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AND SOME RELATED RESULTS
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Abstract. We simplify a proof of Bessaga’s theorem given in the mono-

graph of Deimling. Moreover, our argument let us also obtain the following
result.

Let F be a selfmap of an arbitrary set Ω and α ∈ (0, 1). Then F
is an α-similarity with respect to some complete metric d for Ω (that is,
d(Fx, Fy) = αd(x, y) for all x, y ∈ Ω) if and only if F is injective and F
has a unique fixed point.

Finally we present that the converse to the Contraction Principle for
bounded spaces is independent of the Axiom of Choice.

1. Introduction

In 1959 Bessaga [2] proved the following converse of the Banach Contraction
Principle. We quote it in a slightly more general form as is done in the monograph
of Deimling [3, Theorem 17.5].

Theorem 1 (Bessaga). Let Ω �= ∅ be an arbitrary set, F : Ω �→ Ω and
α ∈ (0, 1). Then

(a) If Fn has at most one fixed point for every n ∈ N, then there exists
a metric d such that d(Fx, Fy) ≤ α d(x, y) for all x, y ∈ Ω.
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(b) If, in addition, some Fn has a fixed point, then there is a complete
metric d such that d(Fx, Fy) ≤ αd(x, y) for all x, y ∈ Ω.

There are at least three different proofs of this result. The first one, due to
Bessaga [2], uses a special form of the Axiom of Choice (abbr., AC). Its original
version is not long, however, some statements are left to the reader for verifying.
Actually, Bessaga proved part (b) of Theorem 1.

The second proof, from Deimling’s book [3, pp. 191–192], is a special case
of that given by Wong [11], and it uses the Kuratowski–Zorn Lemma. In fact,
Wong extended Bessaga’s theorem to a finite family of commuting maps.

The third proof, due to Janos [7], is based on combinatorial techniques with a
use of Ramsey’s theorem. Actually, the existence of a separable metric is shown
here (under the assumption that Ω has at most continuum many elements),
though this metric need not be complete.

Our purpose here is to give possibly the simplest proof of Bessaga’s the-
orem by modifying the proof presented in Deimling [3]. Moreover, our argu-
ment enables us to extend part (a) of Theorem 1 and it let us also answer the
question: When is F a similarity? That is, when does F satisfy the condition
d(Fx, Fy) = αd(x, y) for all x, y ∈ Ω?

Finally we show that the converse to the Contraction Principle for bounded
spaces is independent of the AC.

2. A proof of Bessaga’s theorem

It is worth noticing that according to the following lemma, the problem
of the existence of a metric d for Ω can be simplified — it suffices to prove
the existence of a function ϕ of one variable, which would satisfy the Schröder
functional inequality for all x ∈ Ω:

(1) ϕ(Fx) ≤ α ϕ(x).

Lemma 1. Let F be a selfmap of a set Ω and α ∈ (0, 1). The following
statements are equivalent:

(i) there exists a complete metric d for Ω such that

d(Fx, Fy) ≤ αd(x, y) for all x, y ∈ Ω,

(ii) there exists a function ϕ : Ω �→ R+ such that ϕ−1({0}) is a singleton
and inequality (1) holds on Ω.

Proof. (i)⇒(ii) By the Banach theorem F has a fixed point z. Then it
suffices to set ϕ(x) := d(x, z).

(ii)⇒(i) Define d by d(x, y) := ϕ(x) + ϕ(y) if x �= y and d(x, x) := 0. It is
easily seen that d is a metric for Ω and by (1) F is α-contractive. Let (xn) be a
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Cauchy sequence. We may assume that the set {xn : n ∈ N} is infinite (otherwise
(xn) contains a constant subsequence and then (xn) converges). Then there is a
subsequence (xkn ) of distinct elements so

d(xkn , xkm ) = ϕ(xkn ) + ϕ(xkm ) for n �= m

and hence ϕ(xkn ) → 0. By (ii), ϕ(z) = 0 for some z ∈ Ω. Then d(xkn , z) → 0,
which implies that also (xn) converges to z. (This clarifies an argument in [3,
Step 6, p. 192], where it is claimed that each Cauchy sequence converges to z.)�

Now we give a proof of part (b) of Theorem 1. By hypothesis, some Fn has a
unique fixed point z. By uniqueness, also z = Fz. Hence and by (a) z is a unique
fixed point of each iterate of F . With a help of the Kuratowski–Zorn Lemma we
will show that (1) has a solution ϕ : Ω �→ R+ such that ϕ−1({0}) = {z}. Define
(in a slightly different way than in [3, Step 4, p. 192])

Φ := {ϕ : Dϕ �→ R+ | {z} ⊆ Dϕ ⊆ Ω, ϕ−1({0}) = {z}, F (Dϕ) ⊆ Dϕ

and (1) holds on Dϕ}.

Then Φ is nonempty since if we set Dϕ∗ := {z} and ϕ∗(z) := 0 then ϕ∗ ∈ Φ. We
equip Φ with the following partial ordering:

ϕ1 	 ϕ2 ⇔ Dϕ1 ⊆ Dϕ2 and ϕ2|Dϕ1
= ϕ1.

If Φ0 is a chain in (Φ,	), then the set D :=
⋃

ϕ∈Φ0
Dϕ is F -invariant and a

function ψ defined on D by ψ(x) := ϕ(x) if x ∈ Dϕ, is an upper bound for Φ0.
By the Kuratowski–Zorn Lemma, there exists a maximal element ϕ0 : D0 �→ R+

in (Φ,	). It suffices to show that D0 = Ω. Suppose, on the contrary, that there
is an x0 ∈ Ω \ D0. Set O(x0) := {Fn−1(x0) : n ∈ N}. Now we will simplify
significantly an argument from Steps 2, 3 and 5 in [3, pp. 191–192].

Step 1. Suppose that O(x0) ∩ D0 = ∅. Then the elements Fn−1(x0) for
n ∈ N are distinct (otherwise, we would get that z ∈ O(x0), which yields a
contradiction since z ∈ D0). Define

Dϕ := O(x0) ∪D0, ϕ|D0 := ϕ0 and ϕ(Fn−1x0) := αn−1 for n ∈ N.

Then ϕ ∈ Φ, ϕ �= ϕ0 and ϕ dominates ϕ0, a contradiction. Therefore we infer
that O(x0) ∩D0 �= ∅.

Step 2. By Step 1 we may define m := min{n ∈ N : Fnx0 ∈ D0}. Then
Fm−1x0 �∈ D0. Define Dϕ := {Fm−1x0} ∪D0. Then

F (Dϕ) = {Fmx0} ∪ F (D0) ⊆ D0 ⊂ Dϕ,

so Dϕ is F -invariant. We will define a function ϕ : Dϕ �→ R+. Set ϕ|D0 := ϕ0.
The following two cases are possible.

(2a) Fmx0 = z. Then set ϕ(Fm−1x0) := 1.
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(2b) Fmx0 �= z. Then set ϕ(Fm−1x0) := ϕ0(Fmx0)/α.

In both these cases ϕ ∈ Φ, ϕ �= ϕ0 and ϕ0 	 ϕ, which yields a contradiction.
Therefore we may infer that D0 = Ω. Applying Lemma 1 completes the proof
of part (b) of Theorem 1.

3. An extension of part (a) of Theorem 1

Lemma 2. Let F be a selfmap of a set Ω and α ∈ (0, 1). The following
statements are equivalent:

(i) F has no periodic points,
(ii) the Schröder equation ϕ(Fx) = αϕ(x) has a solution ϕ : Ω �→ (0,∞).

Lemma 2 can be derived from Kuczma’s Theorem 1.10 [9] proved with a use
of the Axiom of Choice. However our argument of the previous section can also
be used here with some slight modifications.

Proof of Lemma 2. To prove (i)⇒(ii) define

Φ := {ϕ : Dϕ �→ (0,∞) | Dϕ �= ∅, Dϕ ⊆ Ω, F (Dϕ) ⊆ Dϕ

and (2) holds on Dϕ}.

To see that Φ is nonempty fix an x0 ∈ Ω and set Dϕ∗ := O(x0). Then by (i)
the elements Fn−1x0 (n ∈ N) are distinct and we may define a function ϕ∗ by
setting

ϕ∗(Fn−1x0) := αn−1 for all n ∈ N.

Then ϕ∗ ∈ Ω. Now we may repeat our argument used in the proof of part (b)
of Theorem 1. Observe that functions ϕ defined in Step 1 and case (2b) satisfy
(2) and have positive values, whereas case (2a) cannot happen here.

To prove (ii)⇒(i) suppose, on the contrary, that x0 = F kx0 for some x0 ∈ Ω
and k ∈ N. By (2), ϕ(x0) = ϕ(F kx0) = αkϕ(x0) and hence ϕ(x0) = 0, a
contradiction. �

Under the assumptions of Theorem 1 assume that (b) does not hold. That
means F has no periodic point. So, by Lemma 2, (2) has a solution ϕ with
positive values and if we define a metric d as in the proof of (ii)⇒(i) of Lemma 1,
then it is easily seen that F satisfies the condition: Fx �= Fy implies that
d(Fx, Fy) = αd(x, y). Moreover, for each x ∈ Ω, the open ball K(x, ϕ(x)) is a
singleton. Thus we proved the following

Theorem 2. Let F be a selfmap of a set Ω and α ∈ (0, 1). If F has no
periodic points, then there exists a metric d, which induces the discrete topology
for Ω and such that for all x, y ∈ Ω, Fx �= Fy implies that d(Fx, Fy) = αd(x, y).
In particular, F is α-contractive.
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4. When is F a similarity?

Obviously, if F satisfies the condition

d(Fx, Fy) = αd(x, y) for all x, y ∈ Ω

and some α ∈ (0, 1), then necessarily F is injective and F has at most one
periodic point. The converse of this result is also true according to the following
two theorems. The first of them is an immediate consequence of Theorem 2.

Theorem 3. Let F be a selfmap of a set Ω and α ∈ (0, 1). The following
statements are equivalent:

(i) F is a periodic-point free injection,
(ii) F is a fixed-point free α-similarity with respect to some metric d for Ω.

Theorem 4. Let F be a selfmap of a set Ω and α ∈ (0, 1). The following
statements are equivalent.

(i) F is injective and F has a unique periodic point,
(ii) F is an α-similarity with respect to some complete metric d.

Proof. To prove that (i) implies (ii) we use again an argument similar to
that presented in Section 2. Let z = Fz. It suffices to show that the Schröder
equation (2) has a solution ϕ : Ω �→ R+ such that ϕ−1({0}) = {z} and then
define d as in the proof of (ii)⇒(i) of Lemma 1. This time we set

Φ := {ϕ : Dϕ �→ R+ | {z} ⊆ Dϕ ⊆ Ω, ϕ−1({0}) = {z}, F (Dϕ) ⊆ Dϕ

and (2) holds on Dϕ}

and we may repeat an argument used in the proof of part (b) of Theorem 1.
Observe that case (2a) cannot happen here since F is injective, whereas functions
ϕ, defined in Step 1 and case (2b), belong to Φ defined above. �

5. A converse to the Contraction Principle for bounded spaces

We emphasize that, according to another result of Bessaga [2], Theorem 1 is
equivalent to some form of the AC. Consequently Theorem 1 cannot be proved in
an elementary way. However, in some particular cases, it is possible to construct
an appropriate metric without using any choice as is done in the proof of the
following theorem.

Theorem 5. Let F be a selfmap of a set Ω and α ∈ (0, 1). The following
statements are equivalent:

(i) the intersection
⋂

n∈N Fn(Ω) is a singleton,
(ii) the Schröder inequality (1) has a bounded solution ϕ : Ω �→ R+ such

that ϕ−1({0}) is a singleton,
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(iii) there exists a complete and bounded metric d for Ω such that F is α-
contractive with respect to d.

Proof. (i)⇒(ii). Let
⋂

n∈N
Fn(Ω) = {z}. For x �= z define

n(x) := sup{n ∈ N ∪ {0} : x ∈ Fn(Ω)}.

Since the sequence (Fn(Ω))∞
n=1 is decreasing, condition (i) implies that n(x) is

finite. Define a function ϕ by

ϕ(z) := 0 and ϕ(x) := αn(x) for x �= z.

Clearly ϕ is bounded and ϕ−1({0}) = {z}. Fix an x ∈ Ω. If Fx = z then (1)
holds. So let Fx �= z. Then n(Fx) ≥ n(x) + 1 and hence

ϕ(Fx) = αn(F x) ≤ αn(x)+1 = α ϕ(x).

Thus (ii) holds.
(ii)⇒(iii). It suffices to define d in the same way as in the proof of Lemma 1

((ii) ⇒ (i)).
(iii)⇒(i). By the Banach theorem

⋂
n∈N

Fn(Ω) is nonempty. That this set
is a singleton follows from the fact that diamFn(Ω) → 0. �

Theorem 6. Let F be a selfmap of a set Ω and α ∈ (0, 1). The following
statements are equivalent:

(i) the intersection
⋂

n∈N Fn(Ω) is empty,
(ii) the Schröder inequality (1) has a bounded solution ϕ : Ω �→ (0,∞),
(iii) there exists a bounded metric d for Ω such that F is a fixed-point free

α-contraction with respect to d.

Proof. (i)⇒(ii). Let x0 �∈ Ω and Ω0 := Ω ∪ {x0}. Let F0x0 := x0 and
F0|Ω := F . By Theorem 5 ((i)⇒(ii)), there is a solution ϕ0 : Ω �→ R+ of (1) such
that ϕ−1

0 ({0}) is a singleton. Since ϕ0(x0) = 0, ϕ := ϕ0|Ω is a function we need.
(ii)⇒(iii). Define d as in the proof of Lemma 1 ((ii)⇒(i)). Then F is α-

contractive with respect to d and F is fixed-point free; otherwise, if x0 = Fx0

then by (1) ϕ(x0) = 0, which violates (ii).
(iii)⇒(i). By (iii), diam Fn(Ω) → 0 so card

( ⋂∞
n=0 F

n(Ω)
)

≤ 1. Suppose
that {x0} =

⋂∞
n=0 F

n(Ω). Then

{Fx0} = F

( ∞⋂
n=0

Fn(Ω)
)

⊆
∞⋂

n=0

Fn+1(Ω) = {x0},

which yields a contradiction. Thus we may infer that (i) holds. �

Remark. Using the same trick as in the proof of Theorem 6 ((i)⇒(ii)), one
can also derive immediately part (a) of Theorem 1 from its part (b) as well as
Theorem 3 from Theorem 4.
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A natural question arises whether we can improve the implication (i)⇒(iii)
of Theorem 5 by showing the existence of a compact metric d. It follows from
Archangielski’s theorem (cf. Engelking [4, Theorem 3.1.29]) that in general this
is not possible unless Ω has at most continuum many points. So we should
restrict to consider sets Ω with card(Ω) ≤ c. In fact, the above question for such
sets Ω was posed by de Groot [1] in 1968 and was answered in the negative by
A. Kubena. Kubena’s argument is presented in the recent paper of Janos [8]. On
the other hand, dropping the cardinality restriction on Ω, Iwanik [5] has proved
that there exists a compact Hausdorff topology τ (not necessarily metrizable) for
Ω such that F is τ -continuous. If, moreover, τ is metrizable, then there exists
an equivalent metric d for Ω such that F is a Banach contraction with respect
to d. This result was proved by Janos (cf. [6] or [3, p. 192–193]).

6. Fryszkowski’s problem

We close the paper with the following problem formulated by Professor An-
drzej Fryszkowski of the Technical University of Warsaw after my talk during
the 2nd Symposium on Nonlinear Analysis in Toruń, September 13–17, 1999.

Problem (A. Fryszkowski). Let Ω be an arbitrary nonempty set, 2Ω be the
family of all nonempty subsets of Ω and F : Ω �→ 2Ω be a set-valued mapping.
Find necessary and (or) sufficient conditions for the existence of a (complete)
metric d for Ω such that given α ∈ (0, 1), F would be a Nadler [10] set-valued
α-contraction with respect to d, that is,

H(Fx, Fy) ≤ αd(x, y) for all x, y ∈ Ω,

where H denotes the Hausdorff metric generated by d.
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