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EXISTENCE OF SOLUTIONS TO SOME ELLIPTIC SYSTEM
IN SOBOLEV SPACES WITH THE WEIGHT
AS A POWER OF THE DISTANCE FROM SOME AXIS

WOJCIECH M. ZAJACZKOWSKI

ABSTRACT. We examine some overdetermined elliptic system in a domain
in R3® which contains an axis. Assuming that data functions belong to
Sobolev spaces with weights equal to a power of the distance from the
axis we prove existence of solutions in the corresponding kind of weighted
Sobolev spaces.

1. Introduction

In this paper we prove the existence and some regularity properties of solu-
tions to the following overdetermined elliptic system (see also [6])

rotv =w in ),
(1.1) divo=0 1in Q,
v-m=0 on dN,

where () is a bounded domain in R?, v = (v1(),ve(z),v3(x)), * = (21,72, 73)
and 7 is a unit outward normal vector to the boundary 0.
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The given vector w = (w1 (x),ws2(z), ws(x)) € R? must satisfy the compati-
bility condition

(1.2) divw =0 in Q.

Assume that w € H(Q; L) (or W§ (L)), k € Ng = NU{0}, u € Ry, which
is a Sobolev space with the weight equal to the p-power of the distance from an
axis L passing through Q (for the notation see Section 2). Then we show the
existence of such solutions to (1.1) that v € HE (Q;L) (or W;;l(Q;L)) and
the corresponding estimate holds.

Unfortunately we do not know how to solve problem (1.1) directly. Therefore
we introduce potentials for v. By [1, Lemma 1] there exists a vector u such that

(1.3) v=roty, divu=0, u-Talog =0,

where T, a = 1,2, are tangent vectors to 0.
The vector u is defined as

(1.4) u=u+u?

where

1 —iro v(y) W2 (z) = .
wa)= o tﬂ/x_mdy, () = Vi(z).

where 1) is a solution to the Dirichlet problem

(15) A'l/} = Oa Wasz = —¢07
with
(16) ul ‘ ?a|69 - ¢0,Taa o = 1a 27

and 7, is the curvilinear coordinate along the curve tangent to vector 7., a =
1,2.

Using the potential u we write (1.1) in the form

—Au = w,
(1.7) U Talon =0, a=12,
divu‘gg = 0,

where we have taken into account that
(1.8) Adive =0, divulgg =0
implies

(1.9) divu = 0.
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In a curvilinear system of coordinates (71,72,n) and in a neighbourhood of
02 the vector u can be written in the form

2

U = E um?ﬂ + unn,
p=1

where ., = w7y, up = u -7 and n is the coordinate along the curve tangent
to the normal vector 7. Then (1.7) can be replaced by

—Au=w in Q,
(1.10) ur, =0, a=1,2, on 01},
n-Vu, +u,divi =0 on 0.

From now on we shall restrict our considerations to problem (1.10). To
prove existence and regularity of solutions to (1.10) we prove the existence of
weak solutions and next using a partition of unity we increase regularity locally.
From [6] we have

DEFINITION 1.1. A weak solution to problem (1.10) is defined to be a func-
tion u € HY(Q), u-|aq = 0, such that
(1.11) /Vu-Vndx—l—/unnndivﬁd,s: /w-ndx,
Q o0 Q

holds for all n € HY(2), n,|sq = 0, where divw = 0. Moreover, see [6].

LEMMA 1.2. Let w € Ly(Q)). Then there exists a weak solution to (1.10)
such that u € HY (), u,|sq = 0 and

(1.12) ullmi@ < cllwllz,@)-

Since any increasing of regularity of the weak solutions in nontrivial in
a neighbourhood of the axis only we shall restrict examining of (1.10) to such
neighbourhoods. Taking the idea from [8] we apply the Kondratiev technique
[2], [5] to the following artificial problem

—Au = w,
(113) U|F0 = U|F2ﬂ—,
n- Vulp, = -7 - Vu|rar,

where w has a compact support, Iy = T'yr = {z € R® : x5 = 0}, Ap, =
(0, —1,0), ﬁlrgﬂ— = (0, 1,0).
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2. Notation and auxiliary results

We introduce a system of local coordinates (1, z2,x3) such that the axis x3
is the distinguished axis L in . We denote ' = (x1,x2) and |z’| = \/z% + 3.
Following Kondratiev [2] there are introduced spaces HJ(R?;0) and H}(R?; L),
k € Np, p € Ry with the norms

1/2
||U||Hk(R20)< Z /|Da u| |2’ |2# (k— |a)dx> ,

|a/[<kpa
and
/2
gy = (3 [ muao-oon )
lo| <kps
where o/ = (a1,2), @ = (a1, a2, a3) are multiindices, D2, = 031032, Dy =
991092093, |o/| = artag, |a = art+az+as. Moreover, H)(R?;0) = Ly ,(R?; 0)

Hg(ﬂ@, L) =Ly ,(R3 L).
Let ((t) € C§°(R4) be a monotone function such that ((t) = 1 for ¢ < 1/2
and ((t) = 0 for ¢t > 1. Moreover,

1/2
lll () = < > /ID“ o(, )2k (k=laD) dz) ’

\a|<kQ

where o(z, L) = dist(x, L), and

1/2
g, o = ( 3 [0zt (ote, iy ds )

[a| <k o
We introduce also
1/2
ull 7 0 = ( > /|Dgu|2x|2(ﬂ—(k—al))dx> 7
g |0“SkR3

where |z| = (23 + 23 + 23)'/2.
Finally we introduce spaces L5 ,(R?;0) and L§ ,(R?; L) with the norms

/2
g e = (3 [1patieanr)”

la/|=kpa2

and

2
lellzg g (Z [ 1Dz xd) .

lal= kRS
Next we recall the following Hardy inequality. Let

aq

u = 3 D ()=t

/| 041! ag!'

a2
Lo

|| = +as <
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Then

(2.1) llu— ul? ||L2,M—k(R3§L) < CHUHL’Z",M(R%L)v

where k —p—2<j<k—p—1, u€(0,1). We need also the Hardy inequality
in the form

(2.1) /|u|2r2“ dr < c/ lu |*r? 2 dr, peR,
0 0

w # —1/2, where the both sides of (2.1") exist and u , = J,u.
Now we recall some results from [2]. Let us consider the problem
~Au = f in RZ,
(2.2) u|’yo = u|')’27r’

U plyg = U plrans

where A’ = 831 + 5%2, Yo = Yor = {x € R% : 25 = 0},7,¢ are the polar
coordinates. First we find solutions of the homogenous problem (2.2). Expressing
homogeneous problem (2.2) in the polar coordinates we have

1 1
;ar(rur) + 2Uwe = 0,
(2.3)

ulp=0 = ulp=2n,
Up| p=0 = Up| p=2r-

A general solution of (2.3); has the form

(2.4) u = r%(a; sinap + as cos ap),

where a1, ag are arbritrary parameters. Using (2.4) in (2.3)2,3 yields
(2.5) sin2ra =0, cos2ma =1,

so « is an arbitrary integer number. Therefore solutions of (2.3) have the form

(2.6) ik = ¥ sin ko, ugk = r* cos ke,
where k € Z.
Introducing new variable 7 = — Inr and the new quantity v(7, ¢) = u(e™7, ®)

we write (2.2) in the form

_ —27 __
Vrr +0,0p = fe =F,

(27) v‘cp:O = U|Lp:27T)

Vpolo=0 = plp=2n-
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Applying the Fourier transform

(2.8) (T, ) = /ei)‘wﬁ()\,gp) dA

to (2.7) and putting o = —i\ yield

V47T pp = F,
(29> f/l7|ga=0 = a|<,0=27r7
5,<p|so:0 = 5,<p|w:27r~
In view of the above considerations we see that solutions of homogeneous prob-
lem (2.9) have the form (2.6) when o € Z.
Assume that f € H}i(R?,0). Then
k oco+ih

(2.10) Z / |A‘2S||ﬁ||§:{k—s(0,27r) dX < Hf||%1;;(n§2,o)v

S:O—oo—i-ih

where h =1+ k — p. Then from [2] we have

THEOREM 2.1. Assume that f € Hl]f(]R2;O), we€(0,1), k €Ny, h#0. Then
there exists a unique solution u € H}"(R?;0) of (2.2) such that

(2.11) lall g2 ooy < el Fllmscaso)-
Moreover,

THEOREM 2.2. Assume that f € Hﬁ(RZ;O) ﬂHﬁ:(R2;O), i € (0,1),
k, k" € Ng and
h(EK' s y=n =14k —p' >1+k—pu=h=h(k,p),

where h,h' & 7. Assume that there exist integer numbers such that ly,...,1, €
(h,h'). Then there exists two solutions of problem (2.2) u € H’;H(Rz;O) and
u € Hﬁl+2(R2;0) such that

212)  Jull gy < g 16 gusaa < s
and

lu‘
(2.13) u= Z (apr? sinop + byr? cosop) +u'.

O'=ll

Let BL(R") be a closure of smooth functions with compact supports in the
seminorm

() = < 3 //’Dau(x)—QDau<x2+y>+Do‘u(y)

2 dz dy 1/2
U)) ’
la]=[lgn gn

o — yl20-
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where [[] is the integer part of [ (the seminorm in the main part of the norm of
the Besov space BL(R™)).

THEOREM 2.3. Let u € L’§7M(R3,L), pw>—1and o < k—p—1. Then
D*ulp, € Bg_“_la‘_l(L) and
o k—p—|al—1
(D w)g Y < el gy
Let pq € Bgiﬂ*la‘fl(L), where oo = (a1, 2) with |a] < k — pu — 1, be given
functions with compact supports on L.

Then there exists a function v € L’Qﬂ L (R?; L) with a compact support such
that D% u|r = ¢q and

k—p—|a|—1
lull s @oizy < €D (palsy Y.

3. Regularity problem for (1.13)

In view of the form of (1.13) we can treat v and w as scalar valued functions,
however they are vector valued.

LEMMA 3.1. Assume thatw € Lo ,(R%; L), u € (0,1), has a compact support.
Then there exists a solution to problem (1.13) such that

(3.1) lu = w(0)|| 2 e,y < cllwllr,,, &s:L),
where u(0) = ul,—o and H;;*(R?; L) is defined by (3.23).
PRrROOF. By a weak solution to problem (1.13) we mean a function v €
H'(R3) satisfying the integral identity
(3.2) /VUngoda::/wwpdx,
R3 RS

which holds for any ¢ € H*(R?). Inserting ¢ = u in (3.2), passing to the spherical
coordinates, using the Hardy inequality (2.1’) with g = 1 and compactness of
the support of w we obtain

(3.3) /\Vu|2dx < c/|w|2dx.
R3 R3

Using the Hardy inequality (2.1’) once again we have existence of weak solutions
(3.2) in H}(R3;0) and the estimate

(3.4) el 73 oy < el zaay-
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Applying the Fourier transform

(3.5) u(z) = / e 38 (!, €) dé
to (1.13) implies
~ATU+ U =0,
(3.6) ~m% = mlz,”
on| _ou
Oxa |, Oxo 7277'

In view of the Parseval identity the identity (3.2) takes the form
(3.7) /(V'E~V'g0+£2ﬂ-<p) da’ = /a ~pda,
R2 R2

which holds for any ¢ € H!(R?), where ¢ was replaced by ¢ for simplicity. To
increase regularity of weak solutions determined by (3.7) we need some estimates
involving parameter £ to apply Kondratiev results. From [5] we have the estimate

(3.8) ¢ /(IV’ﬂI2 +&[af?) o’ da’ < C/ @[] | dat’,
R2 R2

where p € (0,1).
In view of (3.3) and the Parseval identity we obtain the estimate

(3.9) /(|V’ﬂ\2 + &2[uf?) da’ < c/ |@|? da’.
R2 R2
From (3.8) after applying the Hardy inequality we get
(3.10) Nl 20y + ENENT, w20y < DN, @200

Let us introduce the function
- _ z
(3.11) ug = uC (|€|]|% |> ,

where R will be chosen large enough. Then up is a solution to the problem
—A'tig + %ip = w¢ — 2V'uV'¢ — uA'¢ = hg,
(3.12) UR|vo = UR|vyans
URplvo = UR,plyans

where © in the r.h.s. is the weak solution.
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Since |V'¢| < ¢[¢|/|2'], [V'3¢| < FaE (I¢| 4 |¢]), where ¢ does not depend on
R and dot denotes the derivative with respect to the argument,we obtain that

(3.13) [2V'aV'C+avV'3 2, (g
5 - ~ - c [~
< 2 [(VaRI P+ (Pl 22 da' < 5 [ (PP do
R2 R2

where (3.8) was used. Hence hp € La ,(R?;0) and

1 ~
(3.14) 1hRlLs . (r2:0) < C<1 + R2> 1@z, . (r2:0) -

Therefore for ur we obtain the estimates (3.8), (3.9) and (3.10).
Multiplying (3.12); by @g|z’|** and integrating the result over R? yield
3.15) [T + anP P do’ < [ a2 da
R? R?

+ [ 1@l anl P o’ + [ (97 ')+ o] 20C]+ D al o' ',
R2 R2

where the constants ¢ do not depend on R. Since @g vanishes for |£]|z'| > R,
the first integral on the r.h.s. of (3.15) can be estimated by

&
= [ Efanli P ar
R? /

R2

Using compactness of the support of @ the second integral on the r.h.s. of (3.15)
we estimate by

c/|c~u||17R||x’|2“_1dx' < 5/|HR\2|x’\Q”_2dx’—|—c(€)/|&|2|x'|2“dx’
R2 R2 R2
Ssc/|V'ﬂR|2|x’|2“ da:’+c(6)/|c7)\2|a:’|2“ dx'.
R2 R2

Finally the last term on the r.h.s. of (3.15) we estimate by

c(e) [ 1anPla P2 4+ P da += (VTP + [l P ?) o

R2 R2

< ) [ ePlantie' e’ + co [ (9Pl
R2 R2

where in the first integral we used |2/|~2 < ¢|¢|?/R? and in the second the Hardy
inequality.
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Assuming that R is large enough we obtain from the above considerations
the inequality

(3:16) [ (VP + € fan o' da
R2
< c/ |&|? || da’ Jrec/ |V'a)? |2 | da'.
R2 R2
Passing with R — oo in (3.16) yields
(3.17) /(|V/ﬂ|2 + a2’ |2 da’ < c/ |@|2 |2’ |2 da’.
R2 R?
Finally, from (3.16) and (3.17), we have
(3.18) /(\V'ﬂR|2 + Eug|H) |2’ 2 da’ < c/ @22 |?* da'.
R? R?
Let us consider the problem

—Ap = —2V'aV'¢ —aV'*¢ — ur = gr,
(3.19) UR|vo = UR|vyar»

UR g0 = URp |z -

In view of the above considerations we have that gr € Lo ,(R?;0) and

(3.20) 19rll L, . r20) < cll@lL,, 2:0)-

Since hg € L, (R%*0) and (3.14) solutions of (3.12) satisfy (3.8). From the
estimate we obtain (3.20).
Using compactness of the support of @ and (3.17) we have

(3.21) 198 Ls 2 ®2:0) < BN Ly s 0 @2:0) + VUl Ly, R2:0)
+ HaHLZ“,l(Rz;O) + ||£2ﬂR||L2,#+1(R2;0))
< c(I@lL,., 20y + 1€2URN Ly s (R2:0))-

Finally the last norm we estimate in the way
[enPla i <c [ @nple i < e [ opi ar,
R2 R2 R?

where we used that wg vanishes for |¢||2’'| > R and (3.18)

Considering problem (3.19) we see that gr € L, (R%*0) N Lz ,41(R%0).
Therefore, by Theorem 2.2, we have two solutions u}, € Hﬁ(RQ;O) and % €
H?,(R%0).

Moreover, 1 —p > 0>1— (1+ p) = —p, so Theorem 2.2 implies that

~2 ~1
UR = Ug + Co,
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where we assume that c¢g = u|,—o = @(0) because uk|,—o = 0 and u%|,—¢ # 0
and corresponds to the weak solution.

Therefore the weak solution is such that @ — %(0) € H;(R*;0) and the esti-
mate holds

(3.22) i — W(O0)l| 112 w210y < el 220y
Finally, by the Parseval identity, we have that
(323)  [lu = u(0)|| Hz2re;r) = /(Iﬁl“l\ﬂlliz,u@w;m + €PN r2s0)
Rl
+ |lu— a(o)”%ﬁ(R?;O)) d§ < C||W||2L2,“(R3;L)~
This concludes the proof. O
Next we have

LEMMA 3.2. Assume that w € HL(R* L), p € (0,1) and has a compact
support. Then there ezists a solution to problem (1.13) such that v — u(0) —
Ug, (0)x1 — g, (0)x € HY3(R?; L) and

(3.24) [u—u(0) = uq, (0)1 — Ua, (0)22 mr2s(re;r) < cllwllmy(re;r),
where
lu = u(0) = tg, (0)21 = ta, (0)22][7 5 m5.1)

= /(IflGHﬂII%Q,“(Rz;O) 1€l 20y + €171 = @O) 72 (22.0)
R1
+[[d = @(0) — T, (0)21 — Ty (0) 2| 3 2,0 ) .-

PrROOF. From (3.8) we obtain the estimate

(3.25) ¢t / (VG2 + (@) [ da’ < c? / B2 da.
R2 R2

Now we consider problem (3.19) where the third term on the r.h.s. takes the form
(@ —u(0))V'2¢. It means that in the r.h.s. of (3.19) is the function @ — u(0) €
Hﬁ(RQ; 0). First we show that gr € Hi (R%;0). For this purpose we examine
HV%V,C”%{;(R%O) < C(HvlzadFLz,H(RQ;o) + HV’ﬁ(IéI + |§|)||%2,M,Q(R2;o))
< Cé—2/|v/2ﬂ|2|x/|2p, dxl+cg2/|v/a‘2|x/|2u72 d.’bl
R2 R2

S C§2/|JJ|2|$/|2“ d.’l?l7
RQ



102 W. M. ZAJACZKOWSKI

where we used that [¢|7!]2’|~! < ¢ and the estimates from the proof of Lem-
ma 3.1. Next

[TV 2C 1% 210y < eIV @S]+ 1D | 2o (22:0)
+ cll (@ —w(0) (I + 1K + 1D, a0

< 052/|v/a|2|x/|2p—2dx/+052/|a_ﬂ(0)|2|x/|2u—4dx/
R2 R2

< [ Gl ar
R2

Finally, from the proof of Lemma 3.1, it follows that &2 € H}L(Rz;O). Hence
gr € H\(R?;0) is shown.
Now we prove that gr € H{,,(R? 0). For this purpose we examine

IVAY ey < VTN, gy + IVTE + DI, o)

< CHwHQLM(R?;o)-
Continuing
(@ = @(0) V'3, zei0) < ellV'aC + DI, r2s0)
+ el @—a(O)(I¢]+ 1K+ 1<DIZ, o rei0)
< C||°~U||%2,M(R2;o)~

Finally, in view of (3.18) and that @g vanishes for |{||z'| > R, we obtain

I€Tnl,,, oy < ¢ [ €19 TP PO de’ e [ €0l de’
R2 R2

§c§2(/|V’ﬂR|2|x’|2“dx'+/ER|2|90’|2“_2 dm')
R2 R2

< [Pl ar
R2
Hence gr € H|,,(R?0) is proved. Therefore from (3.19) and Theorem 2.2
we have existence of two solutions uj, € H(R?*0) and a% € HY, ,(R%*0) and
because 2 — > 1> 2 — (1+ p) =1 — pu we have that

Uy = Up + c1121 + c1222, |[ur — co — ez — c12@2 2 (r2;0) < cl|@| m2 (R2;0)

where ¢y = u|r=0, €11 = U g, |r=0, C12 = U g, |r=0. Applying the Parseval identity
and adding necessary norms we obtain (3.24). This concludes the proof. O

Next we consider the case w € WQk H(]R?’; L), where k > 1. For this purpose
we need



EXISTENCE TO ELLIPTIC SYSTEM IN WEIGHTED SPACES 103

LEMMA 3.3. Assume that w € L’g’#(R?’; L), k> 0. Then there ezists a func-
tion v € LSLQ(RS; L) such that f = Av+w € Hﬁ(R?’; L) and the estimate holds

(3.26) H“”L’;ff(RS;L) + ||f||H1§(R3;L) < CH‘UHL’;“(R%L)'
PROOF. Let o o
1 2
Was = Z Dg’w|z’:0x1 2 5
041! ag!
|a|=s

where o = (a1, @) is the multiindex and DS, = 091952, We introduce homoge-

nous polynomials R, defined by the relations (see [4], [5])

~V"?Rs = V"?Rs_5 + ws_o,
(3.27) Rslyy = Rl

Rs,s@"vo = Rs,sﬂ|72ﬁa

where V" = 0,,. We assume that Ry = R; = 0. In view of Theorem 2.3 we have

o k+1—p—|a
(3.28) > DRy T < clwllny iy
ol =[k+1—p]

We choose a function v in such a way that
(3.29) ’U|1;/:0 = 0, Dg/v|z/:0 = D%Rm\,
where 0 < |a| < [k+ 1 — p] and

k+1—p—|a
(3.30) HUHL’;f(RS;L) <c Z <DS’R|’1\>;,L poleh < c||w”L'z°,u(R3;L)'
|| <[k+1-p]

Moreover, for || < k — 1 — u, we have
D}/(Av+w) = V"D (v = Rig) + V'* D (v = Rigjy2) + Dy (w — wygy)-
Hence DY, (Av + w)|y—g = 0 s0 Av+w € H¥(R?; L) and
[Av + Wl gs;n) < clAv+wlipy (gvsir)-
This concludes the proof. O
In view of Lemma 3.3 we can consider problem (1.13) with w € HF(R3; L).

THEOREM 3.4. Assume that w € Hﬁ(R3;L), w € (0,1). Then the prob-
lem (1.13) has a solution u € LQ;LQ(R?’; L) and

(3.31) ol oy < ellolmg e -
holds. Moreover, there exists a polynomial Py, (u) of degree k such that

(3.32) ”uHH;"*Z(RS;L) < C”W”H’;(]RB;L)a



104 W. M. ZAJACZKOWSKI

where H}FT2(R3; L) is defined by (3.45) and (3.46). The polynomial Py (u)
depends on derivatives of u up to the order k calculated on the axis L.

PrROOF. We examine problem (1.13) in the form (3.6). We show the lemma
step by step starting from the regularity of weak solutions. Let w € Ly ,(R3; L).
Then Lemma 3.1 implies that u — Py € H}*(R% L), Py = ul,— and

(3.33) lu = Pollrrzzresny < cllwllz, ,@e1)-

Let w € H)(R? L). Then Lemma 3.2 gives that u — Py — P, € H;?>(R* L) and
(3.34) lu—Po = Pilasamsrn) < cllwllmwe;r),

where Py = ug, (0)21 + g, (0)zy. Assume that w € H}(R* L). Then & €

k(TR2.
&, (R*0), where

(3.35) A S el = e
J<k

The meaning of the space Sllf (R?;0) is such that

o0
sy = [ ATy oy
— 00

by the Parseval identity. To simplify considerations we introduce
w=u—Py, u=u—P—P, so u€H?>R%L), u € H>R*L).
To increase regularity we are looking for solutions of the problems
—A'; = -2 + 0,
Ujlyo = Ulyans
Ujplro = Ujolrans

where 7 > 2, and homogeneous polynomials JSS,S“J- of degree s 4+ 2j, s = 0,1,
which are solutions to the problems

'D 2D
—-A Ps,s+2j = _g Ps,s+2(j71)7
Ps7s+2j|'yu = S7$+2j|"/2w7

Ps,s+2j,<p|*m = s,s+2j,<p|vzﬂ»
where Py o = Py, P1,1 = Pi. Looking for solutions in Hﬁ we introduce

v =1 — C(|$/D150,2,

V" =Ty 4 (1= ¢(|2'])) Poa.
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They are solutions to the same problem
—A'v=h,
(3.36) Vlyy = Vlrans

U7<F|’Yo = vv@|72w’

because
W ==+ 0+ (P +2V'(V P + V' Py,
W=~ + & — € Py + (CRoa + V(P

are equal. Let us introduce the polynomials

(3.37) Qr = apr” sin ko + bpr* cos k.

Since h = b’ = h" € H}(R*0) N H}(R?*0) we have that k(1) =2 —pu <2 <
3 — = h(2). Applying Theorem 2.2 we obtain that v/ = v” + Q2, so

Uy = Ug + 130,2 + Qo,
or
(3.38) U=Ty+ Py+ P+ Pyo+ Qs
Moreover, we have
(3.39) 2] 2 r2;0) < cf|@le2w2;0)-
To show regularity in Hj(R?;0) we introduce
V' =Ty — (P, V' =3+ (1—()Pa,

which are solutions of the same problem (3.36) because u; + ]31 = up implies
that A’ = h”.

Since h € H:(R*0) N H}(R*0) and h(2) =3 —p <3 <4 —pu = h(3) we
have, by Theorem 2.2, that v' = v” + Qs3, so

1722534-?1,24-@&

Hence

(3.40) 17:173+130+131+130,2+}~71,2+©2+@3
and

(3.41) @l s (r2;0) < l|@llez (R2;0)-

To increase further regularity we introduce

v =15 — C(ISOA + @2,4),
v =4+ (1 - C)(ﬁo,4 + @2,4),
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where @2,4 is the fourth degree polynomial calculated from the problem

_V/2©5,5+2j = _52@5,54»2(]‘71);
Qs,s+2j|vo = Q575+2j|727r’

Qs,s+25.0lv0 = Qs,512j.0lr2r
where s = 2 and 7 = 1 and @S,S = @S. To apply Theorem 2.2 we see that
h(3)=4—p<4<5—p=nhn(4),so
(3.42) U3 = s+ Poa + Qa4+ Qu

Continuing the above considerations we have
(3.43) u=ug+ Z ﬁ072j + Z ﬁ1,1+2j + Z @s,s+2j7
25 <k 1425<k s<k
s+2j<k

and
(3.44) ikl g2 g0y < ellllenwoo)-
Moreover, in view of (3.38)—(3.44), we obtain

(345) 30y = €N, oy + €y
+ |§|2k_2\|170||§{g(m2;o) t+-t HﬂkHifﬁw(Rz;o)
~12
< C”W”g/j(u{z;o)-
Hence in view of the Parseval equality, we obtain (3.32) where H:jk“‘z (R% L) is
defined by

(3.46) sy = | AN grem g
]Rl

This concludes the proof. O
From Lemma 3.3 and Theorem 3.4 we have

THEOREM 3.5. Assume that w € L’§7M(R3;L), w € (0,1). Then there exists

a solution to (1.13) such that u € Lg,’hz(ﬂ@; L) and

(3.47) ol s gy < ellollg  wovny
Moreover, there exists a function v determined by Lemma 3.3 such that
(3.48) ol 2 gy < ello = ol s s

We have to underline that the boundary conditions in the problem (1.13)
are artificial and are used to apply the technique of weighted Sobolev spaces
introduced by Kondratiev only (see [2]). It can be shown similarly as in [8] that
the solution remains regular passing through the plane I'yg = ',
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4. Existence of solutions to (1.10)

To prove the existence of solutions to problem (1.10) and to find an appro-
priate extimate we use the existence of weak solutions (see Lemma 1.2) and
the estimate (1.12). To show higher regularity we apply local considerations.
Therefore we distinguish four different kinds of neighourhoods:

(1) near internal points of L,
2

(2) near the points where L meets the boundary,
(3) near internal points of {2 but in a positive distance from L,
(4)

4) near boundary points but in a positive distance from the points where

L meets 09.

In the cases (3) and (4) the weighted spaces are not necessary. We shall restrict
to cases (1) and (2) which can be treated similarly. Let ¢ be a smooth function
with the support near an internal point of L. Let w = u{, @ = w(. Then
problem (1.10) takes the form

(4.1) —Au=w—2V({Vu — Alu = w1,

where we can add additionally the boundary conditions (1.13)3 3. In view of the
weak solution and for w € Ly(§2) we have that &y € La(2) too. Therefore we
can repeat the consideratons from Section 3.

THEOREM 4.1. Assume that w € W;M(Q;L), w € (0,1). Then there exists
a solution to problem (1.13) such that u € WQITf(Q; L) and the estimate holds

(4.2) il @uzy < ellollwg, @y

Let p € L. Then there exists a neighbourhood Q(p) of p sufficiently small
and a function v = v(p) such that

(4.3) HUHH;H?(Q(,,) 0= cllw - ’U(p)”H:f(Q(p);L)'

5. Existence of solutions to problem (1.1)
In view of results of Sections 3 and 4 we have

THEOREM 5.1. Assume that w € WQIC,“(Q; L), k € No, p€(0,1). Then there
exists a solution v € W;ZI(Q; L) such that

(5.1) Pollwiss oury < elollwg, @y

Moreover, in any sufficiently small neighbourhood Q(p) of a point p € L, there
exist v (w,p) such that

(5.2) [oll rzm+1 @iz < cllw = vlw, D)l sz) + 1wz, @sn)-
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