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ATTRACTOR AND DIMENSION FOR DISCRETIZATION
OF A DAMPED WAVE EQUATION
WITH PERIODIC NONLINEARITY

Shengfan Zhou

Abstract. The existence and Hausdorff dimension of the global attractor

for discretization of a damped wave equation with the periodic nonlinearity

under the periodic boundary conditions are studied for any space dimen-
sion. The obtained Hausdorff dimension is independent of the mesh sizes

and the space dimension and remains small for large damping, which con-

forms to the physics.

1. Introduction

Consider the damped wave equation with periodic nonlinearity

(1)
∂2u

∂t2
+ α

∂u

∂t
−4u+ g(u) = f, x ∈ Ω, t ≥ 0

with the periodic boundary conditions

(2)



u(x, t)|x∈Γj
= u(x, t)|x∈Γj+n

,(
− ∂u

∂ν
(x, t)

∣∣∣∣
x∈Γj

=
)
∂u

∂xj
(x, t)|x∈Γj

=
∂u

∂xj
(x, t)|x∈Γj+n

(
=
∂u

∂ν
(x, t)|x∈Γj+n

)
,

j = 1, . . . , n, t > 0,
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and the initial value conditions

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x), x ∈ Ω,

where u = u(x, t) is a real-valued function on Ω × [0,∞), f = f(x) ∈ L2(Ω),
α > 0, D(−4) = H2

per(Ω), the space ofH2 functions which are spatially periodic,
Ω =

∏n
j=1(0, 1) ⊂ Rn, n ∈ N,

Γj = ∂Ω ∩ {xj = 0}, Γj+n = ∂Ω ∩ {xj = 1}

are the faces of the boundary ∂Ω on Ω, j = 1, . . . , n, and g(u) ∈ C2(R; R)
satisfies:

(3) |g(u)| ≤ c, g(u+ T ) = g(u), T > 0, |g′(u)| ≤ C (constant).

We consider the spatially finite difference discretized version of problem (1)–(2).
Let m ∈ N, h = 1/m. We approximate a function u(x) : Ω → R by u = uk:

uk = u(k1h, . . . , knh) = u

(
k1

m
, . . . ,

kn

m

)
,

where k = (k1, . . . , kn) ∈ Zn ∩ {1 ≤ k1, . . . , kn ≤ m}.
We can think of uk as a vector in Rmn

. For convenience, we reorder the
subscripts of components of any v ∈ Rmn

as follows:

(4) v = (v1...111, v1...112, . . . , v1...11m, . . . , v1...1m1, v1...1m2, . . . , v1...1mm,

. . . , vmm...m1, vmm...m2, . . . , vmm...mm)T ∈ Rmn

,

where “T” is the transpose operation for matrixes. Let

M = {v ∈ Rmn

| subscripts of components of v are ordered as in (4)}.

Since we consider the periodic boundary conditions, we extend the indexes of
any v ∈M by periodicity:

(5) vk = v(k1mod(m)),... ,(knmod(m)), for all k = (k1, . . . , kn) ∈ Zn,

where

pmod (m) =

{
m p is a multiple of m,

pmodm otherwise.

Let D1, . . . , Dn, D,A denote the finite difference discretizations of the linear
operators ∂/∂x1, . . . , ∂/∂xn,∇,−∆ of the continuous version, respectively. For
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v ∈ M , the (k1, . . . , kn)-th component of v is denoted by v(k1,... ,kn), we define
the linear operators D1, . . . , Dn, A : M →M by:

(6)

(D1v)(k1,... ,kn) =m(v(k1,... ,kn) − v(k1−1,k2,... ,kn)),

(D2v)(k1,... ,kn) =m(v(k1,... ,kn) − v(k1,k2−1,... ,kn)),

. . . . . . . . . . . . . . .

(Dnv)(k1,... ,kn) =m(v(k1,... ,kn) − v(k1,... ,kn−1)),

(Av)(k1,... ,kn) =m2(2nv(k1,... ,kn) − v(k1+1,k2,... ,kn) − v(k1−1,k2,... ,kn)

− . . .− v(k1,... ,kn+1) − v(k1,... ,kn−1)),

and D : M →M × . . .×M as

Dv =

D1v
...

Dnv

 .

where (k1, . . . , kn) ∈ Zn ∩ {1 ≤ kj ≤ m, j = 1, . . . , n}.
The spacially finite difference discretized version of the systems (1)–(2) can

be written as

(7)
d2u

dt2
+ α

du

dt
+Au+G0(u) = Γ

and the initial value conditions as

(8) u(0) = u(0),
du

dt
(0) = u(1),

where

u =(u1...111, . . . , u1...11m, . . . , u1...1m1, . . . , u1...1mm,

. . . , umm...m1, . . . , umm...mm)T ∈M,

u(i) =(u(i)
11...11, u

(i)
11...12, . . . , u

(i)
mm...mm)T ∈M, (i = 0, 1),

and
Γ = (Γ11...11, . . . ,Γmm...mm)T ∈M,

the sampling of f with (1/mn)
∑m

k1,... ,kn=1 Γ2
k1,... ,kn

uniformly bounded with
respect to m, and

G0(u) = (g(u11...11), g(u11...12), . . . , g(umm...mm))T ∈M,

the sampling of g(u).
For system (7)–(8) where the nonlinearity g(u) = sinu in one space dimension

n = 1, Yin Yan in [1] proved the existence of the global attractor and gave an
upper bound of Hausdorff dimension of the attractor for α > 0. But this upper
bound is directly proportional to the coefficient α of damping when α ≥

√
6, and

tends to infinity as α→∞, which are not precise in the physical sense. S. Zhou
in [2] improved the estimate in [1] and obtained a more strict upper bound of
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the dimension for the global attractor by carefully estimating and splitting the
positivity of the linear operator in the corresponding evolution equation of the
first order in time. The obtained Hausdorff dimension of the global attractor
is independent of the mesh sizes and space dimension remains small for large
damping.

In this paper, by using similar technique in [2], we generalize the estimate
of [2] to any space dimension n ∈ N and obtain an upper bound of the Hausdorff
dimension of the global attractor for system (7)–(8). The result is the following
theorem.

Theorem 1. The semigroup determined by (7)–(8) possesses a global attrac-
tor in M and the Hausdorff dimension dH of the global attractor satisfies:

(9) dH ≤ 2 + min
{
`

∣∣∣∣ ` ∈ N,
1
`

[`/2]+1∑
j=1

1

λ̃j

≤ λ1α
2

4C2
√
α2 + 4λ1(α+

√
α2 + 4λ1)

}
,

(10) ≤ 2 + min
{
`

∣∣∣∣ ` ∈ N,
1
`

[`/2]+1∑
j=1

1

λ̃j

≤ 4α2

C2
√
α2 + 16π2(α+

√
α2 + 16π2)

}
.

Where λ1 = 4m2 sin2 π/m and 16 ≤ λ1 = λ̃1 ≤ λ̃2 ≤ . . . ≤ λ̃` ≤ . . . ≤ λ̃[m/2]n+1

are the ordering, from small to large, of set

(11) {16(l21 + . . .+ l2n) | 0 ≤ l1, . . . , ln ≤ [m/2] but l1 + . . .+ ln ≥ 1}.

Particularly, if

λ2
1α

2 > 4C2
√
α2 + 4λ1(α+

√
α2 + 4λ1),

then dH ≤ 2.

It is easy to see from (9) that dH is uniformly bounded for sufficiently large α
because

(12)
λ2

1α
2

4C2
√
α2 + 4λ1(α+

√
α2 + 4λ1)

→ λ2
1

8C2

as α→∞.

2. Preliminaries

At first, we consider the properties of operator A. Obviously, the linear
operator A : M →M defined by (6) is symmetric, so it can be diagonalized. For
the eigenvalues of A, we have the following information.
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Let

(13) e(l, i) =


1 if l = 0,

sin
(

2lπ
m
i

)
if 1 ≤ l ≤

[
m

2

]
,

cos
(

2(m− l)π
m

i

)
if

[
m

2

]
+ 1 ≤ l ≤ m− 1,

where [m/2] is the largest integer not greater than m/2, and for any 0 ≤
l1, . . . , ln ≤ m− 1 and 1 ≤ k1, . . . , kn ≤ m, define e(l1, . . . , ln) ∈M by

(14) e(l1, . . . , ln)(k1,... ,kn) = e(l1, k1) · . . . · e(ln, kn).

Lemma 1. The eigenvalues of A are as follows:

(15) λ(l1,... ,ln) = 4m2

(
sin2 l1π

m
+ . . .+ sin2 lnπ

m

)
and the corresponding eigenvectors are e(l1, . . . , ln), i.e.,

(16) Ae(l1, . . . , ln) = 4m2

(
sin2 l1π

m
+ . . .+ sin2 lnπ

m

)
e(l1, . . . , ln),

for any l1, . . . , ln = 0, . . . ,m − 1. Particularly, 0 is a simple eigenvalue of A
with the corresponding eigenvector

(17) e = (e(k1,... ,kn)) ∈M, where e(k1,... ,kn) = 1 (1 ≤ k1, . . . , kn ≤ m).

Proof. It is easy to see from (13)–(14) that for any 0 ≤ l1, . . . , ln ≤ m− 1,
k1, . . . , kn ∈ Z,

e(l1, . . . , ln)(k1,... ,kn) = e(l1, . . . , ln)(k1mod(m),... ,knmod(m)).

Here we consider the case 0 ≤ l1, . . . , ln ≤ [m/2] only. In other cases, we can
prove the lemma similarly.

Write βi = 2liπ/m, i = 1, . . . , n. By (6), (13) and (14), it is easy to check
that for any 0 ≤ l1, . . . , ln ≤ m− 1, k1, . . . , kn ∈ Z,

1
m2

Ae(l1, . . . , ln)(k1,... ,kn) = 4
(

sin2 l1π

m
+ . . .+ sin2 lnπ

m

)
e(l1, . . . , ln)(k1,... ,kn).

The proof is completed. �

Let q1 and q2 are two different arrangements of l1, . . . , ln, 0 ≤ l1, . . . , ln ≤
m− 1, then by (15), we have λq1 = λq2 . Since sinx ≥ 2x/π for x ∈ [0, π/2],

16 ≤ λ(1,0,... ,0) = λ(0,1,... ,0) = . . . = λ(0,... ,0,1) = λ(m−1,0,... ,0)(18)

= λ(0,m−1,... ,0) = . . . = λ(0,... ,0,m−1) = 4m2 sin2 π

m

≤ λ(l1,... ,ln) ≤ 4m2.
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and it is easy to see that if one/ones of l1, . . . , ln is/are replaced by m − l1 or
m − l2 or . . . or m − ln, respectively, then the corresponding eigenvalue of A
remains invariant for any 0 ≤ l1, . . . , ln ≤ [m/2] and l1 + . . . + ln ≥ 1. For
example, we have

λ(l1,... ,ln) = λ(m−l1,... ,m−ln), for all 0 ≤ l1, . . . , ln ≤ [m/2] but l1+. . .+ln ≥ 1.

So, we need to consider the case of 0 ≤ l1, . . . , ln ≤ [m/2] only.
Let z, z(1), z(2) ∈ M with their components zk1...kn

, z(1)
k1...kn

, z(2)
k1...kn

for 1 ≤
k1, . . . , kn ≤ m. We define the weighted inner products and norms as

(19)

(z(1), z(2)) =
1
mn

m∑
k1,... ,kn=1

z
(1)
k1...kn

z
(2)
k1...kn

,

|z| = (z, z)1/2 =
(

1
mn

m∑
k1...kn=1

z2
k1...kn

)1/2

,

‖z‖ = (Az, z)1/2 = (Dz,Dz)1/2.

Write E = {e}⊥M , the orthogonal complement of span{e} in M , which is an
invariant subspace of the linear operator A. It is easy to see that | · | is a norm
in M , ‖ · ‖ is only a semi-norm in M , but it is a norm in E. We also have the
following inequality:

(20) ‖z‖2 ≥ λ(1,0,... ,0)|z|2 ≥ 16|z|2, for all z ∈ E,

which corresponds to the Poincáre inequality.
Let

E0 = (E, | · |), E1 = (E, ‖ · ‖),

and

V0 = (E1 × S1)× (E0 ×R), V1 = E1 × E0,

where S1 = R1/TZ is the one-dimensional torus. Introduce a orthogonal pro-
jector

P : M 7→ {e}⊥M = E,

which induces a projector from V0 to V1(also denoted by P ). Write u = Pu,
Γ = PΓ, then

u = u−
(

1
mn

m∑
k1,... ,kn=1

uk1...kn

)
e,

Γ = Γ−
(

1
mn

m∑
k1,... ,kn=1

Γk1...kn

)
e,
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and the projection of system (7) to E is

(21)
d2u

dt2
+ α

du

dt
+Au+G0(u)−

(
1
mn

m∑
k1,... ,kn=1

g(uk1...kn)
)
e = Γ,

and the initial value conditions (8) is

(22) u(0) = u(0),
du

dt
(0) = u(1),

where

u(i) = u(i) −
(

1
mn

m∑
k1,... ,kn=1

u
(i)
k1...kn

)
e, (i = 0, 1).

Since G0(u) in (7) is globally Lipschitzian continuous with respect to u in M
and equation (7) can be solved backwards in time t, globally existence and
uniqueness of solutions of (7) are evident for any t ∈ R. If u(t) ∈M is a solution
of (7), then u(t) can be decomposed into

(23) u(t) = u(t) +m(t)e,

where

(24) m(t) =
1
mn

m∑
k1,... ,kn=1

uk1...kn
.

Since (7) is invariant if we add an amount lT e (l ∈ Z) to u for any integer l, the
solution u(t) of (7) induces a nonlinear flow

S(t) : (u(0), u(1)) ∈ V0 →
(
u(t),

du

dt
(t)

)
∈ V0, t ≥ 0.

3. Global attractor

Firstly, we consider the absorbing properties of flow S(t)|V1 , t ≥ 0, in V1.
Let ϕ = (u, v)T , v = du/dt+ εu, where ε is chosen as

(25) ε =
λ1α

α2 + 4λ1
,

where λ1 = λ(1,0,... ,0) = 4m2 sin2 π/m, then system (21) can be written as

(26) ϕt + Λϕ+G(ϕ) = H,

where

H = (0,Γ)T , G(ϕ) = (0, G0(u)−
(

1
mn

m∑
k1,... ,kn=1

g(uk1...kn))e
)T

,

(27) Λ =
(

εI −I
A− ε(α− ε)I (α− ε)I

)
.
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By (19) and (20), we can define the inner product and norm in V1 as

(28) (ϕ,ψ)V1 = (A|Eu1, u2) + (v1, v2), |ϕ|V1 = (ϕ,ϕ)1/2
V1

for ϕ = (u1, v1)T , ψ = (u2, v2)T ∈ V1.

Lemma 2. For any ϕ = (u, v)T ∈ V1,

(29) (Λϕ,ϕ)V1 ≥ σ|ϕ|2V1
+
α

2
|v|2,

where

(30) σ =
λ1α√

α2 + 4λ1(α+
√
α2 + 4λ1)

.

Proof. From (27) and (28), for any ϕ = (u, v)T ∈ V1, we have

(Λϕ,ϕ)V1 − σ|ϕ|2V1
− α

2
|v|2

=(ε− σ)‖u‖2 +
(
α

2
− ε− σ

)
|v|2 − ε(α− ε)(u, v) by (20)

≥ (ε− σ)‖u‖2 +
(
α

2
− ε− σ

)
|v|2 − ε(α− ε)√

λ1

‖u‖ · |v|

≥ (ε− σ)‖u‖2 +
(
α

2
− ε− σ

)
|v|2 − εα√

λ1

‖u‖ · |v|.

A simple computation by (25) and (30) shows

4(ε− σ)
(
α

2
− ε− σ

)
=
ε2α2

λ1
.

Thus, the proof is completed. �

Let ϕ = (u, v)T ∈ V1 be the solution of (26). Taking the inner product
( · , · )V1 of (26) with ϕ = (u, v)T ∈ V1 in which v = du/dt+ εu, we have

(31)
1
2
d

dt
|ϕ|2V1

= −(Λϕ,ϕ)V1 − (G(ϕ), ϕ)V1 + (H,ϕ)V1 .

By (28) and (29),

(32) −2(Λϕ,ϕ)V1 ≤ −2σ|ϕ|2V1
− α|v|2,



Attractor and Dimension for Discretization 275

(33) − 2(G(ϕ), ϕ)V1 + 2(H,ϕ)V1

= − 2
(
G0(u)−

(
1
mn

m∑
k1,... ,kn=1

g(uk1...kn
)
)
e, v

)
+ 2(Γ, v)

= 2(Γ, v)− 2
1
mn

m∑
l1,... ,ln=1

(
g(ul1...ln)− 1

mn

m∑
k1,... ,kn=1

g(uk1...kn
)
)
vl1...ln

≤ 2|Γ||v|

+ 2|v|
(

1
mn

m∑
l1,... ,ln=1

(
g(ul1...ln)− 1

mn

m∑
k1,... ,kn=1

g(uk1...kn)
)2)1/2

≤ 2(|Γ|+ 2c) · |v| ≤ α|v|2 +
(|Γ|+ 2c)2

α
,

where c is defined by (3), thus by (31), (32) and (33), we have

(34)
d

dt
|ϕ|2V1

≤ −2σ|ϕ|2V1
+

(|Γ|+ 2c)2

α
.

Applying the Gronwall inequality, we obtain the following absorbing inequality
in the space V1:

(35) |ϕ(t)|2V1
≤ (||u(0)||2+|u(1)+εu(0)|2) exp(−2σt)+

(|Γ|+ 2c)2

2σα
[1−exp(−2σt)],

or

lim sup
t→+∞

|ϕ(t)|2V1
≤ (|Γ|+ 2c)2

2σα
.

Now, we consider the existence of the global attractor of S(t), t ≥ 0 in V1.
If u = u(t) is the solution of (7), then u = Pu, the orthogonal projection of

u ∈M into u ∈ E, satisfies (35). Thus we have

u(t) = u(t) +m(t)e,

and

(36)
du

dt
(t) =

du

dt
(t) +

dm

dt
(t)e,

where

(37) m(t) =
1
mn

m∑
k1,... ,kn=1

uk1...kn .

By (7) and (37),

d2m

dt2
(t) + α

dm

dt
(t) +

1
mn

m∑
k1,... ,kn=1

g(uk1...kn
) =

1
mn

m∑
k1,... ,kn=1

Γk1...kn
.
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Integrating this equality,

(38)
∣∣∣∣dmdt (t)

∣∣∣∣
=

∣∣∣∣dmdt (0)e−αt +
1
mn

∫ t

0

m∑
k1,... ,kn=1

(Γk1...kn − g(uk1...kn(τ)))e−α(t−τ) dτ

∣∣∣∣
≤

∣∣∣∣dmdt (0)
∣∣∣∣e−αt +

1
α

(|Γ|+ c)(1− e−αt).

By the definition of V0,

(39)
∣∣∣∣(u(t), dudt (t)

)∣∣∣∣2
V0

= ||u(t)||2 + |m(t)|2 +
∣∣∣∣dudt (t)

∣∣∣∣2 +
∣∣∣∣dmdt (t)

∣∣∣∣2.
By the fact that m(t) ∈ S1 = R/TZ,

(40) |m(t)|2 ≤ T 2,

and, by (38),

(41)
∣∣∣∣dmdt (t)

∣∣∣∣ ≤ |u(1)|e−αt +
1
α

(|Γ|+ c)(1− e−αt).

By (20),

(42) ||u(t)||2 +
∣∣∣∣dudt (t)

∣∣∣∣2 ≤ ||u(t)||2 + (|v|+ ε|u|)2

≤
(

1 +
1
8
ε2

)
||u(t)||2 + 2|v|2 ≤ µ(||u(t)||2 + |v|2),

where µ = max{1 + ε2/8, 2}, by (35) and (42),

(43) ||u(t)||2 +
∣∣∣∣dudt (t)

∣∣∣∣2
≤µ

{((
1 +

1
8
ε2

)
||u(0)||2 + 2|u(1)|2

)
e−2σt +

(|Γ|+ 2c)2

2σα

(
1− e−2σt

)}
≤µ2(||u(0)||2 + |u(1)|2)e−2σt +

µ(|Γ|+ 2c)2

2σα

(
1− e−2σt

)
,

then together with (40), (41) and (43), (39) yields∣∣∣∣(u(t), dudt (t)
)∣∣∣∣2

V0

≤µ
((

1 +
1
8
ε2

)
||u(0)||2 + 2|u(1)|2

)
e−2σt(44)

+
(|Γ|+ 2c)2

2σα
(1− e−2σt) + T 2

+ (|u(1)|e−αt +
1
α

(|Γ|+ c)(1− e−αt))2.

Therefore, we have the following lemma.
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Lemma 3. There exists a constant

ρ0 =
(
T 2 +

µ(|Γ|+ 2c)2

2σα
+

2
α2

(|Γ|+ c)2
)1/2

such that for any ρ1 > ρ0 and any R0 > 0, if the initial value (u(0), u(1))T

satisfies
||u(0)||2 + |u(1)|2 ≤ R2

0,

then the solution u(t) of (7) satisfies∣∣∣∣(u(t), dudt (t)
)∣∣∣∣

V0

≤ ρ1

for any

t ≥ T0 =
1
2σ

log
(µ2 + 2)R2

0 + 2
α2 (|Γ|+ c)2

ρ2
1 − ρ2

0

.

As a direct consequence of Lemma 3, we have the existence of the global
attractor.

Theorem 2. The nonlinear semi-flow of (7) possesses a global attractor ß
in V0.

4. Hausdorff dimension of the global attractor

We note that the projection P : M → E induces a projection on V0, denoted
by P again.

Lemma 4. Let S(t) be the semi-flow of (7) and ω(PS(t)) be the ω-limit set
of the restricted semi-flow of (26), we have

(45) Pß = ω(PS(t)).

Proof. For any (w, z)T ∈ ß, assume that there exist initial conditions u(0),
u(1) such that the solution u(t) of (7) with u(0) = u(0), du

dt (0) = u(1) ∈ M ,
satisfies u(tj) → w in E1 × S1 and du

dt (tj) → z in E0 × R for some sequence
tj →∞. Then u(tj) = Pu(tj) → w = Pw in E1 and du

dt (tj) = P du
dt (tj) → z = Pz

in E0, i.e., Pß ⊂ ω(PS(t)).
Conversely, assume for some initial conditions u(0), u(1) and a sequence tj →

∞ such that Pu(tj) → w in E1 and P du
dt (tj) → z in E0. Since m(t) and dm

dt (t)
defined by (37) and (36) are both bounded, then there exists a subsequence
of {tj}, denoted by {tji}, such that(

u(tji
),
du

dt
(tji

)
)
→ (w, z) in V0,

where Pw = w, Pz = z. This implies ω(PS(t)) ⊂ Pß. �
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Lemma 5. The Hausdorff dimension dH(ß) of the global attractor ß ⊂ V0

satisfies

(46) dH(ß) ≤ dH(Pß) + 2.

Proof. Since ß ⊂ Pß× S1 ×R1, then

dH(ß) ≤ dH(Pß× S1 ×R1) ≤ dH(Pß) + 2. �

According to the above lemmas, we only need to consider the Hausdorff
dimension of Pß, the global attractor of system (21).

To estimate the dimension of the attractor for system (21), we consider the
first variation equation of (26)

(47) Ψ
′
= F ′(ϕ)(U, V )T = −ΛΨ +G

′
(ϕ)(U, V )T ,Ψ(0) = (ξ, η)T ∈ V1,

where Ψ = (U, V )T , ϕ = (u, v)T is a solution of (26)–(22),

(48) G
′
(ϕ)(U, V )T

=

0,


g′(u11...11)U11...11

g′(u11...12)U11...12

...
g′(umm...mm)Umm...mm

−
(

1
mn

m∑
k1,... ,kn=1

g′(uk1...kn)Uk1...kn

)
e


T

,

and

u = (u11...11, u11...12, . . . , umm...mm)T ∈M

is a solution of (7), (8), and

U = (U11...11, U11...12, . . . , Umm...mm)T , V =
dU

dt
+ εU

is a solution of the variation equation of (7), (8) with initial value conditions

U(0) = ξ = (ξ11...11, ξ11...12, . . . , ξmm...mm)T ,

V (0) =
dU

dt
(0) + εU(0) = η = (η11...11, η11...12, . . . , ηmm...mm)T ,

U = U − 1
mn

m∑
k1,... ,kn=1

Uk1...kn ,

ξ = ξ − 1
mn

m∑
k1,... ,kn=1

ξk1...kn ,

η = η − 1
mn

m∑
k1,... ,kn=1

ηk1...kn
.
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Lemma 6. For any orthonormal family of elements of V1, {ξj , ηj}`
j=1,

(49)
∑̀
j=1

|ξj |2 ≤
∑̀
j=1

1
λj
,

where 0 < λ1 ≤ . . . ≤ λ` ≤ . . . ≤ λmn−1 are eigenvalues of operator A|E.

Proof. See lemma VI. 6.3. in [3]. �

Lemma 7. Consider the system (26). Let Φ denote a set of ` vectors

{Φ1, . . . ,Φ`}

which are orthonormal in V1. If

(50) sup
Φ⊂V1

sup
ϕ∈Pß

∑̀
j=1

((−ΛΦj ,Φj)V1 + (G
′
(ϕ)Φj ,Φj)V1) < 0,

then the Hausdorff dimension of the global attractor Pß of (26) is less than or
equals to `, i.e.,

dH(Pß) ≤ `.

Proof. This is a direct consequence of theorem V. 3.3, equations (V.3.47)–
(V.3.49) and identity (VI.6.24) of [3]. �

Lemma 8. The Hausdorff dimension dH(Pß) of the global attractor for sys-
tem (26) satisfies

(51) dH ≤ min
{
`

∣∣∣∣ ` ∈ N,
1
`

[`/2]+1∑
j=1

1

λ̃j

<
λ1α

2

4C2
√
α2 + 4λ1(α+

√
α2 + 4λ1)

}

where C is defined by (3), λ1 = 4m2 sin2 π/m and 16 ≤ λ1 = λ̃1 ≤ . . . ≤ λ̃` ≤
. . . ≤ λ̃[m/2]n+1 are the ordering, from small to large, of set

{16(l21 + . . .+ l2n) | 0 ≤ l1, . . . , ln ≤ [m/2], but l1 + . . .+ ln ≥ 1}.

Proof. Let ` ∈ N be fixed. Consider ` solutions Ψ1, . . . ,Ψ` of (47). At a
given time τ , let Q`(τ) be the orthogonal projector in V1 onto the space spanned
by Ψ1, . . . ,Ψ`. Let Φj(τ) = (ξj(τ), ηj(τ))T ∈ V1, j = 1, . . . , `, denote an
orthonormal basis of Q`(τ)V1 = span{Ψ1(τ), (τ), . . . ,Ψ`(τ)}. Consider

TrF ′(ϕ(τ)) ◦Q`(τ) =
∑̀
j=1

(F ′(ϕ(τ))Φj(τ),Φj(τ))V1

= −
∑̀
j=1

[(ΛΦj ,Φj)V1 − (G
′
(ϕ)Φj ,Φj)V1 ].
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By (29) and |Φj |V1 = 1,

−(ΛΦj ,Φj)V0 ≤ −σ − α

2
|ηj |2

By (28) and (48),

|(G
′
(ϕ)Φj ,Φj)V1 |

=

∣∣∣∣∣∣∣∣



g′(u11...11)ξ

j
11...11

g′(u11...12)ξ
j
11...12

...
g′(umm...mm)ξj

mm...mm

−
(

1
mn

m∑
k1,... ,kn=1

g′(uk1...kn
)ξj

k1...kn

)
e, ηj


∣∣∣∣∣∣∣∣

≤
∣∣∣∣ 1
mn

m∑
k1,... ,kn=1

g′(uk1...kn
) · ξj

k1...kn
· ηj

k1...kn

∣∣∣∣
+

∣∣∣∣( 1
mn

m∑
k1,... ,kn=1

g′(uk1...kn
)ξj

i

)
·
(

1
mn

m∑
k1,... ,kn=1

ηj
k1...kn

)∣∣∣∣ ≤ 2C|ξj | · |ηj |.

Hence,

TrF ′(ϕ(τ)) ◦Q`(τ) ≤ −`σ − α

2

∑̀
j=1

|ηj |2 +
∑̀
j=1

2C|ξj | · |ηj |(52)

≤ −`σ +
2C2

α

∑̀
j=1

|ξj |2 (by(49))

≤ −`σ +
2C2

α

∑̀
j=1

1
λj
.

Since sinx ≥ 2x/π for x ∈ [0, 1/2], the eigenvalues of the operator A|E as follows:

λ(l1,... ,ln) = 4m2

(
sin2 l1π

m
+ . . .+ sin2 lnπ

m

)
≥ 16(l21 + . . .+ l2n),

for any 0 ≤ l1, . . . , ln ≤ [m/2].
Let 0 < λ̃1 ≤ . . . ≤ λ̃` ≤ . . . ≤ λ̃[m/2]n+1 be the ordering, from small to large,

of set

{16(l21 . . .+ l2n)|0 ≤ l1, . . . , ln ≤ [m/2] but l1 + . . .+ ln ≥ 1}.

Thus, by (52),

(53) TrF ′(ϕ(τ)) ◦Q`(τ) ≤ −`σ +
4C2

α

[`/2]+1∑
j=1

1

λ̃j

.

If
1
`

[`/2]+1∑
j=1

1

λ̃j

<
ασ

4C2
=

λ1α
2

4C2
√
α2 + 4λ1(α+

√
α2 + 4λ1)
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then, by (53),
TrF ′(ϕ(τ)) ◦Q`(τ) < 0.

By Lemma 7, (51) is true. The proof is completed. �

Corollary 1. If

λ2
1α

2 > 4C2
√
α2 + 4λ1(α+

√
α2 + 4λ1),

then dH(Pß) = 0.

Proof. In this case, ` = 1 in (52) and (F ′(ϕ(τ))Φ(τ),Φ(τ))V1 < 0 for any
unit element Φ = (ξ, η)T ∈ V1. So, the largest Lyapunov exponent of Pß: µ1 < 0,
hence, dH(Pß) = 0.

Combining with Theorem 2, Lemma 5, Lemma 8, and Corollary 1, we com-
plete the proof of Theorem 1. �
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