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Abstract. We study the space Mm of all m-accretive operators on a

Banach space X endowed with an appropriate complete metrizable unifor-
mity and the spaceM∗

m which is the closure inMm of all those operators

which have a zero. We show that for a generic operator inMm all infinite
products of its resolvents become eventually close to each other and that a

generic operator inM∗
m has a unique zero and all the infinite products of

its resolvents converge uniformly on bounded subsets of X to this zero.

Introduction

Infinite products of operators are of interest in many areas of mathematics
and its applications. See, for instance, [1], [3]–[5], [11], [16]–[18], [20] and the
references mentioned there. Accretive operators and their resolvents play an
important role in nonlinear functional analysis [6], [7], [9], [13]. Infinite products
of resolvents of accretive operators and their applications were investigated, for
example, in [8], [10], [19], [22], [23], [26], [27].

In the present paper we use Baire’s category to study the asymptotic behavior
of infinite products of resolvents of a generic m-accretive operator on a general
Banach space X. Our first main result is a weak ergodic theorem (Theorem 2.1).
Our second main result (Theorem 2.2) provides strong convergence of infinite

2000 Mathematics Subject Classification. 47H06, 47H17, 54C60, 58F99.

Key words and phrases. Accretive operator, generic property, infinite product, uniform
space.

c©2000 Juliusz Schauder Center for Nonlinear Studies

153



154 S. Reich — A. J. Zaslavski

products to the unique zero of such an operator. More precisely, we consider
two spaces of m-accretive operators on X. The first space is the space of all m-
accretive operators endowed with an appropriate complete metrizable uniformity.
The second space is the closure in the first space of all those operators which
have a zero. For the first space we construct a subset which is a countable
intersection of open everywhere dense sets such that for each operator belonging
to this subset all infinite products of resolvents have the same asymptotics. For
the second space we again construct a subset which is a countable intersection of
open everywhere dense sets such that for each operator belonging to this subset
all infinite products of resolvents converge uniformly on bounded subsets of X

to the unique zero of the operator. Thus, instead of considering the asymptotic
behavior of infinite products of resolvents of a single operator, we investigate it
for a space of all such operators, equipped with some natural metric, and show
that a certain convergence property holds for most of these operators. This allows
us to establish strong convergence without imposing restrictive assumptions on
the space or on the operators themselves. Results of this kind for powers of a
single (nonexpansive) operator were already established by De Blasi and Myjak
[14], while such results for infinite products of (nonlinear) nonexpansive and
order-preserving self-mappings of bounded subsets have recently been obtained
by the authors [24], [25]. The approach used in these papers and in the present
paper is common in global analysis and the theory of dynamical systems [15],
[21]. Recently it has also been used in the study of the structure of extremals of
variational and optimal control problems [28], [29].

The paper is organized as follows. In the first section we recall several prop-
erties of accretive operators and define the spaces of m-accretive operators which
we are going to study. We state our two main results (Theorems 2.1 and 2.2)
in the second section. Section 3 contains three auxiliary results. We establish
Theorems 2.1 and 2.2 in Sections 4 and 5, respectively.

1. Preliminaries

Let (X, ‖ · ‖) be a Banach space. We denote by I : X → X the identity
operator on X (that is, Ix = x, x ∈ X). Recall that a set-valued operator
A : X → 2X with a nonempty domain

D(A) = {x ∈ X : Ax 6= ∅}

and range
R(A) = {y ∈ X : y ∈ Ax for some x ∈ D(A)}

is said to be accretive if

(1.1) ‖x− y‖ ≤ ‖x− y + r(u− v)‖
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for all x, y ∈ D(A), u ∈ Ax, v ∈ Ay and r > 0. When the operator A is accretive,
then it follows from (1.1) that its resolvents

(1.2) JA
r = (I + rA)−1 : R(I + rA) → D(A)

are single-valued nonexpansive operators for all positive r. In other words,

(1.3) ‖JA
r x− JA

r y‖ ≤ ‖x− y‖

for all x and y in D(JA
r ) = R(I + rA). As usual, the graph of the operator A is

defined by
graph(A) = {(x, y) ∈ X ×X : y ∈ Ax}.

Note that if A is accretive, then the operator A : X → 2X , the graph of which
is the closure of graph(A) in the norm topology of X ×X, is also accretive. We
will say that the operator A is closed if its graph is closed in X ×X.

An accretive operator A : X → 2X is said to be m-accretive if

R(I + rA) = X for all r > 0.

Note that if X is a Hilbert space (H, 〈 · , · 〉), then an operator A is accretive
if and only if it is monotone; that is, if and only if

〈u− v, x− y〉 ≥ 0 for all (x, u), (y, v) ∈ graph(A).

It is well-known that in a Hilbert space an operator A is m-accretive if and only
if it is maximal monotone. It is not difficult to see that in any Banach space an
m-accretive operator is maximal accretive; that is, if Ã : X → 2X is accretive
and graph(A) ⊂ graph(Ã), then Ã = A. However the converse is not true in
general.

In the sequel we are going to use a certain topology on the space of nonempty
closed subsets of Y = X×X. We will now define this topology in a more general
setting (cf. [2]). Let (Y, ρ) be a complete metric space. Fix θ ∈ Y . For each
positive r > 0 define

Yr = {y ∈ Y : ρ(y, θ) ≤ r}.
For each y ∈ Y and each E ⊂ Y define

ρ(y, E) = inf{ρ(y, z) : z ∈ E}.

Denote by S(Y ) the set of all nonempty closed subsets of Y . For F,G ∈ S(Y )
and an integer n ≥ 1 define

hn(F,G) = sup
y∈Yn

|ρ(y, F )− ρ(y, G)|.

Clearly hn(F,G) < ∞ for each integer n ≥ 1 and each pair of sets F,G ∈ S(Y ).
For the set S(Y ) we consider the uniformity generated by the following base:

(1.4) Ẽ(n) = {(F,G) ∈ S(Y )× S(Y ) : hn(F,G) < n−1}, n = 1, 2, . . .
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This uniform space is metrizable by the metric

(1.5) h(F,G) =
∞∑

n=1

2−n[hn(F,G)/(1 + hn(F,G))].

The metric space (S(Y ), h) is complete.
From now on we apply the above to the space Y = X ×X with the metric

ρ((x1, x2), (z1, z2)) = ‖x1 − z1‖+ ‖x2 − z2‖, xi, zi ∈ X, i = 1, 2,

and with θ = (0, 0).
Denote by Ma the set of all closed accretive operators A : X → 2X . For

each A,B ∈Ma define

(1.6) ha(A,B) = h(graph(A), graph(B)).

Clearly (Ma, ha) is a metric space and the set {graph(A) : A ∈Ma} is a closed
subset of S(X ×X). Therefore (Ma, ha) is a complete metric space. Denote by
Mm the set of all m-accretive operators A ∈Ma.

Proposition 1.1. Mm is a closed subset of Ma.

Proof. Suppose that {Ai}∞i=1 ⊂ Mm, A ∈ Ma, and that Ai → A as
i → ∞ in Ma. Assume that r is a positive number. We have to show that
R(I + rA) = X. To this end, let z ∈ X. For each integer n ≥ 1 there exists
yn ∈ X for which

(1.7) z ∈ (I + rAn)yn or, equivalently, yn = (I + rAn)−1z.

We will show that the sequence {yn}∞n=1 is bounded. Fix (x, u) ∈ graph(A).
There is a sequence {(xn, un)}∞n=1 ⊂ X ×X such that

(1.8) (xn, un) ∈ graph(An), n = 1, 2, . . . , and lim
n→∞

(xn, un) = (x, u).

For each integer n ≥ 1,

(1.9) xn = (I + rAn)−1(xn + run) and ‖xn − yn‖ ≤ ‖xn + run − z‖.

By (1.8) and (1.9) the sequence {yn}∞n=1 is bounded. By (1.7), for each integer
n ≥ 1 there exists vn for which

(1.10) vn ∈ An(yn) and z = yn + rvn.

Clearly the sequence {(yn, vn)}∞n=1 is bounded. There exists a sequence

{(ỹn, ṽn)}∞n=1 ⊂ graph(A)

such that

(1.11) ‖ỹn − yn‖+ ‖ṽn − vn‖ → 0 as n →∞.
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Set, for all integers n ≥ 1,

(1.12) zn = ỹn + rṽn ∈ (I + rA)ỹn.

By (1.10)–(1.12),

lim
n→∞

zn = z and ‖zn − zk‖ ≥ ‖ỹn − ỹk‖ for all integers n, k.

Therefore the sequence {(ỹn, ṽn)}∞n=1 converges to (y, v) ∈ graph(A). Clearly
z = y + rv. Proposition 1.1 is proved. �

Denote by M∗
m the set of all A ∈ Mm such that there exists xA for which

0 ∈ A(xA) and denote by M∗
m the closure of M∗

m in Mm. The two complete
metric spaces (Mm, ha) and (M∗

m, ha) are the focal points of our investigations.
Finally, we denote by M∗

0 the set of all A ∈M∗
m for which there exists xA ∈ X

such that 0 ∈ A(xA) and (JA
1 )n(x) → xA as n →∞ for all x ∈ X.

2. Statements of the main results

Let {rn}∞n=1 be a sequence of positive numbers such that

(2.1) rn < 1, n = 1, 2, . . . , lim
n→∞

rn = 0 and
∞∑

n=1

rn = ∞

and let r̃ > 1. We now state our two main results.

Theorem 2.1. There exists a set F ⊂Mm which is a countable intersection
of open everywhere dense sets in Mm such that for each A ∈ F , each δ > 0 and
each K > 0 the following assertion holds:

There exist a neighbourhood U of A in Mm and an integer n0 ≥ 1 such
that for each sequence of positive numbers {rn}∞n=1 satisfying r̃ > rn ≥ rn,
n = 1, 2, . . . , each B ∈ U and each x, y ∈ X satisfying ‖x‖, ‖y‖ ≤ K, we have

‖JB
rn
· JB

rn−1
· . . . · JB

r1
x− JB

rn
· JB

rn−1
. . . · JB

r1
y‖ ≤ δ

for all integers n ≥ n0.

We remark in passing that such a result is called a weak ergodic theorem in
population biology [12]. It means that for a generic operator in Mm all infinite
products of its resolvents become eventually close to each other.

Theorem 2.2. There exists a set F ⊂ M∗
0 ∩ M∗

m which is a countable
intersection of open everywhere dense sets in M∗

m such that for each A ∈ F the
following assertions hold:

(i) There exists a unique xA ∈ X such that 0 ∈ A(xA).
(ii) For each δ > 0 and each K > 0 there exist a neighbourhood U of A

in Mm and an integer n0 ≥ 1 such that for each sequence of positive



158 S. Reich — A. J. Zaslavski

numbers {rn}∞n=1 satisfying r̃ > rn ≥ rn, n = 1, 2, . . . , each B ∈ U∩M∗
0

and each x ∈ X satisfying ‖x‖ ≤ K, we have

‖JB
rn
· JB

rn−1
. . . JB

r1
x− xA‖ ≤ δ

for all integers n ≥ n0.

This result means that a generic operator in M∗
m has a unique zero and all

the infinite products of its resolvents converge uniformly on bounded subsets of
X to this zero.

3. Auxiliary results

Let {rn}∞n=1 ⊂ (0, 1) satisfy (2.1) and let r̃ > 1.

Lemma 3.1. Let A ∈ Mm, K0 > 0 and let n0 ≥ 2 be an integer. Then
there exist a neighbourhood U of A in Mm and a number c0 > 0 such that for
each B ∈ U , each sequence {ri}n0−1

i=1 ⊂ (0, r̃) and each sequence {xi}n0
i=1 ⊂ X

satisfying ‖x1‖ ≤ K0, xi+1 = JB
ri

(xi), i = 1, . . . , n0 − 1, we have ‖xi‖ ≤ c0 for
all i = 1, . . . , n0.

Proof. Choose (xA, uA) ∈ graph(A). There exists a neighbourhood U of A

in Mm such that for each B ∈ U there exists (xB , uB) ∈ graph(B) satisfying

(3.1) ‖xB − xA‖+ ‖uA − uB‖ < 1.

Assume that B ∈ U ,

(3.2) {ri}n0−1
i=1 ⊂ (0, r̃), x1 ∈ X, ‖x1‖ ≤ K0

and xi+1 = JB
ri

(xi), i = 1, . . . , n0 − 1.

We will estimate ‖xi‖ for i = 1, . . . , n0. To this end, set

(3.3) zi = xB + riuB , i = 1, . . . , n0 − 1.

For such i we clearly have, by (3.1)–(3.3), xB = JB
ri

(zi), ‖xB −xi+1‖ ≤ ‖zi−xi‖
and

‖xi+1‖ ≤ ‖xB‖+ ‖xi‖+ ‖zi‖ ≤ ‖xi‖+ ‖xA‖+ 1 + ‖xB + riuB‖
≤ ‖xi‖+ 1 + ‖xA‖+ ‖xB‖+ r̃‖uB‖
≤ ‖xi‖+ 1 + 2‖xA‖+ 1 + r̃(‖uA‖+ 1).

This implies that for i = 1, . . . , n0 − 1,

‖xi+1‖ ≤ i(2‖xA‖+ 2 + r̃(‖uA‖+ 1)) + K0. �

Assumption (2.1) and Lemma 3.1 imply the following result.
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Lemma 3.2. Let A ∈ Mm, K0 > 0 and let n0 ≥ 2 be an integer. Then
there exist a neighbourhood U of A in Mm and a number c1 > 0 such that for
each B ∈ U , each sequence ri ∈ [ri, r̃), i = 1, . . . , n0− 1, and each two sequences
{xi}n0

i=1 ⊂ X, {yi}n0
i=2 ⊂ X satisfying

‖x1‖ ≤ K0, xi+1 = JB
ri

(xi), xi = xi+1 + riyi+1, yi+1 ∈ B(xi+1),

i = 1, . . . , n0 − 1, the following two estimates hold:

‖xi‖ ≤ c1, i = 1, . . . , n0 and ‖yi‖ ≤ c1, i = 2, . . . , n0.

Lemma 3.3. Let A ∈ Mm, x∗ ∈ X, 0 ∈ A(x∗), ε > 0 and let n0 ≥ 2 be an
integer. Then there exists a neighbourhood U of A in Mm such that for each
B ∈ U and each sequence ri ∈ (0, r̃), i = 1, . . . , n0 − 1, there exists a sequence
{xi}n0

i=1 ⊂ X such that

xi+1 = JB
ri

(xi), i = 1, . . . , n0 − 1, and ‖xi − x∗‖ ≤ ε, i = 1, . . . , n0.

Proof. Choose a natural number p such that

(3.4) p > 4 + n0 + ‖x∗‖ and p > r̃(n0 + 1)(inf{1, ε})−1

and define

(3.5) U = {B ∈Mm : hp(graph(A), graph(B)) < p−1}.

Assume that B ∈ U and ri ∈ (0, r̃), i = 1, . . . , n0 − 1. By (3.4) and (3.5) there
exists (x1, y1) ∈ graph(B) such that

(3.6) ‖x1 − x∗‖+ ‖y1‖ < p−1.

Set

(3.7) ξi = x1 + riy1, i = 1, . . . , n0 − 1.

Then

(3.8) x1 = JB
ri

(ξi) and ‖x1 − ξi‖ < r̃/p, i = 1, . . . , n0 − 1.

Set

(3.9) xi+1 = JB
ri

(xi), i = 1, . . . , n0 − 1.

Since for i = 1, . . . , n0 − 1, JB
ri

is a nonexpansive operator it follows from (3.6)–
(3.9) that for each integer k ∈ [2, n0] we have

‖xk − x1‖ ≤ ‖xk−1 − ξk−1‖ ≤ ‖xk−1 − x1‖+ r̃‖y1‖ < ‖xk−1 − x1‖+ r̃/p,

‖xk − x1‖ ≤ kr̃/p,

and ‖xk − x∗‖ < ‖xk − x1‖+ ‖x1 − x∗‖ < (k + 1)r̃/p ≤ (n0 + 1)r̃/p < ε. �
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4. Proof of Theorem 2.1

For each A ∈ Mm, ξ ∈ X and each positive number γ let the operator Aγ,ξ

be defined by
Aγ,ξx = Ax + γ(x− ξ), x ∈ X.

We begin the proof with the following three observations.

Lemma 4.1. If A ∈Mm, ξ ∈ X and γ > 0, then Aγ,ξ ∈Mm.

Lemma 4.2. Let A ∈Mm, ξ ∈ X, γ, r > 0 and let x, y ∈ X. Then

‖JAγ,ξ
r (x)− J

Aγ,ξ
r (y)‖ ≤ (1 + γr)−1‖x− y‖.

Lemma 4.3. For each fixed ξ ∈ X, the set {Aγ,ξ : A ∈ Mm, γ ∈ (0, 1)} is
everywhere dense in Mm.

In the rest of the proof we assume that (cf. (2.1))

(4.1) r̃ > 1, {rn}∞n=1 ⊂ (0, 1), lim
n→∞

rn = 0 and
∞∑

n=1

rn = ∞.

Lemma 4.4. Let A ∈ Mm, ξ ∈ X, γ ∈ (0, 1) and δ,K > 0. Then there
exist a neighbourhood U of Aγ,ξ in Mm and an integer n0 ≥ 4 such that for
each B ∈ U , each sequence of numbers ri ∈ [ri, r̃), i = 1, . . . , n0 − 1, and each
x, y ∈ X satisfying ‖x‖, ‖y‖ ≤ K, the following estimate holds:

(4.2) ‖JB
rn0−1

· JB
rn0−2

· . . . · JB
r1

x− JB
rn0−1

· JB
rn0−2

· . . . · JB
r1

y‖ ≤ δ.

Proof. Choose a number γ0 such that

(4.3) γ0 ∈ (0, γ).

Clearly

(4.4)
n∏

i=1

(1 + γ0ri) →∞ as n →∞.

Therefore there exists an integer n0 ≥ 4 such that

(4.5) (2K + 2)
n0−1∏
i=1

(1 + γ0ri)−1 < δ/2.

By Lemma 3.2 there exist a neighbourhood U1 of Aγ,ξ in Mm and a number
c1 > 0 such that for each B ∈ U1, each sequence ri ∈ [ri, r̃i), i = 1, . . . , n0 − 1,
and each pair of sequences {xi}n0

i=1 ⊂ X and {ui}n0
i=2 ⊂ X satisfying

(4.6) ‖x1‖ ≤ K, xi+1 = JB
ri

(xi), xi = xi+1 + riui+1, ui+1 ∈ B(xi+1)
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for i = 1, . . . , n0 − 1, the following estimates hold:

(4.7)
‖xi‖ ≤ c1, i = 1, . . . , n0,

‖ui‖ ≤ c1, i = 2, . . . , n0.

Choose a natural number m1 such that

m1 > 4(n0 + 8(c1 + 1)),(4.8)

[(1 + γ0ri)−1 − (1 + γri)−1]δ > 2(2 + r̃)m−1
1 , i = 1, . . . , n0,

and set

(4.9) U = {B ∈ U1 : hm1(graph(Aγ,ξ), graph(B)) < m−1
1 }.

Assume that B ∈ U , ri ∈ [ri, r̃), i = 1, . . . , n0 − 1, and

(4.10) x, y ∈ X and ‖x‖, ‖y‖ ≤ K.

Set

(4.11) x1 = x, y1 = y, xi+1 = JB
ri

(xi)

and yi+1 = JB
ri

(yi), i = 1, . . . , n0 − 1.

For each i = 1, . . . , n0 − 1 there exist ui+1 and vi+1 ∈ X such that

(4.12)
ui+1 ∈ B(xi+1), xi = xi+1 + riui+1,

vi+1 ∈ B(yi+1), yi = yi+1 + rivi+1.

It follows from the definition of U1 (see (4.6)) and (4.12) that

(4.13)
‖xi‖, ‖yi‖ ≤ c1, i = 1, . . . , n0,

‖ui‖, ‖vi‖ ≤ c1, i = 2, . . . , n0.

To prove the lemma it is sufficient to show that

(4.14) ‖xn0 − yn0‖ ≤ δ.

Assume the contrary. Then

(4.15) ‖xi − yi‖ > δ, i = 1, . . . , n0.

Let i ∈ {1, . . . , n0 − 1}. It follows from (4.12), (4.13), (4.9) and (4.8) that there
exist

(4.16) (xi+1, ui+1) ∈ graph(Aγ,ξ) and (yi+1, vi+1) ∈ graph(Aγ,ξ)

such that

(4.17)
‖xi+1 − xi+1‖+ ‖ui+1 − ui+1‖ < m−1

1 ,

‖yi+1 − yi+1‖+ ‖vi+1 − vi+1‖ < m−1
1 .
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Set

(4.18) xi = xi+1 + riui+1 and yi = yi+1 + rivi+1.

By Lemma 4.2, (4.16) and (4.18),

‖xi+1 − yi+1‖ = ‖JAγ,ξ
ri xi − J

Aγ,ξ
ri yi‖

(4.19)

≤ (1 + γri)−1‖xi − yi‖ ≤ (1 + γri)−1‖xi − yi‖.

It follow from (4.18), (4.12) and (4.17) that

(4.20) ‖xi − xi‖ ≤ ‖xi+1 − xi+1‖+ ri‖ui+1 − ui+1‖ ≤ m−1
1 (1 + r̃)

and
‖yi − yi‖ ≤ ‖yi+1 − yi+1‖+ ri‖vi+1 − vi+1‖ ≤ m−1

1 (1 + r̃).

By (4.17), (4.19) and (4.20),

(4.21) ‖xi+1 − yi+1‖ ≤ ‖xi+1 − yi+1‖+ 2m−1
1

≤ 2m−1
1 + (1 + γri)−1‖xi − yi‖

≤ 2m−1
1 + (1 + γri)−1(‖xi − yi‖+ 2m−1

1 (1 + r̃))

≤ (1 + γri)−1‖xi − yi‖+ 2m−1
1 (1 + (1 + γri)−1(1 + r̃))

≤ (1 + γri)−1‖xi − yi‖+ 2m−1
1 (2 + r̃).

Now (4.21), (4.8) and (4.15) imply that

‖xi+1 − yi+1‖ ≤ (1 + γ0ri)−1‖xi − yi‖

and since these inequalities are valid for all i ∈ {1, . . . , n0 − 1}, it follows from
(4.10), (4.11) and (4.5) that

‖xn0 − yn0‖ ≤ 2K

n0−1∏
i=1

(1 + γ0ri)−1 < δ/2.

This contradicts (4.15). Therefore (4.14) is true and Lemma 4.4 is proved. �

Completion of the proof of Theorem 2.1.. Let A ∈ Mm, ξ = 0,
γ ∈ (0, 1) and let i ≥ 1 be an integer. By Lemma 4.4 there exist an open neigh-
bourhood U(A, γ, i) of Aγ,0 in Mm and an integer q(A, γ, i) ≥ 4 such that for
each B ∈ U(A, γ, i), each sequence of numbers ri ∈ [ri, r̃), i = 1, . . . , q(A, γ, i)−1,
and each x, y ∈ X satisfying ‖x‖, ‖y‖ ≤ 2i+1, the following estimate holds:

‖JB
rq(A,γ,i)−1

· . . . · JB
r1

x− JB
rq(A,γ,i)−1

· . . . · JB
r1

y‖ ≤ 2−i−1.

Define

F =
∞⋂

n=1

⋃
{U(A, γ, i) : A ∈Mm, γ ∈ (0, 1), i ≥ n}.
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Clearly (see Lemma 4.3) F is a countable intersection of open everywhere dense
sets in Mm. Let A ∈ F , δ > 0 and K > 0. Choose an integer n > 2K +2+8δ−1.
There exist C ∈Mm, γ ∈ (0, 1) and i ≥ n such that A ∈ U(C, γ, i). The validity
of Theorem 2.1 now follows from the definitions of U(C, γ, i) and q(C, γ, i). �

5. Proof of Theorem 2.2

As in (4.1) let

(5.1) r̃ > 1, {rn}∞n=1 ⊂ (0, 1), lim
n→∞

rn = 0 and
∞∑

n=1

rn = ∞.

By definition, for each A ∈M∗
m there exists xA ∈ X such that

(5.2) 0 ∈ A(xA).

Recalling the definition of Aγ,ξ at the beginning of Section 4, we will use in this
section the operator Aγ,xA

. In other words,

(5.3) Aγ,xA
x = Ax + γ(x− xA), x ∈ X.

By Lemma 4.1 and (5.2), for each A ∈M∗
m and each γ ∈ (0, 1),

(5.4) Aγ,xA
∈M∗

m and 0 ∈ Aγ,xA
(xA).

The following observation is also clear.

Lemma 5.1. The set {Aγ,xA
: A ∈ M∗

m, γ ∈ (0, 1)} is everywhere dense
in M∗

m.

Let A ∈ M∗
m, γ ∈ (0, 1) and let i ≥ 1 be an integer. By Lemma 4.4 with

ξ = xA there exist an open neighbourhood U1(A, γ, i) of Aγ,xA
in Mm and an

integer n(A, γ, i) ≥ 4 such that the following property holds:

(a) For each B ∈ U1(A, γ, i), each sequence

rj ∈ [rj , r̃), j = 1, . . . , n(A, γ, i)− 1,

and each x, y ∈ X satisfying

(5.5) ‖x‖, ‖y‖ ≤ 8i+1(4 + 4‖xA‖),

the following estimate holds:

(5.6) ‖JB
rn(A,γ,i)−1

· . . . · JB
r1

x− JB
rn(A,γ,i)−1

· . . . · JB
r1

y‖ ≤ 8−i−1.
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By Lemma 3.3 there exists an open neighbourhood U(A, γ, i) of Aγ,xA
in

Mm such that

(5.7) U(A, γ, i) ⊂ U1(A, γ, i)

and the following property holds:

(b) For each B ∈ U(A, γ, i) and each sequence

rj ∈ (0, r̃), j = 1, . . . , 8n(A, γ, i)− 1,

there exists a sequence {xj : j = 1, . . . , 8n(A, γ, j)} ⊂ X such that

(5.8) xj+1 = JB
rj

(xj), j = 1, . . . , 8n(A, γ, i)− 1,

and
‖xj − xA‖ ≤ 8−i−1, j = 1, . . . , 8n(A, γ, i).

We will now show that the following property also holds:

(c) For each B ∈ U(A, γ, i), each x ∈ X satisfying ‖x‖ ≤ 8i+1(2 + 2‖xA‖)
and each integer m ≥ n(A, γ, i)− 1,

(5.9) ‖(JB
1 )m(x)− xA‖ ≤ 2 · 8−i−1.

Indeed, let B ∈ U(A, γ, i). By property (b) there exists a sequence

(5.10) {xj : j = 1, . . . , 8n(A, γ, i)} ⊂ X

such that

(5.11) xj+1 = JB
1 (xj), j = 1, . . . , 8n(A, γ, i)− 1,

and
‖xj − xA‖ < 8−i−1, j = 1, . . . , 8n(A, γ, i).

Let x ∈ X with

(5.12) ‖x‖ ≤ 8i+1(2 + 2‖xA‖)

and consider the sequence {(JB
1 )j(x)}∞j=1. Since the operator JB

1 is nonexpansive
it follows from (5.11) and (5.12) that for j = 1, . . . , 8n(A, γ, i)− 1,

(5.13) ‖(JB
1 )jx‖ ≤ ‖xj+1‖+ ‖(JB

1 )jx− xj+1‖
≤ ‖xA‖+ ‖xj+1 − xA‖+ ‖(JB

1 )jx− (JB
1 )j(x1)‖

≤ ‖xA‖+ 8−i−1 + ‖x− x1‖
≤ 2(‖xA‖+ 8−i−1) + ‖x‖
≤ 8i+1(2 + 2‖xA‖) + 2(‖xA‖+ 2−1) < 8i+1(4 + 4‖xA‖).
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We will show by induction that (5.9) is valid for all integers m ≥ n(A, γ, i)− 1.
Let m = n(A, γ, i)− 1. Then by property (a) and (5.11),

‖(JB
1 )m(x)− xA‖ ≤ ‖(JB

1 )(x)− (JB
1 )m(x1)‖+ ‖(JB

1 )m(x1)− xA‖
≤ 8−i−1 + ‖xm+1 − xA‖ ≤ 2 · 8−i−1.

Therefore for m = n(A, γ, i) − 1 (5.9) is valid. Assume that q ≥ n(A, γ, i) − 1
and that (5.9) is valid for all integers m ∈ [n(A, γ, i)− 1, q]. Consider

(5.14) y = (JB
1 )p(x) with p = q − (n(A, γ, i)− 1) + 1.

It follows from (5.9), which is valid by our inductive assumption for all integers
m ∈ [n(A, γ, i) − 1, q], and (5.13), which holds for all j = 1, . . . , 8n(A, γ, i) − 1,
that

‖y‖ ≤ 8i+1(4 + 4‖xA‖).

By this estimate, (5.14), (5.11) and property (a),

‖(JB
1 )q+1(x)− xA‖ = ‖(JB

1 )n(A,γ,i)−1(y)− xA‖
≤‖(JB

1 )n(A,γ,i)−1y − (JB
1 )n(A,γ,i)−1(x1)‖

+ ‖xn(A,γ,i) − xA‖ ≤ 2 · 8−i−1.

Therefore (5.9) is valid for all integers m ≥ n(A, γ, i)− 1 and property (c) holds.
Next we define

F =
[ ∞⋂

k=1

⋃
{U(A, γ, i) : A ∈M∗

m, γ ∈ (0, 1), i ≥ k}
]
∩M∗

m.

Clearly F is a countable intersection of open everywhere dense sets in M∗
m. We

will show that F ⊂M∗
0.

Let A ∈ F . Then there exist sequences {Ak}∞k=1 ⊂ M∗
m, {γk}∞k=1 ⊂ (0, 1)

and a strictly increasing sequence of natural numbers {ik}∞k=1 such that A ∈
U(Ak, γ, ik) for all natural numbers k. Property (c) implies that there exists
xA ∈ X such that

lim
j→∞

(JA
1 )j(x) = xA for all x ∈ X.

Clearly 0 ∈ A(xA) and if y ∈ X satisfies 0 ∈ A(y), then y = xA. Therefore
F ⊂M∗

0.
Let δ,K > 0. Choose a natural number q such that

(5.15) 4q > 4K + 4 and 4q > δ−1,

and consider the open set U(Aq, γq, iq). Let ri ∈ [ri, r̃), i = 1, 2, . . . , and let

(5.16) B ∈M∗
0 ∩ U(Ag, γq, iq).
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There exists a unique xB ∈ X such that

(5.17) 0 ∈ B(xB)

and

(5.18) (JB
1 )ny → xB as n →∞ for all y ∈ X.

It follows from (5.18) and property (c) that

(5.19) ‖xA − xAq‖, ‖xB − xAq‖ ≤ 2 · 8−iq−1.

Let x ∈ X with

(5.20) ‖x‖ ≤ K.

Set n = n(Aq, γq, iq). It follows from (5.16), (5.19), (5.20), (5.15) and property
(a) that

(5.21) ‖JB
rn−1

· . . . · JB
r1

x− JB
rn−1

· . . . · JB
r1

xB‖ ≤ 8−iq−1.

By (5.17), (5.21) and (5.19) we now have, for each integer n ≥ n,

‖JB
rn−1

· . . . · JB
r1

x− xB‖ ≤ ‖JB
rn−1

· . . . · JB
r1

x− xB‖ ≤ 8−iq−1

and
‖JB

rn−1
· . . . · JB

r1
x− xA‖ ≤ 5 · 8−iq−1 < δ.

This completes the proof of Theorem 2.2. �
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