bar{u}(t)\|^{2}+(|\bar{v}|+\varepsilon|\bar{u}|)^{2}$

$$
\leq\left(1+\frac{1}{8} \varepsilon^{2}\right)| | \bar{u}(t) \|^{2}+2|\bar{v}|^{2} \leq \mu\left(\|\bar{u}(t)\|^{2}+|\bar{v}|^{2}\right)
$$

where $\mu=\max \left\{1+\varepsilon^{2} / 8,2\right\}$, by (35) and (42),
(43) $\|\bar{u}(t)\|^{2}+\left|\frac{d \bar{u}}{d t}(t)\right|^{2}$

$$
\begin{aligned}
& \leq \mu\left\{\left(\left.\left(1+\frac{1}{8} \varepsilon^{2}\right)\left|\overline{u^{(0)}} \|^{2}+2\right| \overline{u^{(1)}}\right|^{2}\right) e^{-2 \sigma t}+\frac{(|\bar{\Gamma}|+2 c)^{2}}{2 \sigma \alpha}\left(1-e^{-2 \sigma t}\right)\right\} \\
& \leq \mu^{2}\left(| | \overline{u^{(0)}} \|^{2}+\left|\overline{u^{(1)}}\right|^{2}\right) e^{-2 \sigma t}+\frac{\mu(|\bar{\Gamma}|+2 c)^{2}}{2 \sigma \alpha}\left(1-e^{-2 \sigma t}\right)
\end{aligned}
$$

then together with (40), (41) and (43), (39) yields

Therefore, we have the following lemma.

Lemma 3. There exists a constant

$$
\rho_{0}=\left(T^{2}+\frac{\mu(|\bar{\Gamma}|+2 c)^{2}}{2 \sigma \alpha}+\frac{2}{\alpha^{2}}(|\Gamma|+c)^{2}\right)^{1 / 2}
$$

such that for any $\rho_{1}>\rho_{0}$ and any $R_{0}>0$, if the initial value $\left(u^{(0)}, u^{(1)}\right)^{T}$ satisfies

$$
\left\|u^{(0)}\right\|^{2}+\left|u^{(1)}\right|^{2} \leq R_{0}^{2}
$$

then the solution $u(t)$ of (7) satisfies

$$
\left|\left(u(t), \frac{d u}{d t}(t)\right)\right|_{V_{0}} \leq \rho_{1}
$$

for any

$$
t \geq T_{0}=\frac{1}{2 \sigma} \log \frac{\left(\mu^{2}+2\right) R_{0}^{2}+\frac{2}{\alpha^{2}}(|\Gamma|+c)^{2}}{\rho_{1}^{2}-\rho_{0}^{2}}
$$

As a direct consequence of Lemma 3, we have the existence of the global attractor.

Theorem 2. The nonlinear semi-flow of (7) possesses a global attractor β in V_{0}.

4. Hausdorff dimension of the global attractor

We note that the projection $P: M \rightarrow E$ induces a projection on V_{0}, denoted by P again.

Lemma 4. Let $S(t)$ be the semi-flow of (7) and $\omega(P S(t))$ be the ω-limit set of the restricted semi-flow of (26), we have

$$
\begin{equation*}
P \beta=\omega(P S(t)) . \tag{45}
\end{equation*}
$$

Proof. For any $(w, z)^{T} \in \beta$, assume that there exist initial conditions $u^{(0)}$, $u^{(1)}$ such that the solution $u(t)$ of (7) with $u(0)=u^{(0)}, \frac{d u}{d t}(0)=u^{(1)} \in M$, satisfies $u\left(t_{j}\right) \rightarrow w$ in $E_{1} \times S^{1}$ and $\frac{d u}{d t}\left(t_{j}\right) \rightarrow z$ in $E_{0} \times R$ for some sequence $t_{j} \rightarrow \infty$. Then $\bar{u}\left(t_{j}\right)=P u\left(t_{j}\right) \rightarrow \bar{w}=P w$ in E_{1} and $\frac{d \bar{u}}{d t}\left(t_{j}\right)=P \frac{d u}{d t}\left(t_{j}\right) \rightarrow \bar{z}=P z$ in E_{0}, i.e., $P ß \subset \omega(P S(t))$.

Conversely, assume for some initial conditions $u^{(0)}, u^{(1)}$ and a sequence $t_{j} \rightarrow$ ∞ such that $P u\left(t_{j}\right) \rightarrow \bar{w}$ in E_{1} and $P \frac{d u}{d t}\left(t_{j}\right) \rightarrow \bar{z}$ in E_{0}. Since $m(t)$ and $\frac{d m}{d t}(t)$ defined by (37) and (36) are both bounded, then there exists a subsequence of $\left\{t_{j}\right\}$, denoted by $\left\{t_{j_{i}}\right\}$, such that

$$
\left(u\left(t_{j_{i}}\right), \frac{d u}{d t}\left(t_{j_{i}}\right)\right) \rightarrow(w, z) \quad \text { in } V_{0}
$$

where $P w=\bar{w}, P z=\bar{z}$. This implies $\omega(P S(t)) \subset P \beta$.

Lemma 5. The Hausdorff dimension $d_{H}(\beta)$ of the global attractor $\beta \subset V_{0}$ satisfies

$$
\begin{equation*}
d_{H}(\beta) \leq d_{H}(P \beta)+2 \tag{46}
\end{equation*}
$$

Proof. Since $\beta \subset P \beta \times S^{1} \times R^{1}$, then

$$
d_{H}(\beta) \leq d_{H}\left(P \beta \times S^{1} \times R^{1}\right) \leq d_{H}(P \beta)+2
$$

According to the above lemmas, we only need to consider the Hausdorff dimension of $P \beta$, the global attractor of system (21).

To estimate the dimension of the attractor for system (21), we consider the first variation equation of (26)

$$
\begin{equation*}
\Psi^{\prime}=\overline{F^{\prime}(\varphi)(U, V)^{T}}=-\Lambda \Psi+G^{\prime}(\varphi)(U, V)^{T}, \Psi(0)=(\bar{\xi}, \bar{\eta})^{T} \in V_{1} \tag{47}
\end{equation*}
$$

where $\Psi=(\bar{U}, \bar{V})^{T}, \varphi=(\bar{u}, \bar{v})^{T}$ is a solution of (26)-(22),
(48) $\quad G^{\prime}(\varphi)(U, V)^{T}$

$$
=\left(0,\left(\begin{array}{c}
g^{\prime}\left(u_{11 \ldots 11}\right) U_{11 \ldots 11} \\
g^{\prime}\left(u_{11 \ldots 12}\right) U_{11 \ldots 12} \\
\vdots \\
g^{\prime}\left(u_{m m} \ldots m m\right) U_{m m \ldots m m}
\end{array}\right)-\left(\frac{1}{m^{n}} \sum_{k_{1}, \ldots, k_{n}=1}^{m} g^{\prime}\left(u_{k_{1} \ldots k_{n}}\right) U_{k_{1} \ldots k_{n}}\right) e\right)^{T}
$$

and

$$
u=\left(u_{11 \ldots 11}, u_{11 \ldots 12}, \ldots, u_{m m \ldots m m}\right)^{T} \in M
$$

is a solution of $(7),(8)$, and

$$
U=\left(U_{11 \ldots 11}, U_{11 \ldots 12}, \ldots, U_{m m \ldots m m}\right)^{T}, \quad V=\frac{d U}{d t}+\varepsilon U
$$

is a solution of the variation equation of (7), (8) with initial value conditions

$$
\begin{aligned}
U(0) & =\xi=\left(\xi_{11 \ldots 11}, \xi_{11 \ldots 12}, \ldots, \xi_{m m \ldots m m}\right)^{T} \\
V(0) & =\frac{d U}{d t}(0)+\varepsilon U(0)=\eta=\left(\eta_{11 \ldots 11}, \eta_{11 \ldots 12}, \ldots, \eta_{m m \ldots m m}\right)^{T} \\
\bar{U} & =U-\frac{1}{m^{n}} \sum_{k_{1}, \ldots, k_{n}=1}^{m} U_{k_{1} \ldots k_{n}} \\
\bar{\xi} & =\xi-\frac{1}{m^{n}} \sum_{k_{1}, \ldots, k_{n}=1}^{m} \xi_{k_{1} \ldots k_{n}} \\
\bar{\eta} & =\eta-\frac{1}{m^{n}} \sum_{k_{1}, \ldots, k_{n}=1}^{m} \eta_{k_{1} \ldots k_{n}} .
\end{aligned}
$$

Lemma 6. For any orthonormal family of elements of $V_{1},\left\{\xi_{j}, \eta_{j}\right\}_{j=1}^{\ell}$,

$$
\begin{equation*}
\sum_{j=1}^{\ell}\left|\xi_{j}\right|^{2} \leq \sum_{j=1}^{\ell} \frac{1}{\lambda_{j}} \tag{49}
\end{equation*}
$$

where $0<\lambda_{1} \leq \ldots \leq \lambda_{\ell} \leq \ldots \leq \lambda_{m^{n}-1}$ are eigenvalues of operator $\left.A\right|_{E}$.
Proof. See lemma VI. 6.3. in [3].
Lemma 7. Consider the system (26). Let Φ denote a set of ℓ vectors

$$
\left\{\Phi_{1}, \ldots, \Phi_{\ell}\right\}
$$

which are orthonormal in V_{1}. If

$$
\begin{equation*}
\sup _{\Phi \subset V_{1}} \sup _{\varphi \in P ß} \sum_{j=1}^{\ell}\left(\left(-\Lambda \Phi_{j}, \Phi_{j}\right)_{V_{1}}+\left(G^{\prime}(\varphi) \Phi_{j}, \Phi_{j}\right)_{V_{1}}\right)<0 \tag{50}
\end{equation*}
$$

then the Hausdorff dimension of the global attractor $P \beta$ of (26) is less than or equals to ℓ, i.e.,

$$
d_{H}(P \beta) \leq \ell
$$

Proof. This is a direct consequence of theorem V. 3.3, equations (V.3.47)(V.3.49) and identity (VI.6.24) of [3].

Lemma 8. The Hausdorff dimension $d_{H}(P \beta)$ of the global attractor for system (26) satisfies

$$
\begin{equation*}
d_{H} \leq \min \left\{\ell \mid \ell \in \mathbb{N}, \frac{1}{\ell} \sum_{j=1}^{[\ell / 2]+1} \frac{1}{\widetilde{\lambda}_{j}}<\frac{\lambda_{1} \alpha^{2}}{4 C^{2} \sqrt{\alpha^{2}+4 \lambda_{1}}\left(\alpha+\sqrt{\alpha^{2}+4 \lambda_{1}}\right)}\right\} \tag{51}
\end{equation*}
$$

where C is defined by (3), $\lambda_{1}=4 m^{2} \sin ^{2} \pi / m$ and $16 \leq \lambda_{1}=\widetilde{\lambda}_{1} \leq \ldots \leq \widetilde{\lambda}_{\ell} \leq$ $\ldots \leq \widetilde{\lambda}_{[m / 2]^{n}+1}$ are the ordering, from small to large, of set

$$
\left\{16\left(l_{1}^{2}+\ldots+l_{n}^{2}\right) \mid 0 \leq l_{1}, \ldots, l_{n} \leq[m / 2], \quad \text { but } l_{1}+\ldots+l_{n} \geq 1\right\}
$$

Proof. Let $\ell \in \mathbb{N}$ be fixed. Consider ℓ solutions $\Psi_{1}, \ldots, \Psi_{\ell}$ of (47). At a given time τ, let $Q_{\ell}(\tau)$ be the orthogonal projector in V_{1} onto the space spanned by $\Psi_{1}, \ldots, \Psi_{\ell}$. Let $\Phi^{j}(\tau)=\left(\overline{\xi^{j}}(\tau), \overline{\eta^{j}}(\tau)\right)^{T} \in V_{1}, j=1, \ldots, \ell$, denote an orthonormal basis of $Q_{\ell}(\tau) V_{1}=\operatorname{span}\left\{\Psi_{1}(\tau),(\tau), \ldots, \Psi_{\ell}(\tau)\right\}$. Consider

$$
\begin{aligned}
\operatorname{Tr} \overline{F^{\prime}(\varphi(\tau))} \circ Q_{\ell}(\tau) & =\sum_{j=1}^{\ell}\left(\overline{F^{\prime}(\varphi(\tau)) \Phi^{j}(\tau)}, \Phi^{j}(\tau)\right)_{V_{1}} \\
& =-\sum_{j=1}^{\ell}\left[\left(\Lambda \Phi^{j}, \Phi^{j}\right)_{V_{1}}-\left(G^{\prime}(\varphi) \Phi^{j}, \Phi^{j}\right)_{V_{1}}\right]
\end{aligned}
$$

By (29) and $\left|\Phi^{j}\right|_{V_{1}}=1$,

$$
-\left(\Lambda \Phi^{j}, \Phi^{j}\right)_{V_{0}} \leq-\sigma-\frac{\alpha}{2}\left|\overline{\eta^{j}}\right|^{2}
$$

By (28) and (48),

$$
\begin{aligned}
& \left|\left(G^{\prime}(\varphi) \Phi^{j}, \Phi^{j}\right)_{V_{1}}\right| \\
& \left.\quad=\left\lvert\,\left(\begin{array}{c}
g^{\prime}\left(u_{11 \ldots 11}\right) \overline{\xi_{11 \ldots 11}^{j}} \\
g^{\prime}\left(u_{11 \ldots 12}\right) \overline{\xi_{11 \ldots 12}^{j}} \\
\vdots \\
g^{\prime}\left(u_{m m \ldots m m}\right) \overline{\xi_{m m \ldots m m}^{j}}
\end{array}\right)-\left(\frac{1}{m^{n}} \sum_{k_{1}, \ldots, k_{n}=1}^{m} g^{\prime}\left(u_{k_{1} \ldots k_{n}}\right) \overline{\xi_{k_{1} \ldots k_{n}}^{j}}\right) e\right., \overline{\eta^{j}}\right) \mid \\
& \quad \leq\left|\frac{1}{m^{n}} \sum_{k_{1}, \ldots, k_{n}=1}^{m} g^{\prime}\left(u_{k_{1} \ldots k_{n}}\right) \cdot \overline{\xi_{k_{1} \ldots k_{n}}^{j}} \cdot \overline{\eta_{k_{1} \ldots k_{n}}^{j}}\right| \\
& \quad+\left\lvert\,\left(\left.\frac{1}{m^{n}} \sum_{k_{1}, \ldots, k_{n}=1}^{m} g^{\prime}\left(u_{\left.k_{1} \ldots k_{n}\right)} \overline{\xi_{i}^{j}}\right) \cdot\left(\frac{1}{m^{n}} \sum_{k_{1}, \ldots, k_{n}=1}^{m} \overline{\eta_{k_{1} \ldots k_{n}}^{j}}\right)|\leq 2 C| \overline{\xi^{j}}|\cdot| \overline{\eta^{j}} \right\rvert\, .\right.\right.
\end{aligned}
$$

Hence,

$$
\begin{align*}
\operatorname{Tr} \overline{F^{\prime}(\varphi(\tau))} \circ Q_{\ell}(\tau) & \leq-\ell \sigma-\frac{\alpha}{2} \sum_{j=1}^{\ell}\left|\overline{\eta^{j}}\right|^{2}+\sum_{j=1}^{\ell} 2 C\left|\overline{\xi^{j}}\right| \cdot\left|\overline{\eta^{j}}\right| \tag{52}\\
& \leq-\ell \sigma+\frac{2 C^{2}}{\alpha} \sum_{j=1}^{\ell}\left|\overline{\xi^{j}}\right|^{2} \quad(\operatorname{by}(49)) \\
& \leq-\ell \sigma+\frac{2 C^{2}}{\alpha} \sum_{j=1}^{\ell} \frac{1}{\lambda_{j}}
\end{align*}
$$

Since $\sin x \geq 2 x / \pi$ for $x \in[0,1 / 2]$, the eigenvalues of the operator $\left.A\right|_{E}$ as follows:

$$
\lambda_{\left(l_{1}, \ldots, l_{n}\right)}=4 m^{2}\left(\sin ^{2} \frac{l_{1} \pi}{m}+\ldots+\sin ^{2} \frac{l_{n} \pi}{m}\right) \geq 16\left(l_{1}^{2}+\ldots+l_{n}^{2}\right)
$$

for any $0 \leq \underset{\sim}{l_{1}}, \ldots, l_{n} \leq[m / 2]$.
Let $0<\widetilde{\lambda}_{1} \leq \ldots \leq \widetilde{\lambda}_{\ell} \leq \ldots \leq \widetilde{\lambda}_{[m / 2]^{n}+1}$ be the ordering, from small to large, of set

$$
\left\{16\left(l_{1}^{2} \ldots+l_{n}^{2}\right) \mid 0 \leq l_{1}, \ldots, l_{n} \leq[m / 2] \quad \text { but } l_{1}+\ldots+l_{n} \geq 1\right\}
$$

Thus, by (52),

$$
\begin{equation*}
\operatorname{Tr} \overline{F^{\prime}(\varphi(\tau))} \circ Q_{\ell}(\tau) \leq-\ell \sigma+\frac{4 C^{2}}{\alpha} \sum_{j=1}^{[\ell / 2]+1} \frac{1}{\widetilde{\lambda}_{j}} \tag{53}
\end{equation*}
$$

If

$$
\frac{1}{\ell} \sum_{j=1}^{[\ell / 2]+1} \frac{1}{\widetilde{\lambda}_{j}}<\frac{\alpha \sigma}{4 C^{2}}=\frac{\lambda_{1} \alpha^{2}}{4 C^{2} \sqrt{\alpha^{2}+4 \lambda_{1}}\left(\alpha+\sqrt{\alpha^{2}+4 \lambda_{1}}\right)}
$$

then, by (53),

$$
\operatorname{Tr} \overline{F^{\prime}(\varphi(\tau))} \circ Q_{\ell}(\tau)<0
$$

By Lemma 7, (51) is true. The proof is completed.
Corollary 1. If

$$
\lambda_{1}^{2} \alpha^{2}>4 C^{2} \sqrt{\alpha^{2}+4 \lambda_{1}}\left(\alpha+\sqrt{\alpha^{2}+4 \lambda_{1}}\right)
$$

then $d_{H}(P \beta)=0$.
Proof. In this case, $\ell=1$ in (52) and $\left(\overline{F^{\prime}(\varphi(\tau)) \Phi(\tau)}, \Phi(\tau)\right)_{V_{1}}<0$ for any unit element $\Phi=(\bar{\xi}, \bar{\eta})^{T} \in V_{1}$. So, the largest Lyapunov exponent of $P ß$: $\mu_{1}<0$, hence, $d_{H}(P \beta)=0$.

Combining with Theorem 2, Lemma 5, Lemma 8, and Corollary 1, we complete the proof of Theorem 1.

References

[1] Yin Yan, Attractors and dimensions for discretizations of a weakly damped Schrödinger equation and a sine-Gordon equation, Nonlinear Analysis, Theories, Methods \& Applications, vol. 20, 1993, pp. 1417-1452.
[2] Shenfan Zhou, Dimension of the Global Attractor for Discretization of Damped SineGordon Equation; Applied Math. Letters, vol. 12, 1999, pp. 95-100.
[3] R. TÉmam, Infinite-dimensional Dynamical Systems in Mechanics and Physics; Appl., Math., Siences, vol. 68, Springer-Verlag, New York, 1988.

Shengfan Zhou
Department of Mathematics
Sichuan University
Chengdu 610064, P.R. CHINA
E-mail address: nic2601@scu.edu.cn

