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A REMARK TO THE SCHAUDER FIXED POINT THEOREM

Valter Šeda

Dedicated to the memory of J. Schauder on the occasion of the centenary of his birth

Abstract. In the paper some sufficient conditions are established in or-
der that a continuous map have a fixed point. The results are related to
those obtained by R. D. Nussbaum in [18], L. Górniewicz and D. Rozpłoch-
Nowakowska in [12], S. Szufla in [21] and D. Bugajewski in [6].

The famous Schauder Fixed Point Theorem [20] has been generalized in var-
ious directions by using different methods. For references, see [4]–[6], [9], [10],
[12], [18], [19], [21] and [24]. Closely related with a generalization of that theorem
is a long-standing conjecture in the fixed point theory which was formulated by
R. D. Nussbaum in 1972 in [18] and which reads as follows:

Let M be a closed, bounded convex set in a Banach space and T : M → M

a continuous map. Assume that there exists an integer n � 1 such that T n is
compact. Then T has a fixed point.

R. D. Nussbaum proved this conjecture with the additional assumption that
T restricted to an appropriate open set is continuously Fréchet differentiable.
Using algebraic topology methods, especially the generalized Lefschetz number,
he proved a series of asymptotic fixed point theorems, that is, theorems in which
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the existence of fixed points of a map T is established with the aid of assump-
tions on the iterates T k of T . Similarly F. E. Browder in [5] with the help of
the Lefschetz Fixed Point Theorem for compact absolute neighbourhood retracts
proved asymptotic fixed point theorems for mappings defined on subsets of abso-
lute neighbourhood retracts. He proved the above conjecture under assumption
that M is a compact absolute neighbourhood retract and T n(M) is homologically
trivial in M . K. Deimling in [9, p. 214] recalled the above conjecture.

In [12] L. Górniewicz and D. Rozpłoch-Nowakowska using again algebraic
topology methods proved the Schauder Fixed Point Theorem for several classes
of mappings in a metric space X . They also formulated an open problem to prove
these fixed point theorems in an elementary way, i.e. without using algebraic
topology. The above conjecture was proved by adding assumption that T is
locally compact.

In the paper several sufficient conditions have been established that a con-
tinuous self-map of a convex, closed set in a Banach space have a fixed point.
Their proof is based solely on the Schauder Fixed Point Theorem and is of an ele-
mentary character. The above mentioned conjecture is proved under assumption
that T is proper. We recall that T is proper when the preimage of each compact
set is compact. In all these cases an approach is applied which is similar to that
used by H. Mőnch (see [9, pp. 204–205]), S. Szufla in [21] and D. Bugajewski
in [6].

First we introduce the following notations. Let (X, ‖ · ‖) be a Banach space,
M be a nonempty subset of X and let T : M → M be a continuous mapping.
For x ∈ M let

γ+(x) : = {T k(x) : 1, 2, . . . }, T 0(x) : = x

be the positive semiorbit of x and

ω(x) := {w ∈ X : ∃kl → ∞ such that T kl(x) → w as l → ∞}

the ω-limit set of x. A point x ∈ M is a k-periodic point of T (k � 2) if
T k(x) = x, and T l(x) �= x, l = 1, . . . , k − 1. A set A is called a k-cycle (of T )
if A = γ+(x) for some k-periodic point x of T . The set CT =

⋂∞
k=0 T k(M) is

called the center of T (for the definition, see [12]).

In the whole paper the set inclusion ⊂ will mean �, A and ∂A will mean
the closure and the boundary of a set A, respectively. Further int(A) and co(A)
will denote the interior and the convex hull of the set A, respectively. If A ⊂ B

are two sets in X , then intB(A) will mean the interior of A with respect to
B. The dimension of X will be denoted by dim(X). U(a, r) will mean the
r-neighbourhood of the point a.
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If K ⊂ M is a compact set and T (K) ⊂ K, then by the Cantor theorem [17,
p. 5],

⋂∞
k=0 T k(K) is a nonempty compact subset of CT .

In our considerations the following definition will play an important role.

Definition 1. A couple (K1, K) will be called admissible (with respect to
the mapping T ) if

(i) ∅ �= K1 ⊂ K ⊂ M ,
(ii) the set K1 is compact, and
(iii) the set K is convex and closed, T (K) ⊂ K.

Throughout the whole paper the following assumption will be used

(H1) M is a nonempty convex and closed subset of a Banach space X and
T : M → M is a continuous mapping.

Some properties of admissible couples are collected in

Lemma 1. Let assumption (H1) be satisfied. Then the following statements
hold:

(i) If (K1, K) is an admissible couple and T (K1) ⊂ K1, then so is the
couple (K0, K) where K0 =

⋂∞
k=0 T k(K1) has the property T (K0) = K0

and hence, K0 is a subset of CT .
(ii) If (K1, K) is an admissible couple, then there exists the least convex

closed set K2 such that (K1, K2) is admissible.

Proof. (i) As it was already mentioned, K0 is a nonempty compact set such
that T (K0) ⊂ K0 ⊂ K1. If x ∈ K0 is an arbitrary element, then there exists
yk ∈ T k(K1) such that T (yk) = x and by the compactness of K1 there exists a
subsequence yl ∈ T l(K1) which converges to y ∈ K0 as l → ∞. T (y) = x and
hence x ∈ T (K0).

(ii) Let

(1) G = {F ∈ 2X : K1 ⊂ F ⊂ M, F is convex, closed and T (F ) ⊂ F}.

Let K2 =
⋂

F ∈G F . Then K2 is the least element of G in the sense of the set
inclusion. �

Definition 2. The admissible couple (K1, K2) will be called minimal if K2

is the least convex closed set containing K1.

We shall need some properties of convex sets in a linear normed space. By
Theorem 2, [2, p. 19] and Proposition 1.11, [7, p. 102], the following proposition
holds.

Proposition 1. Let K be a convex set of a normed space X. Then:

(i) The closure K of K and the interior int(K) of K are convex.
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(ii) If int(K) �= ∅, then K = int(K) and int(K) = int(K).
(iii) If x ∈ int(K) and y ∈ K, then [x, y) := {(1 − t)x + ty : 0 � t < 1} ⊂

int(K).

Proposition 1 is completed by

Lemma 2. Suppose that K is a convex set of a normed space X such that
int(K) �= ∅. Then for the boundary ∂(int(K)) of the interior int(K) of K we
have

∂(int(K)) = ∂(K).

Proof. In the case of an arbitrary set K we have the inclusion ∂(int(K)) ⊂
∂(K) (see [8, p. 65]). To prove the converse inclusion, let us consider a point x ∈
int(K) and an arbitrary point y ∈ ∂(K). Then by statement (iii), Proposition 1,
[x, y) ⊂ int(K) and hence y ∈ ∂(int(K)). This completes the proof of the
lemma. �

Further we shall use the following property of relatively compact subsets of
a linear normed space X with dim(X) = ∞. By Proposition 7.1, [9, p. 40] we
have the following result.

Proposition 2. Every relatively compact subset K of a linear normed space
X with dim(X) = ∞ has no interior points, that is, int(K) = ∅.

The following version of the Baire Category Theorem (Theorem 15.8.2 in [8,
p. 100]) will be stated here as

Proposition 3. Let P �= ∅ be a metric space which is homeomorphic to a
complete metric space. Let a set A be of first category in P . Then the set P \ A

is dense in P .

By [8, pp. 113, 110] we have

Proposition 4. Let P be a metric space. Then:

(i) If P is compact, then it is separable.
(ii) If Ak, k = 1, 2, . . . , are separable subsets of P and

⋃∞
k=1 Ak = P , then

P is separable.
(iii) If A is a separable subset of P , then the closure A of A is separable,

too.

The Alexandroff lemma ([1, p. 86]) is given here as

Proposition 5. Every Gδ in a complete metric space is completely metriz-
able.

Now we state the fundamental lemma.
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Lemma 3. Suppose that assumption (H1) is satisfied. Let (K1, K2) be a
minimal admissible couple. Then:

(i)

(2) K2 =
∞⋃

k=1

Sk

where {Sk}∞
k=1 is a nondecreasing sequence of convex compact subsets

of K2 which are defined by the relations

S1 := co(K1),(3)

Sk+1 := co(Sk ∪ T (Sk)), k = 1, 2, . . . .(4)

(ii) K2 is separable.
(iii) If

⋃∞
k=1 Sk is not closed, then

⋃∞
k=1 Sk \

⋃∞
k=1 Sk is a Gδ set.

(iv) If K1 ⊂ T (K1), then co(T (K2)) = K2.

Proof. (i) By the Mazur Theorem [7, p. 180], S1 is convex and compact.
Since S1 ⊂ K2, we also have that the compact set S1 ∪ T (S1) ⊂ K2 and the set
S2 = co(S1∪T (S1)) ⊂ K2 is convex and compact. By mathematical induction we
get that the sequence {Sk}∞

k=1 which is defined by (3) and (4) is a nondecreasing
sequence of convex compact subsets of K2. Clearly

⋃∞
k=1 Sk ⊂ K2 is convex

and by Proposition 1,
⋃∞

k=1 Sk is a convex and closed subset of K2. Further,
T (

⋃∞
k=1 Sk) ⊂

⋃∞
k=1 Sk and, on the basis of the continuity of T , we have that

T (
⋃∞

k=1 Sk) ⊂
⋃∞

k=1 Sk. Hence (K1,
⋃∞

k=1 Sk) is an admissible couple and since⋃∞
k=1 Sk ⊂ K2, equality (2) follows.

(ii) In view of Proposition 4, (2) implies that K2 is separable.

(iii) If
⋃∞

k=1 Sk \
⋃∞

k=1 Sk �= ∅, then
⋃∞

k=1 Sk \
⋃∞

k=1 Sk =
⋂∞

k=1(
⋂∞

l=1 Sl \ Sk)
is a Gδ set.

(iv) Denote K3 = co(T (K2)). As T (K3) ⊂ K3, K1 ⊂ K3, we have that
(K1, K3) is an admissible couple and thus, the minimality of (K1, K2) implies
that K3 = K2. �

Lemma 4. Suppose that assumption (H1) is satisfied. Let K1, ∅ �= K1 ⊂ M ,
be a compact set. Then there exists an admissible couple (K1, K) such that K

satisfies

(5) co(T (K)) = K.

Proof. Let a be the cardinal number of the set G given by (1). By the
Cantor Theorem [13, p. 93], the cardinal number 2a > a. Let b be the initial
ordinal number of power 2a. Then we define a transfinite sequence {Fα} of the
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type b with values in G (see [11, pp. 18–19]) in the following way:

(6)

F0 =M,

Fα =

{
co(T (Fα−1)) if α − 1 exists,⋂

β<α Fβ in the other case (α is a limit number),

for α > 0. The sequence {Fα} is nonincreasing with respect to the set inclusion
and we claim: There exists an ordinal number δ < b such that Fδ = Fδ+1 which
on the basis of (6) means that K = Fδ satisfies (5).

If (5) were not true for any K = Fδ, then the sequence {Fα} would be
injective and the cardinal number of G would be greater or equal to 2a which,
on the basis of the Cantor Theorem, is a contradiction with the properties of
cardinal numbers. �

By means of the last two lemmas we prove the following theorem which is
similar to the results obtained by S. Szufla in [21] and D. Bugajewski in [6].

Theorem 1. Suppose that assumption (H1) is satisfied. Let K1, ∅ �= K1 ⊂
M be a compact set. Then each of the following statements is a sufficient con-
dition for the existence of a fixed point of T :

(i) For each set K the implication holds:

(7) If K1 ⊂ K ⊂ M and (5) is true, then K is compact.

(ii) K1 ⊂ T (K1) and for each set K the implication holds:

(8) If K1 ⊂ K ⊂ M , K is separable and (5) is true, then K is compact.

Proof. (i) By Lemma 4 there exists an admissible couple (K1, K) such that
(5) is true. Then (7) yields that K is compact. By the Schauder Fixed Point
Theorem there is a u ∈ K such that u = T (u).

(ii) If instead of Lemma 4 we apply Lemma 3 and (7) is replaced by (8),
again we come to a fixed point u of T in K. �

The next theorem gives a statement on the alternative.

Theorem 2. Suppose that assumption (H1) is satisfied. Let (K1, K2) be a
minimal admissible couple and let K2 be bounded. Then either K2 is compact
and hence, there exists a fixed point of T in K2 or dim(X) = ∞, K2 is separable
and all Sk, k = 1, 2, . . . , defined by (3) and (4) are such that

(9) intK2(Sk) = ∅ for k ∈ N .

Hence the set

(10) K3 =
∞⋃

k=1

Sk
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is convex, dense and of first category in K2, T (K3) ⊂ K3, K1 ⊂ K3 ⊂ K2 and
K2 \ K3 is dense and a Gδ set in K2.

Proof. By Lemma 3, K2 is separable and there exists a sequence {Sk}∞
k=1

determined by (3) and (4) such that (2) is true. As to that sequence, we have to
distinguish the following three cases:

(i) There exists an l ∈ N such that Sl+1 = Sl and hence, T (Sl) ⊂ Sl. Since
Sl is a convex compact subset of a Banach space, by the Schauder Fixed Point
Theorem there is a u ∈ Sl such that u = T (u).

(ii) For each k ∈ N Sk � Sk+1. Consider the set K3 determined by (10).
Again we have two possibilities. The first one is that there exists an l ∈ N such
that the interior of Sl with respect to K2

(11) intK2(Sl) �= ∅.

Then there exists an x0 ∈ Sl and r > 0 such that the r−neighbourhood of
x0 in K2 U(x0, r) ∩ K2 ⊂ Sl. Therefore

(12) (U(x0, r) ∩ K2) − x0 ⊂ Sl − x0

and by the boundedness of K2 there exists an n ∈ N such that

(13)
1
n

(K2 − x0) ⊂ U(x0, r) − x0 = U(0, r).

Further

(14) (U(x0, r) ∩ K2) − x0 = (U(x0, r) − x0) ∩ (K2 − x0).

Since K2 − x0 is convex and contains 0, we have that

(15)
1
n

(K2 − x0) ⊂ K2 − x0.

Thus (12)–(15) imply that

1
n

(K2 − x0) ⊂ (U(x0, r) − x0) ∩ (K2 − x0) = (U(x0, r) ∩ K2) − x0 ⊂ Sl − x0.

As the set Sl − x0 is compact and K2 − x0 is closed, K2 is compact and again,
we have a fixed point u of T in K2.

(iii) Sk � Sk+1 and (9) is true. If dim(X) < ∞, then again K2 is compact.
Consider the case dim(X) = ∞. Then K3 given by (10) is convex and dense in K2

satisfying (2), T (K3) ⊂ K3, K3 is of first category in K2 and by Proposition 3
and Lemma 3, K2 \ K3 is dense as well as a Gδ set in K2. The proof of the
theorem is complete. �
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Corollary 1. Suppose that assumption (H1) is satisfied. Let there exist an
admissible couple (K1, K) such that

(i) intK(K1) �= ∅,
(ii) K is bounded.

Then there exists a fixed point of T in K.

Proof. Consider the minimal admissible couple (K1, K2). Since K1 ⊂ K2 ⊂
K, both conditions (i), (ii) are satisfied also for K = K2. Then Theorem 2 gives
the statement of the corollary. �

Remark 1. Corollary 1 says that a convex, closed and bounded set K has a
fixed point property if it contains a compact subset K1 with nonempty interior
with respect to K.

Corollary 2. Suppose that assumption (H1) is satisfied, M is bounded, T

is proper and there exists an open subset U of M such that T (U) is a compact
in M . Then there exists a fixed point u of T .

Proof. Since T is proper, V = T −1(T (U)) is compact. Further V ⊃ U

and thus, there exists a compact set with nonempty interior. Then Corollary 1
implies the statement of the corollary. �

Corollary 3. Suppose that assumption (H1) is satisfied, M is bounded, T

is proper and locally compact (i.e. for each point x0 ∈ M there is a neighbourhood
U(x0) of x0 such that T (U) is relatively compact). Then T has a fixed point.

Proof. Let K1 be a compact subset of M . As T is locally compact, K1 can
be covered by a finite number of open neighbourhoods U(xk), k = 1, . . . , j, such
that T (U(xk)) is relatively compact. Hence U =

⋃j
k=1 U(xk) is a neighbourhood

of K1 and T (U) is relatively compact. Since T is proper, T −1(T (U)) is a compact
set which contains U and by Corollary 1, there exists a fixed point of T . �

Now in our considerations we will start from the fact that if (K1, K2) is a
minimal admissible couple, then the set K3 determined by (10) is a convex subset
of K2 such that T (K3) ⊂ K3.

Corollary 4. Assume that (H1) is satisfied and let (K1, K2) be a minimal
admissible couple with the properties:

(i) K2 is bounded,
(ii) for each convex set K such that K1 ⊂ K ⊂ K2 and T (K) ⊂ K the

implication holds:
If K is dense in K2, then K2 \ K is not dense in K2.

Then T has a fixed point in K2.

Proof. The implication above is in contradiction with the properties of the
set K3 in Theorem 2. �
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The next result will be based on the following lemma.

Lemma 5. Let T : M → M be a map. Then the following statements are
true:

(a) Each point of a k-cycle of T is a fixed point of T k.
(b) Each fixed point of T k is either a fixed point of T or belongs to an l-cycle

of T where l is a divisor of k.

Proof. Only the statement (b) will be proved. Let x = T k(x) and let
x �= T (x). Consider the sequence {x, T (x), . . . , T k−1(x)}. Then two cases may
occur. Either all terms T l(x), l = 1, . . . , k − 1 are different from x and then the
sequence {x, . . . , T k−1(x)} is injective and x belongs to a k-cycle of T , or there
exists an l, 1 < l < k such that T l(x) = x and T m(x) �= x for m = 1, . . . , l−1. In
this case x belongs to an l-cycle of T and with respect to the fact that T k(x) = x

we must have that l is a divisor of k. �

The following theorem gives a partial answer to the conjecture above.

Theorem 3. Suppose that assumption (H1) is satisfied, T is proper and
there exists an integer n � 2 such that T n is compact. Then T has a fixed point.

Proof. By the Schauder Fixed Point Theorem, the assumption T n is com-
pact implies that there exists a point u ∈ M such that T n(u) = u. Then Lemma
5 gives that either u is a fixed point of T , or there is a natural l � 2 such
that C = {u, T (u), . . . , T l−1(u)} is an l-cycle of T whereby T (C) = C. Suppose
that the latter case is true. Then there exists a unique minimal admissible cou-
ple (C, K2). In view of Lemma 3, K2 satisfies (5). As T is proper, from the
compactness of T n(K2) it follows that T −1(T n(K2)) as well as T n−1(K2) are
compact. Proceeding in this way, step by step we get that T n−2(K2),. . . , T (K2)
are compact and hence K2 is compact, too. �

If T is not proper, then the following alternative holds.

Theorem 4. Suppose that assumption (H1) is satisfied and there exists an
integer n � 2 such that T n is compact. Then in the compact set K = T n(M)
either T has a fixed point or for each prime number p � n there exists a p-cycle
of T . Moreover, each cycle of T lies in K.

Proof. As S = co(K) is a convex compact subset of M , and for each k � n

T k(S) ⊂ K, there exists a fixed point xk ∈ K of T k. If T has no fixed point,
then xk belongs to an l-cycle of T where l is a divisor of k. In case k = p, l is p.
Further T (K) ⊂ K and hence, together with xp, all elements of this p-cycle of
T belong to K. The last statement follows from the fact that in each cycle of T

there is an element in K.
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Remark 2. Since the existence of a fixed point of T is proved in a convex
compact subset K of a Banach space X , by F. E. Browder [4, 5] in the case of
an infinite dimensional Banach space X , all existence statements throughout the
paper guarantee the existence of a non-ejective fixed point u of T , i.e. such that
each neighbourhood U of u contains a point x �= u for which T k(x) lies in U for
all k � 1.

Some properties of a proper mapping will be given in the following proposi-
tion which is a consequence of Proposition 11.14 in [24, p. 499], Corollary 19.18
([25, p. 636]) and Examples 11.11, 11.12 in [24, p. 498].

Proposition 6. Suppose that M is a nonempty set in a Banach space X

and T : M ⊂ X → X. Then the following statements hold:

(i) The set T (M) is closed if T is continuous and proper on the closed set
M .

(ii) If T is proper, then T : S ⊂ M → X is proper on each closed subset S

of M .
(iii) If S is compact, then each continuous map A : S ⊂ X → X is proper.
(iv) If T is injective, has a continuous inverse operator T −1 and a closed

range, then it is proper.
(v) The operator I − T is proper on M if T is condensing and the set M is

closed and bounded.

Remark 3. If T is a proper mapping, then we can modify the construction of
the sequence {Sk}∞

k=1 defined by (3) and (4) without violating its main property
to be a nondecreasing sequence of convex compact subsets of K2. In the new
construction (3) is retained and (4) is replaced by

(16) Sk+1 = co(Sk ∪ T (Sk) ∪ T −1(Sk)), k = 1, 2, . . . .

Then all statements of Lemma 3 and Theorem 2 are true if the sequence {Sk}∞
k=1

is defined by (3) and (16).
With help of this remark and Theorem 2 we prove

Theorem 5. Suppose that assumption (H1) is satisfied, M is bounded, T is
proper and CT is a nonempty relatively compact set. Then CT is compact and
T has a fixed point.

Proof. By Proposition 6, each set T k(M), k = 1, 2, . . . , is closed and there-
fore CT is closed and hence, compact. Consider the minimal admissible couple
(K1, K2) with K1 = CT and the sequence {Sk}∞

k=1 determined by (3) and (16).
Let K3 be determined by (10). As T (Sk) ⊂ Sk+1 as well as T1(Sk) ⊂ Sk+1, we
have that T (K3) ⊂ K3 and

(17) T −1(K3) ⊂ K3.
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Suppose that K2 \K3 �= ∅. Then (17) implies that T (K2 \K3) ⊂ K2 \K3. Hence
CT ∩ (K2 \ K3) �= ∅. Therefore K3 = K2, which on the basis of Theorem 2 and
respecting Remark 3, implies that T has a fixed point. �

Now we will study the sequence {Sk}∞
k=1 from the point of view of the Haus-

dorff distance. Let H be the collection of all nonempty bounded closed subsets of
M . Then the distance function d(., A) is defined by d(x, A) = inf{‖x−y‖ : y ∈ A}
for x ∈ M , A ∈ H and for each pair of the sets A, B ∈ H the Hausdorff distance
dH(A, B) = max{supa∈A d(a, B), supb∈B d(b, A)}.

Since M is a complete subset of X , by Theorems 3.51, 3.58 and 3.59 in [1,
pp. 100, 105, 106] the folowing proposition holds.

Proposition 7. The set H equipped with dH is a metric space which is
complete and the collection K of nonempty compact subsets of M is closed in
(H, dH).

Let A, Ak, k = 1, 2, . . . , be the subsets of X . We recall that the ε-neighbour-
hood of A is defined by

U(A, ε) = {x ∈ X : d(x, A) < ε}

and the topological lim sup of the sequence {Ak}, denoted by Ls Ak (the topo-
logical lim inf of the sequence {Ak}, in notation Li Ak), is the set of all points x

belonging to X such that for every neighbourhood U(x) of x there are infinitely
many k with U(x)∩Ak �= ∅ (there is an l such that k � l implies U(x)∩Ak �= ∅).
Equivalently,

Ls Ak =
∞⋂

m=1

∞⋃
k=m

Ak =
⋂
ε>0

∞⋂
m=1

∞⋃
k=m

U(Ak, ε),

Li Ak =
⋂
ε>0

∞⋃
m=1

∞⋂
k=m

U(Ak, ε),

see [1, p. 102–103]. Clearly Li AK ⊂ Ls AK . If Li Ak = Ls Ak = A, then the
set A is called the closed limit of the sequence {Ak}.

On the basis of Theorems 3.55, 3.65 in [1, pp. 103, 109], the relation between
the convergence in the space (H, dH) and the closed limit is given by

Proposition 8. Let A, Ak, k = 1, 2, . . . , be closed bounded subsets of M .
If limk→∞ Ak = A in (H, dH), then A = Li Ak = Ls Ak. Conversely, if A is
compact and Li Ak = Ls Ak = A, then limk→∞ Ak = A again in (H, dH).

Lemma 6. Suppose that assumption (H1) is satisfied. Let (K1, K2) be a
minimal admissible couple. Then K2 is compact if and only if the sequence
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{Sk}∞
k=1 defined by (3) and (4) is a Cauchy sequence in (H, dH), that is, for

each ε > 0 there exists a k0 = k0(ε) ∈ N such that

(18) sup
x∈Sl

d(x, Sk) < ε for each l > k � k0.

Proof. Since {Sk}∞
k=1 is a nondecresing sequence,

Ls Sk =
∞⋃

k=1

Sk = Li Sk

and by (1), K2 is the closed limit of the sequence {Sk}∞
k=1 . If K2 is compact,

then by Proposition 8 limk→∞ Sk = K2 in (H, dH).
If, conversely, {Sk}∞

k=1 is a Cauchy sequence, then in view of Propositions 7
and 8 {Sk}∞

k=1 is convergent to K2 as k → ∞. �

Theorem 6. Let assumption (H1) be satisfied. Let K1 be a compact subset
of M . Suppose that the sequence {Sk}∞

k=1 is defined by (3) and (4). Then a
sufficient condition for the existence of a fixed point u of T in M is that for each
ε > 0 there exist a k0 = k0(ε) ∈ N such that (18) is fulfilled.

Proof. (K1, M) is an admissible couple and by Lemma 1 there exists a
unique minimal admissible couple (K1, K2). Lemma 6 implies that K2 is compact
and hence, by the Schauder Fixed Point Theorem, there exists a fixed point u

of T in M . �

Somewhat more general result is given in the following theorem.

Theorem 7. Let assumption (H1) be satisfied. Assume that there exists
a sequence of positive real numbers {ak}∞

k=1 such that
∑∞

k=1 ak < ∞ and a
nondecreasing sequence of convex compact sets {Sk}∞

k=1 such that the following
statements hold:

(i) T (Sk) ⊂ Sk+1,
(ii) Sk+1 ⊂ U(Sk, ak) = {x ∈ M : d(x, Sk) � ak}.

Then there exists a convex compact set K2 such that T (K2) ⊂ K2 and hence, T

has a fixed point in K2.

Proof. Similarly as in the proof of Lemma 3 we get that K2 =
⋃∞

k=1 Sk is
a convex and closed subset of M and T (K2) ⊂ K2. In view of assumption (ii),
the sequence {Sk}∞

k=1 is Cauchy in (H, dH) and hence, using Lemma 6 which is
applicable in this case, we get that K2 is compact. �
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