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Abstract. For a scalar, first order ordinary differential equation which

depends periodically on time, Massera’s Theorem says that the existence

of a bounded solution implies the existence of a periodic solution. Though
the statement is false when periodicity is replaced by quasi-periodicity, solu-

tions with some kind of recurrence are anyway expected when the equation
is quasi-periodic in time. Indeed we first prove that the existence of a

bounded solution implies the existence of a solution which is quasi-periodic

in a weak sense. The partial differential equation, having our original equa-
tion as its equation of characteristics, plays a key role in the introduction of

this notion of weak quasi-periodicity. Then we compare our approach with

others already known in the literature. Finally, we give an explicit example
of the weak case, and an extension to higher dimension for a special class

of equations.

1. Introduction

Let ω1, . . . , ωN be real numbers which are linearly independent over the
rationals and let us consider the scalar differential equation

(1.1) ẋ = F (ω1t, . . . , ωN t, x).

Here F = F (θ1, . . . , θN , x) is a continuous function which is 1-periodic with
respect to each θi. A solution x(t) is said to be quasi-periodic if it can be

2000 Mathematics Subject Classification. Primary 34C27, 37B55; Secondary 37B20, 35F30.

Key words and phrases. Bounded, recurrent and quasi-periodic solutions, partial differen-
tial equations on the torus.

c©2002 Juliusz Schauder Center for Nonlinear Studies

39



40 R. Ortega — M. Tarallo

expressed in the form

(1.2) x(t) = u(ω1t, . . . , ωN t), t ∈ R,

where u = u(θ1, . . . , θN ) is continuous and 1-periodic in each θi. The function
u satisfies the partial differential equation

(1.3) ω1
∂u

∂θ1
+ . . . + ωN

∂u

∂θN
= F (θ1, . . . , θN , u)

in a distributional sense. Since the linear flow

(1.4) θ̇1 = ω1, . . . , θ̇N = ωN

is minimal on the torus, one proves easily that (1.2) defines a one-to-one corre-
spondence between the quasi-periodic solutions of (1.1) and the periodic solutions
of (1.3) which are continuous. When F is monotone in x the existence problem
can be analyzed using techniques coming from the theory of almost periodic
functions [15], [11], [6] and also from the theory of semilinear elliptic partial
differential equations [3]. When F is not monotone it is still possible to obtain
some existence results using KAM theory (see for instance [14]). However this
approach seems to require strong restrictions on the frequencies ω1, . . . , ωN and
on the regularity and size of F .

To understand the intrinsic difficulties of the quasi-periodic problem for (1.1)
it can be useful to go back to an example due to Opial [16]. This example consists
in an equation of the type (1.1) with two frequencies (N = 2) and such that all
solutions are bounded but none of them is quasi-periodic. This is in contrast
with the periodic case (N = 1). In this simpler situation Massera’s Theorem [12]
says that the existence of a bounded solution implies the existence of a periodic
solution. Opial’s example suggests that many of the results valid for scalar
periodic differential equations should not have an extension to the quasi-periodic
case. This is the line of thought in the paper [7], where Fink and Frederickson
modified the example in [16] in order to construct a dissipative equation without
quasi-periodic solutions. The same example of [7] can be used to show that the
method of upper and lower solutions does not work in the quasi-periodic case.
Other related and interesting examples can be seen in [13], [23], [25], [10].

From the point of view of the partial differential equation one can say that
the main difficulty lies in the lack of regularity of the solutions. In [3] Brezis
and Nirenberg obtained a result on the existence of L∞-solutions of (1.3) on the
torus. Their result can be applied to the example in [7] to construct an equation
(1.3) having solutions on the torus but such that all of them are discontinuous.

In this paper we are interested in the effect produced by the discontinuous
solutions of (1.3) on the ordinary differential equation. This will lead us to a
notion of weak quasi-periodicity and to a version of Massera’s Theorem valid for
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quasi-periodic equations. In contrast to [3] we shall consider the equation (1.3)
in a classical setting and not in the sense of distributions. To do this we shall
interpret the differential operator ω1∂/∂θ1 + . . . + ωN∂/∂θN as the directional
derivative. Namely,

D−→ω u(θ1, . . . , θN ) = lim
h→0

1
h
{u(θ1 + ω1h, . . . , θN + ωNh)− u(θ1, . . . , θN )}

with −→ω = (ω1, . . . , ωN ). A solution on the torus of (1.3) will be a function
u = u(θ1, . . . , θN ) which is bounded, upper or lower semi-continuous, 1-periodic
in each variable, and such that D−→ω u exists everywhere and satisfies

D−→ω u(θ1, . . . , θN ) = F (θ1, . . . , θN , u(θ1, . . . , θN )).

With this definition, given any (θ1, . . . , θN ), the function

x(θ1,... ,θN )(t) = u(ω1t + θ1, . . . , ωN t + θN )

is a bounded solution of the translated equation

(1.5) ẋ = F (ω1t + θ1, . . . , ωN t + θN , x).

The family {x(θ1,... ,θN )} will be called a weak quasi-periodic family of solutions
of (1.5). When u is continuous the classical concept of quasi-periodic solution
of (1.1) is recovered. In fact in this case it is obvious how to reconstruct the
whole family from one of its elements, say from θi = 0. On the contrary, when
u is only semi-continuous, we shall see that it is not always possible to recover
the whole family from one function x(θ1,... ,θN ).

The rest of the paper is organized in four sections and we pass to discuss their
contents. In Section 2 we prove that (1.3) has a solution on the torus as soon as
(1.1) has a bounded solution. This will allow us to give a new proof of a result
in [3] and also to deduce that the equation coming from Opial’s example has
infinitely many solutions on the torus. Notice that all of them must be discon-
tinuous. To prove the result of Section 2 we shall reformulate our problem on the
partial differential equation (1.3) with the terminology of topological dynamics.
After this is done the proof follows from ideas which are well known to people in
the field of dynamics. In particular, the same type of arguments were employed
by Shen and Yi in [21] to study almost automorphic solutions of monotone flows.
Section 3 is devoted to discuss the connections between the notions of almost
automorphy and weak quasi-periodic families. Almost automorphic functions
play a role in the theory of almost periodic equations and, in particular, they
appear in the quasi-periodic case. See [6] and the more recent paper [21]. We
shall prove that in a weak quasi-periodic family the function x(θ1,... ,θN ) is almost
automorphic for a residual set of (θ1, . . . , θN ). As a consequence of an exam-
ple constructed in Section 4 we shall show that two different solutions of (1.3)
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can produce the same almost automorphic solutions of (1.5). All this indicates
that, in the context of quasi-periodic equations, the class of weak quasi-periodic
families is wider than the class of almost automorphic solutions. In Section 4
we construct an equation (1.3) having a solution which is discontinuous on a
set of full measure. The construction is based on some results by Johnson on
the primitive of an almost periodic function (see [8], [9]). It only requires two
frequencies (N = 2) and we shall show how this discontinuous solution produces
some complexity in the dynamics of the three dimensional system

θ̇1 = ω1, θ̇2 = ω2, ẋ = F (θ1, θ2, x).

Finally in Section 5 we extend the theorem of Section 2 to certain classes of
higher order equations. For instance, the results of this section will apply to

(1.6) ẍ + cẋ = F (ω1t, . . . , ωN t, x),

where c ∈ R and F is smooth and satisfies

(1.7) Fx(θ1, . . . , θN , x) ≤ c2

4
.

The key property of first order scalar equations is the monotonicity of the flow;
for an equation such as (1.6)–(1.7) this is no longer true. However they satisfy
a property that will be sufficient for our purposes: the set of bounded solutions
is totally ordered. The results of this section are inspired by [20]. In that
paper R. A. Smith obtained an extension of Massera’s Theorem valid for certain
periodic differential equations of higher order. We finish the paper with an
Appendix on an example by R. A. Johnson.

Notations. We shall work on the torus

TN = (R/Z)× . . .× (R/Z), N ≥ 1.

A point in TN will be denoted by

Θ = (θ1, . . . , θN ), θi = θi + Z.

Haar measure on TN is indicated by µ and satisfies µ(TN ) = 1.
The flow associated to (1.4) is

Θ · t = (θ1 + ω1t, . . . , θN + ωN t).

We recall that this flow is ergodic with respect to µ.
A function u = u(θ1, . . . , θN ) which is 1-periodic in each θi will be interpreted

as a function on the torus, u : TN → R. The derivative in the direction −→ω can
be expressed as

D−→ω u(Θ) = lim
h→0

1
h
{u(Θ · h)− u(Θ)}, Θ ∈ TN .
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2. First order equations on the torus

A function u : TN → R belongs to the class S+(−→ω ) it if is upper semi-conti-
nuous, the directional derivative D−→ω u exists everywhere and both functions u

and D−→ω u are bounded on the torus. The class S−(−→ω ) is defined in an analogous
way if one replaces upper semi-continuity by lower semi-continuity. Notice that
S−(−→ω ) = −S+(−→ω ).

Let F : TN × R → R be a continuous function and let us consider the
equation (1.3) on the torus. A solution of this equation will be a function u ∈
S+(−→ω ) ∪ S−(−→ω ) such that

(2.1) D−→ω u(Θ) = F (Θ, u(Θ)) for all Θ ∈ TN .

Our first result shows the connection of this definition with the concept of quasi-
periodic solution.

Proposition 2.1. Assume that u ∈ C(TN ) is such that the function x(t)
defined by (1.2) is a solution of (1.1). Then u is in S+(−→ω )∩S−(−→ω ) and satisfies
(2.1).

Proof. For each s ∈ R the function x(t+s) = u(ω1t+ω1s, . . . , ωN t+ωNs)
solves (1.5) with θi = ωis. The continuity of u allows us to pass to the limit and
prove that u(Θ · t) solves (1.5) for arbitrary Θ = (θ1, . . . , θN ). Thus D−→ω u exists
and (2.1) is satisfied. From this equation we deduce that D−→ω u is bounded and
so u ∈ S+(−→ω ) ∩ S−(−→ω ). �

Next we discuss the connection between the previous definition and the
method of characteristic lines. Let u ∈ C(TN ) be a solution of (2.1), then
for each Θ ∈ TN the function t ∈ R 7→ u(Θ · t) ∈ R is a quasi-periodic solution of

(2.2) ẋ = F (Θ · t, x).

When u is not continuous we can only say that it produces a family of bounded
solutions of (2.2). Next we show that this process can be reversed.

Theorem 2.2. Assume that for some Θ0 ∈ TN the function ϕ(t) is a
bounded solution of (2.2) with Θ = Θ0. Then there exist u? ∈ S+(−→ω ) and
u? ∈ S−(−→ω ) which are solutions of (2.1) and satisfy

inf
t∈R

ϕ(t) ≤ u?(Θ) ≤ u?(Θ) ≤ sup
t∈R

ϕ(t) for Θ ∈ TN ,(2.3)

u?(Θ0 · t) ≤ ϕ(t) ≤ u?(Θ0 · t) for t ∈ R.(2.4)

Proof. Consider the Fréchet space BC(R). This is the vector space of
bounded and continuous functions from R into R endowed with the topology
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induced by uniform convergence on bounded intervals. Given s ∈ R we consider
the linear operator

Ts : BC(R) → BC(R), Tsx(t) = x(t + s).

This map is an order-preserving isomorphism and {Tsx}s∈R can be seen as an
orbit of the so-called Bebutov flow (see [19] for more details).

In the space TN ×BC(R) consider now the product flow

(2.5) (Θ, x) · s = (Θ · s, Tsx)

and denote by Γ the closure of the orbit starting at (Θ0, ϕ). Clearly it is an
invariant subset of TN × BC(R); since ϕ is uniformly continuous, it is also a
compact set. It is easy to prove that the projection of Γ on TN is surjective.
The other projection on BC(R) can be described as the closure of {Tsϕ | s ∈ R}.
This is the so-called hull of ϕ and will be denoted by H. For any Θ ∈ TN define

HΘ = {x ∈ BC(R) | (Θ, x) ∈ Γ}.

Notice that HΘ is a compact and non–empty subset of the hull H. Moreover,
every x ∈ HΘ satisfies (2.2). When there is uniqueness for the initial value
problem associated to this equation then HΘ is totally ordered, and the idea is
to consider its minimal and maximal elements. In general it is not so but it is
not too difficult to prove that the functions

vΘ(t) = sup{x(t) | x ∈ HΘ}, wΘ(t) = inf{x(t) | x ∈ HΘ}

are also bounded solutions of (2.2). Since HΘ·s = Ts(HΘ) we deduce that

(2.6) vΘ·s = Ts(vΘ), wΘ·s = Ts(wΘ).

If we define
u?(Θ) = vΘ(0), u?(Θ) = wΘ(0)

then it is clear that u? is upper semi-continuous and u? is lower semi-continuous.
Moreover, from (2.6), we deduce that u?(Θ · t) = vΘ(t) and u?(Θ · t) = wΘ(t).
Thus D−→ω u?(Θ) = dvΘ(t)/dt|t=0, D−→ω u?(Θ) = dwΘ(t)/dt|t=0 and both functions
satisfy (2.1). The rest of the proof is immediate. �

Remark 2.3. It is interesting to discuss the previous proof when the solution
ϕ(t) is already quasi-periodic, say ϕ(t) = u(Θ0 · t) for a suitable u ∈ C(TN ). In
such a case the space Γ is given by

Γ = {(Θ, ϕΘ) | Θ ∈ TN},

where ϕΘ(t) = u(Θ · t). Since HΘ is a singleton one has vΘ = wΘ = ϕΘ. Thus
u∗ ≡ u ≡ u∗.

More discussions on the previous proof will be presented in the next section.
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The equation (1.3) on the torus can also be understood in the sense of dis-
tributions. A function u ∈ L∞(TN ) satisfies

(2.7) −→ω · ∇u = F (Θ, u) in D′(TN )

if ∫
TN

{uD−→ω φ + F (Θ, u)φ} = 0 for all φ ∈ C∞(TN ).

Next result shows the connection between this concept of solution and the notion
previously introduced.

Proposition 2.4.

(i) Let u ∈ S+(−→ω )∪S−(−→ω ) be a solution of (2.1). Then u is also a solution
of (2.7).

(ii) Let u ∈ C(TN ) be a solution of (2.7). Then u is in S+(−→ω ) ∩ S−(−→ω )
and satisfies (2.1).

Proof. Semi-continuous functions can be characterized as limits of mono-
tone sequences of continuous functions. This implies that any function in S+(−→ω )
or S−(−→ω ) is measurable. In consequence, given any u ∈ S+(−→ω ) ∪ S−(−→ω ), we
know that u and D−→ω u belong to L∞(TN ). To complete the proof of (i) we notice
that the identity∫

TN

φD−→ω u = −
∫

TN

uD−→ω φ for all φ ∈ C∞(TN )

follows, after a passage to the limit, from∫
TN

φ(Θ)u(Θ · h) dΘ =
∫

TN

φ(Θ · (−h))u(Θ) dΘ.

For this passage to the limit one can apply Lebesgue Dominated Convergence
Theorem and it is convenient to notice that the quotient [u(Θ ·h)−u(Θ)]/h can
be dominated by any upper bound of |D−→ω u|. This follows from the Mean Value
Theorem.

To prove (ii) we first notice that the class of test functions in the definition
of solution of (2.7) can be changed. Namely, D(TN ) = C∞(TN ) can be replaced
by D(RN ) = C∞

0 (RN ). This follows from standard arguments in the theory of
distributions. Next we consider the linear mapping in RN ,

C(θ1, . . . , θN ) = (θ1 + ω1θN , . . . , θN−1 + ωN−1θN , ωNθN ).

Then v = u ◦ C is a function in L∞(RN ) satisfying

∂v

∂θN
= F (C(θ1, . . . , θN ), v) in D′(RN ).
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We can now apply Fubini Theorem to deduce that for almost every (θ1, . . . , θN )
in RN the function t 7→ v(θ1, . . . , θN + t) satisfies

ẋ = F (C(θ1, . . . , θN ) + (0, . . . , 0, t), x).

In principle it is a solution in the sense of distributions but, since the equation is
ordinary, it can also be understood in the classical sense. Undoing the change of
variables we notice that, for almost every Θ in TN , the function xΘ(t) = u(Θ · t)
is a solution of (2.2). We can now finish the proof by applying Proposition 2.1.�

As a first application of the previous results we go back to Opial’s example
in [16]. In this example all the solutions of (1.1) satisfy |x(t)− x(0)| ≤ 2 for all
t ∈ R but none of them is quasi-periodic. Thus we can apply Theorem 2.2 to
deduce the existence of infinitely many solutions of (2.1) or (2.7). On the other
hand the discussion after Proposition 2.1 implies that these solutions must be
discontinuous.

Next we consider the example in [7]. Now the equation (1.1) is dissipative
but has no quasi-periodic solutions. The construction in [7] implies that every
constant c with |c| ≥ 2 is an upper or a lower solution of (1.1) depending on the
sign of c. Since there is a bounded solution of (1.1) with |ϕ| ≤ 2 we can ap-
ply Theorem 2.2 to deduce the existence of a solution of (2.1) satisfying |u| ≤ 2.
Again this solution must be discontinuous. This example shows that the method
of upper and lower solutions could not work for the quasi-periodic problem as-
sociated to (1.1) or for the search of continuous solutions of (2.1). In this last
case we interpret the constants c+ ≥ 2 and c− ≤ −2 as functions defined on the
torus.

We shall also mention the example constructed by Zhikov and Levitan in [25].
They found functions a, b ∈ C(T2) for which the linear equation

ẋ + a(Θ · t)x = b(Θ · t)

has a bounded solution but no quasi-periodic solutions. This shows that even
in the linear case one can find discontinuous solutions of (1.3). It is worth
noticing that, in the same paper [25], the authors introduce a notion that can be
interpreted in terms of the partial differential equation. They call it an invariant
section and it can be seen as a solution of (1.3) in the almost everywhere sense.
We thank Prof. R. A. Johnson for informing us about this interesting example.

To finish the section we discuss the connections with Theorem 2’ in [3]. In
that theorem Brezis and Nirenberg considered the equation

(2.8) −→ω · ∇u + g(u) = p(Θ) in D′(TN ),

where g was continuous and locally of bounded variation and p ∈ C(TN ). The
result in [3] applies for an arbitrary frequency vector −→ω . When ω1, . . . , ωN are
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linearly independent over Q it says that (2.8) has a solution u ∈ L∞(TN ) if

(2.9) lim sup
u→−∞

g(u) <

∫
TN

p < lim inf
u→∞

g(u).

It is well known that the characteristic equation ẋ+g(x) = p(Θ·t) has a bounded
solution if (2.9) holds. This follows from arguments like in [24] or [1] and one does
not need to assume that g is locally of bounded variation. In consequence one
can apply Theorem 2.2 to deduce the existence of solutions of (2.8) in S±(−→ω ).

3. Quasi-periodicity in the weak sense
and almost automorphic solutions

In this section we shall assume that the initial value problem associated
to (1.5) has a unique solution for every Θ ∈ TN . This will simplify the compar-
ison with other results in the literature.

Given a solution of (2.1), u ∈ S±(−→ω ), the function

xΘ(t) = u(Θ · t)

is a bounded solution of (2.2) for each Θ ∈ TN . We shall say that the fam-
ily {xΘ}Θ∈TN is quasi-periodic in the weak sense. With this definition we can
reinterpret Theorem 2.2 as a result of Massera type for (2.2). The proof of this
Theorem suggests a characterization of the notion of weak quasi-periodic family
which does not involve the partial differential equation. In fact we can define
such a family as a function

F : (Θ, t) ∈ TN × R 7→ xΘ(t) ∈ R

which is bounded, upper or lower continuous and satisfies the properties

For each Θ ∈ TN the function t ∈ R 7→ xΘ(t) is a solution of (2.2).(3.1)

For each Θ ∈ TN and t, s ∈ R one has xΘ·s(t) = xΘ(t + s).(3.2)

When F is continuous the functions xΘ are quasi-periodic and we recover the
classical situation. In this case the knowledge of a single xΘ allows to reconstruct
the whole family by density and continuity. This is no longer true when F
(or u) is discontinuous. In the next section we shall construct an example of the
type (2.2) with two families of solutions, {xΘ} and {yΘ}, having the following
properties: {xΘ} is quasi-periodic in the classical sense and {yΘ} is quasi-periodic
in the weak sense, xΘ ≡ yΘ on a residual set in TN , xΘ 6≡ yΘ on a set of full
measure in TN . This shows that the notion of weak quasi-periodic family is
collective.

Let {xΘ} be a family of solutions which is quasi-periodic in the weak sense
but not in the classical one. It seems natural to ask about the recurrence prop-
erties of the functions xΘ. In principle one could think of a situation where
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the functions xΘ are almost periodic and have a module which is not contained
in 〈ω1, . . . , ωN 〉. However this can be excluded because the equation is scalar
and there is uniqueness (use [6, p. 231, Theorem 12.10] and then [24, p. 30,
Theorem 4.1]).

There are several extensions of the notion of almost periodicity which have
been applied to differential equations. We recall the almost periodicity in the
sense of Besicovitch (employed in [25]) and also the concept of almost automor-
phic function (see [2], [22] and [21] for applications to differential equations).
The rest of the section will be devoted to discuss the connections between weak
quasi-periodicity and almost automorphy.

A continuous function f : R → R is said to be almost automorphic if from
every sequence (sn) ⊂ R it is possible to extract a subsequence (snk

) such that
the translates Tsnk

f converge pointwise to a certain function g, while T−snk
g →

f also in a pointwise sense. The following result on the existence of almost
automorphic solutions is an immediate consequence of Chapter 3 in [21]. From
a different perspective it could also be thought as a theorem of Massera type.

Theorem 3.1. Assume that for some Θ0 ∈ TN the function ϕ(t) is a
bounded solution of (2.2) with Θ = Θ0. Then there exists a residual set G

in TN such that for each Θ ∈ G the equation (2.2) has an almost automorphic
solution xΘ(t) satisfying

inf
t∈R

ϕ(t) ≤ xΘ(t) ≤ sup
t∈R

ϕ(t), t ∈ R.

The ideas in [21] can also be applied to construct certain weak quasi-periodic
families. To this end we consider the flow on TN×R associated to the differential
equations

θ̇1 = ω1, . . . , θ̇N = ωN , ẋ = F (θ1, . . . , θN , x).

Namely,

Πt(Θ, x0) = (Θ · t, x(t;x0,Θ))

where x(t;x0,Θ) is the solution of (2.2) with x(0) = x0. Given a bounded
solution ϕ(t), the ω-limit set of (Θ0, ϕ(0)) is compact and invariant. This implies
that there is a non-empty minimal set included in it. Now one could define

u#(Θ) = sup{x/(Θ, x) ∈ E}, u#(Θ) = inf{x/(Θ, x) ∈ E}

and these functions would be solutions of (1.3) satisfying (2.3). However with
this construction one cannot guarantee that (2.4) holds. In the example of the
next section one can select ϕ > 0 in such a way that u# = u# = 0. Now we
observe that it is possible to construct many other solutions of (1.3) by keeping
the definition of u# and u# and allowing a more general class of sets E. In fact
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u# and u# will be solutions as soon as E is a compact and invariant set. If we
go back to the proof of Theorem 2.2 we notice that u? and u? were defined as

u?(Θ) = sup{x/(Θ, x) ∈ Γ}, u?(Θ) = inf{x/(Θ, x) ∈ Γ},

where Γ was the closure of the orbit passing through (Θ0, ϕ(0)). From the point
of view of topological dynamics this is perhaps a difference of our approach.
Instead of looking for minimal sets we construct our solutions of the partial
differential equation from compact invariant sets. This is important because
there are equations with simple minimal sets but complicated attractors. Again
we refer to the example of the next section, where the only minimal set is a torus
but the attractor has a complicated topological structure.

Now we shall go in the opposite direction and deduce Theorem 3.1 from
Theorem 2.2. Let {xΘ} be a weak quasi-periodic family of solutions of (2.2).
Define C ⊂ TN as the set of points of continuity of the map

Θ ∈ TN 7→ xΘ(0) ∈ R.

The theory of semi-continuous functions implies that C is residual in TN (see [4,
p. 111, Corollary 7.6]). We will prove later on that C is invariant for the linear
flow on the torus, this implies that its measure is either 0 or 1. In the example
of Section 4 the set C does not coincide with TN but has full measure. We shall
prove the following characterization of C.

Proposition 3.2. In the previous setting the function xΘ is almost auto-
morphic if and only if Θ ∈ C.

We need some preliminary lemmas. First of all, let us discuss the role played
by the uniqueness of the initial value problem.

Lemma 3.3. In the conditions of the previous proposition the following state-
ments hold:

(i) if Θn → Θ with Θ ∈ C then xΘn
→ xΘ uniformly on compact sets,

(ii) Θ ∈ C implies Θ · s ∈ C for all s.

Proof. (i) The definition of C implies that xΘn
(0) → xΘ(0). Now, by

continuous dependence with respect to parameters and initial conditions, we
deduce that xΘn(t) → xΘ(t) uniformly on compact intervals.

The proof of (ii) follows from (i) and the property (3.2). �

The following lemma gives a criterion to decide whether a point Θ ∈ TN

belongs to C.

Lemma 3.4. Let (X, d) be a metric space and D a dense subset of X. Assume
that f : X → R is a semi-continuous function. Then f is continuous at a point
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x ∈ X if for each sequence xn ∈ D such that xn → x, there exists a subsequence
xnk

with f(xnk
) → f(x).

Proof. Let x ∈ X be a point where f is not continuous. There exist an
ε > 0 and a sequence yn ∈ X such that yn → x and |f(yn)− f(x)| ≥ ε holds for
all n. Assume for instance that f is an upper semi-continuous function. Then
we must have f(yn) ≤ f(x) − ε for large n. By density we can find xn ∈ D

with d(xn, yn) → 0, so that xn → x. Moreover, using the semi-continuity of f

at yn, we may choose xn in such a way that f(xn) < f(yn) + ε/2 holds for all
n. Summing up, xn ∈ D, xn → x and f(xn) < f(x)− ε/2. The sequence f(xn)
does not admit any subsequence converging to f(x). �

We shall apply this Lemma when X = TN , D = {Θ0 · s | s ∈ R} for a
given Θ0, and f(Θ) = xΘ(0). We are now ready to prove the above stated
proposition. The proof will follow along the lines of Chapter 2 in [21].

Proof of Proposition 3.2. We will use the same notations as in the proof
of Theorem 2.2. Fix a point Θ0 ∈ C (we have residually many) and repeat the
construction with ϕ = xΘ0 . We claim that, if Θ ∈ C, then HΘ = {xΘ}.

To prove it, assume that (Θ, x) ∈ Γ. By definition there exists a sequence sn

such that Θ0 · sn → Θ and Tsn
xΘ0 → x. On the other hand, Tsn

xΘ0 = xΘ0·sn
,

and Lemma 3.3 says that xΘ0·sn → xΘ. Thus x ≡ xΘ, proving the claim.

Coming back to the statement of the proposition, let us assume that Θ ∈ C
and prove that xΘ is almost automorphic. Take a sequence sn. Again due
to standard compactness arguments, there exists a subsequence snk

such that
Θ · snk

→ Θ∗, Θ∗ · (−snk
) → Θ, Tsnk

xΘ → y and T−snk
y → z, for some

suitable Θ∗ ∈ TN and y, z ∈ BC(R). As a consequence of the previous claim,
(Θ, xΘ) ∈ Γ; since Γ is closed, the same is true for (Θ∗, y) and (Θ, z). Again
using the claim, z ≡ xΘ, which proves the almost automorphy of xΘ.

To prove the converse, let us now assume that xΘ is almost automorphic
and prove that Θ ∈ C. To this aim we shall use Lemma 3.4. Take any sn

such that Θ0 · sn → Θ, and notice that Θ · (−sn) → Θ0 ∈ C. By Lemma 3.3,
T−sn

xΘ = xΘ·(−sn) → xΘ0 . Moreover, since xΘ is almost automorphic, there
exist a subsequence snk

such that Tsnk
xΘ0 → xΘ pointwise. In particular

xΘ0·snk
(0) = Tsnk

xΘ0(0) → xΘ(0), and Lemma 3.4 applies to reach the con-
clusion. �

Summing up, in a weak quasi-periodic family a residual set is made by al-
most automorphic solutions. Moreover, the solution is quasi-periodic if and only
if all the functions in the family are almost automorphic (see [22, p. 738, Theo-
rem 3.3.1] for a similar characterization of almost periodic functions).
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4. An example of the weak case

We shall work with the linear flow on T2

(4.1) θ̇1 = 1, θ̇2 = ξ where ξ 6∈ Q,

and we will be interested in the bounded solutions of the parametric equation

(4.2) ẋ + G(x) + A(Θ · t)x = 0

for suitable G ∈ C∞(R) and A ∈ C(T2). Here Θ = (θ1, θ2) ∈ T2 and Θ · t =
(θ1 + t, θ2 + ξt).

The nonlinearity G will vanish in a neighborhood of the origin and will behave
at infinity in such a way that the system is dissipative. Precisely we will assume
that it satisfies

G is odd and nonnegative on [0,∞),(4.3)

G(x) = 0 if x ∈ [−1, 1],(4.4)

G(x) ≥ ‖A‖∞ x + 1 if x ∈ [2,∞).(4.5)

As a consequence of (4.3), (4.5) every solution of (4.2) will eventually enter in
a compact region inside the strip |x| < 2. In particular every bounded solution
must satisfy ‖x‖∞ < 2. Define KΘ to be the class of bounded solutions of (4.2).
KΘ can be seen as a compact subset of BC(R) which always contains the trivial
solution. It is totally ordered and we will denote its maximal element by vΘ. By
symmetry the minimal one is −vΘ.

From the definition, it is easy to verify that

0 ≤ vΘ(t) < 2, vΘ(t + τ) = vΘ·τ (t)

hold for every Θ ∈ T2 and all t, τ ∈ R. In addition the map (Θ, t) 7→ vΘ(t) is
upper-semicontinuous. Summing up, the family {vΘ}Θ∈T2 is quasi-periodic in
the weak sense. In other words, the function on T2 defined by

(4.6) u(Θ) = vΘ(0)

is a solution of the partial differential equation

(4.7) D−→ω u + G(u) + A(Θ)u = 0,

where −→ω = (1, ξ). This solution will be continuous if and only if the set C
coincides with T2. Next result will show that it is possible to select A so that C
has measure zero. This implies that u is not continuous and not even integrable
in the Riemann sense. We recall that C is not negiglible from the topological
point of view because it is always residual.
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Proposition 4.1. Assume that (4.3)–(4.5) hold. Then there exists a func-
tion A ∈ C(T2) such that the solution of (4.7) defined by (4.6) satisfies

• C = {Θ ∈ T2 | u(Θ) = 0},
• u(Θ) > 0 for almost every Θ ∈ T2.

At the end of the section we shall show that this proposition yields some
complexity in the dynamics for the equation (4.2). For the moment we discuss
some consequences of more analytic nature.

Equation (4.7) also admits the trivial solution w = 0, which is of course
a classical solution. The solution u coincides with w on a residual set but it is
positive almost everywhere. This implies that u and w are also different solutions
when the equation is understood in a distributional sense. If we consider the
proposition from the point of view of the ordinary differential equation (4.2), we
see that the weak quasi-periodic family of solutions {vΘ}Θ∈T2 produces the same
set of almost automorphic solutions, i.e. the trivial ones, as the trivial classical
quasi-periodic solution. Roughly speaking, the theory of weak quasi-periodic
solutions is not a subset of the theory of almost automorphic ones.

Proof of Proposition 4.1. Denote by x(t;x0,Θ) the solution of (4.2)
which takes the value x0 at time t = 0. Since G vanishes on [−1, 1], any solution
satisfying ‖x‖∞ ≤ 1 will also solve the linear differential equation

(4.8) ẏ = −A(Θ · t)y.

Note that the general solution of (4.8) is

y(t;x0,Θ) := x0e
−
R t
0 A(Θ·s) ds.

Since G(x) ≥ 0 if x ≥ 0, any positive solution of (4.2) will be a lower solution
of (4.8). From here we deduce the following consequence:

• (Comparison Principle) x(t;x0,Θ) ≥ y(t;x0,Θ) if t ≤ 0 and x0 > 0.

The rest of the proof will be organized in two claims where we impose certain
conditions to the function A.

Claim 1. Assume that A has mean value zero and an unbounded primitive.
Then

C = {Θ ∈ TN | u(Θ) = 0}.
The inclusion u−1(0) ⊂ C holds because u is upper semi-continuous and non-
negative. To prove the other inclusion we notice that u−1(0) is residual in TN .
Thus, given any Θ ∈ C, we can find a sequence Θn converging to Θ and such
that u(Θn) = 0. By the definition of C we conclude that u(Θ) = 0.

The proof of the claim is not complete because the residual character of
u−1(0) is not obvious. To prove this we first consider the set

Ω = {Θ ∈ TN | lim inf
t→−∞

aΘ(t) = −∞},
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where aΘ(t) :=
∫ t

0
A(Θ · s) ds. We can apply Theorem 3.7 of [8] to deduce that

Ω is residual. The definition of Ω says that any positive solution of (4.8) will
satisfy

lim sup
t→−∞

y(t;x0,Θ) = ∞, Θ ∈ Ω.

From the Comparison Principle we deduce that any positive solution of (4.2)
will also be unbounded. In consequence u(Θ) = vΘ(0) = 0 if Θ ∈ Ω. Thus Ω is
contained in u−1(0) and so u−1(0) is residual.

Claim 2. Assume that there is a set S ⊂ TN of full measure, µ(S) = 1, such
that

inf
t∈R

aΘ(t) > −∞ if Θ ∈ S.

Then u(Θ) > 0 for almost every Θ ∈ TN .
If Θ ∈ S then y(t;x0,Θ) will be bounded. For small x0 this function will

remain in |x| ≤ 1 and so it will coincide with x(t;x0,Θ). This implies that
u(0) = vΘ(0) is strictly positive.

The proof is now finished because there are functions A satisfying simul-
taneously the requirements of the two claims. This was proved by Johnson in
Example 3.12 of [9]. There it was assumed that the number ξ was of constant
type. This is not really needed in Johnson’s construction and we give the details
in an appendix. �

Next we show that the choice of A made in Proposition 4.1 produces some
complexity in the skew-product flow on T2 × R associated to equation (4.2).
Consider the system

θ̇1 = 1, θ̇2 = ξ, ẋ = G(x)−A(θ1, θ2)x.

In principle we do not have information about the regularity of the function
A and we cannot say that the associated vector field is smooth. However, its
special form guarantees the uniqueness of solution for the initial value problem.
Assuming that G satisfies the additional condition

(4.9) lim sup
x→∞

G(x)
x

< ∞

the solutions are globally defined in (−∞,∞) and our system defines a flow on
T2 × R. The set Σ = {(Θ, x) | θ1 = 0} is a global section and we identify it to
the cylinder T × R. The associated Poincaré map P : Σ → Σ can be expressed
as

(θ, x0) 7→ (θ + ξ, x(1;x0, θ̂)), θ̂ = (0, θ) ∈ T2.

Here we follow the notation introduced in the proof of Proposition 4.1. Note that
P is a skew-product homeomorphism with a dissipative structure. This means
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that, given an arbitrary R > 0, one can find an integer N ≥ 1 such that

|p2P
n(θ, x0)| ≤ 2 if n ≥ N and |x0| ≤ R

(p2 is the projection of T× R onto R).
We are interested in the structure of the set of bounded orbits, namely

B = {(θ, x0) ∈ T× R | sup
n∈Z

|x(n;x0, θ̂)| < ∞}.

It is not difficult to prove that the intersection of B with the fiber {θ} × R is

Bθ = {θ} × [−u(θ̂), u(θ̂)].

Proposition 4.2. Assume that G satisfies (4.3)–(4.5) and (4.9) and A is
chosen as in Proposition 4.1. Then the set B is connected and locally connected
at T× {0}, but it is not locally connected on a set of positive measure.

This is the same kind of topological situation that Johnson found in [10].

Proof. The first two statements are a consequence of the structure of Bθ.
The last statement needs some work. We start with a preliminary observation.
Let E ⊂ T2 be a set which is invariant with respect to the linear flow (4.1); that
is, E · t = E for all t ∈ R. Define E0 = E ∩ ({0} × T). Then E has measure
zero in T2 (resp. is dense in T2) if and only if E0 has measure zero in T (resp.
is dense in T). Consider the sets D = {θ ∈ T | u(θ̂) > 0} and, for any η > 0,
Dη = {θ ∈ T | u(θ̂) ≥ η}. Note that, due to the semi-continuity of u, Dη is
a closed set for any η > 0. Moreover, from Proposition 4.1 and the previous
remark with E = u−1(0), E0 = T \D, we deduce that D has full measure in T
and T \D is dense in T. In particular µ(Dη) > 0 for some η > 0.

The picture is then the following: Bθ ⊃ {θ} × [−η, η] if θ ∈ Dη, and Bθ =
{(θ, 0)} if θ 6∈ D. Since T\D is dense in T, the proof is complete if we show that
the set D′

η ⊂ Dη of the accumulation points of Dη has a positive measure. To this
aim, just note that Dη \D′

η is at most countable, since T is a second-countable
space; thus µ(D′

η) = µ(Dη) > 0. �

5. An extension to higher order equations

We consider a fixed polinomial of degree p ≥ 2

P(λ) = λp + ap−1λ
p−1 + . . . + a1λ

with a1, . . . , ap−1 ∈ R, and we shall study the partial differential equation

(5.1) P(D−→ω )u := Dp
−→ω u + ap−1D

p−1
−→ω u + . . . + a1D−→ω u = F (Θ, u), Θ ∈ TN ,

with F ∈ C(TN × R). We also assume that F is locally Lipschitz-continuous
with respect to u.



Massera’s Theorem for Quasi-Periodic Differential Equations 55

To make precise the concept of solution for this equation we introduce the
classes Sp

+(−→ω ) and Sp
−(−→ω ). They are composed by the functions in S+(−→ω ) or

S−(−→ω ) such that the directional derivatives Dk−→ω u, k = 1, . . . , p exist everywhere
and are bounded on the torus. A solution of (5.1) is a function in Sp

+(−→ω )∪Sp
−(−→ω )

satisfying (5.1) in a pointwise sense.
We associate to (5.1) the family of ordinary differential equations

(5.2) P
(

d

dt

)
x := x(p) + ap−1x

(p−1) + . . . + a1x
′ = F (Θ · t, x), Θ ∈ TN .

We would like to prove a result in the line of Theorem 2.2, connecting the
existence of solutions of (5.1) with the bounded solutions of (5.2). To do this we
need further assumptions.

First we introduce some terminology about linear homogeneous equations of
the type

(5.3) P
(

d

dt

)
x = σ(t)x,

where σ ∈ L∞(R). By a bounded solution x(t) of this equation we understand a
solution such that x, x′, . . . , x(p−1) are in L∞(R). We say that the equation (5.3)
is partially disconjugate if every non-trivial bounded solution x(t) satisfies

x(t) 6= 0 for all t ∈ R.

As an example consider x′′ + cx′ = −x, c ∈ R. This equation is partially
disconjugate if c 6= 0 but not for c = 0.

Let σ− and σ+ be numbers satisfying −∞ ≤ σ− < σ+ ≤ ∞. We shall say
that the couple (σ−, σ+) is admissible if every equation of the type (5.3) with

σ ∈ L∞(R), σ− ≤ σ(t) ≤ σ+ for almost every t ∈ R

is partially disconjugate.

Theorem 5.1. Assume that for some Θ0 ∈ TN there is a solution ϕ(t)
of (5.2) satisfying

sup
t∈R

|ϕ(t)| < ∞.

In addition assume that there is an admissible couple (σ−, σ+) such that

σ− ≤ F (Θ, u1)− F (Θ, u2)
u1 − u2

≤ σ+

if Θ ∈ TN and inft∈R ϕ ≤ u2 < u1 ≤ supt∈R ϕ. Then there exist solutions
of (5.1), u? ∈ Sp

+(−→ω ) and u? ∈ Sp
−(−→ω ), satisfying the conditions (2.3) and (2.4)

of Theorem 2.2.
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Proof. The function ϕ(t) is a solution of the linear differential equation

P
(

d

dt

)
ϕ = p(t)

with p(t) := F (Θ0 · t, ϕ(t)). It follows from Esclangon Theorem (see [11, p. 9])
that the successive derivatives of ϕ, ϕ′, . . . , ϕ(p), are also bounded. From here
the proof is very similar to the proof of Theorem 2.2. The main difference is
that the hull of ϕ, denoted again by H, is now inmersed in BCp−1(R). This
is the Fréchet space of functions x ∈ Cp−1(R) such that x, x′, . . . , x(p−1) are
in L∞(R). The topology is induced by the uniform convergence on bounded
intervals for all derivatives up to the order p − 1. The key observation is that
HΘ is totally ordered. In fact, given x1 and x2 in HΘ, they are solutions of (5.2)
and the difference x1−x2 solves an equation of the type (5.3). Since F is locally
Lipschitz-continuous in u we know that σ ∈ L∞(R) and, from the assumptions
of the Theorem, σ− ≤ σ ≤ σ+. This equation is partially disconjugate and so x1

and x2 cannot intersect unless they coincide. Now one uses that HΘ is a compact
subset of BCp−1(R) to prove that there is a maximal and a minimal element,
say vΘ and wΘ. The rest is almost the same as in the proof of Theorem 2.2. In
the process one obtain the estimate

|Dk−→ω u(Θ)| ≤ sup
t∈R

|ϕ(k)(t)|, Θ ∈ Tn, k = 1 . . . , p− 1. �

Of course we can also understand the partial differential equation in the sense
of distributions. A solution of

P(D−→ω )u = F (Θ, u) in D′(TN )

is a function u ∈ L∞(TN ) such that∫
TN

uP?(D−→ω )φ =
∫

TN

F (Θ, u)φ for all φ ∈ C∞(TN ),

where P?(λ) := P(−λ). As in Proposition 3 one can prove that a solution
u ∈ Sp

+(−→ω ) ∪ Sp
−(−→ω ) of (5.1) is also a solution in the sense of distributions. To

do this it is convenient to notice that the successive derivatives Dk−→ω u belong to
L∞(TN ) and can also be understood in the sense of distributions.

After Theorem 5.1 it is natural to ask when do admissible couples exist and
how to compute them. An easy way to obtain an admissible interval is the
following. Let σ0 ∈ R be such that the polynomial P(λ) − σ0 has no roots on
the imaginary axis. Then the equation

x(p) + ap−1x
(p−1) + . . . + a1x

′ = σ0x

has an exponential dichotomy (see [5]). The Roughness Theorem implies that
also (5.3) has an exponential dichotomy if ‖σ−σ0‖L∞(R) is small. In such a case
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the only bounded solution of (5.3) is x ≡ 0 and so the equation is partially
disconjugate. Next we present a result on how to compute an optimal admissible
interval in a more delicate situation. It concerns quadratic polynomials and, in
particular, it shows that the Theorem 5.1 can be applied to the equations (1.6)–
(1.7) of the introduction.

Lemma 5.2. Consider the polynomial

P(λ) = λ2 + cλ.

Then σ− = −c2/4, σ+ = ∞ is an admissible couple, while any couple of the type
σ− < −c2/4, σ+ = ∞ is not admissible.

Proof. We first prove that (−c2/4,∞) is admissible. Assume that x 6≡ 0 is
a bounded solution of

(5.4) x′′ + cx′ = σ(t)x

with σ ∈ L∞(R), essinftσ(t) ≥ −c2/4. The function y(t) = ec/2tx(t) solves
y′′ = (c2/4 + σ(t))y and we can apply Sturm comparison theory to deduce that
y vanishes at most once. Assume for the moment that y has a zero, say τ ∈ R
with y(τ) = 0, y′(τ) < 0. Then y is positive in (−∞, τ) and, from the equation,
we can deduce that the same happens to y′′. From here we deduce that y′ is
negative in (−∞, τ). This is not compatible with y(τ) = y(−∞) = 0. Hence y

cannot vanish and the same applies to x.
To prove that σ− < −c2/4, σ+ = ∞ is not admissible we adapt the Ex-

ample 1.3 in [17]. Letting the period T to go to infinity one can construct an
equation (5.4) having an anti-periodic solution and satisfying essinfσ ≥ σ−. �

We finish this section with a result which extends to second order equations
the results that we discussed at the end of Section 2. It refers to the equation

(5.5) D2−→ω u + cD−→ω u + g(u) = p(Θ),

where g is a bounded function in C1(R) and p ∈ C(TN ).

Corollary 5.3. Assume that g′(u) ≤ c2/4 for all u ∈ R and

lim sup
u→−∞

g(u) <

∫
TN

p < lim inf
u→∞

g(u).

Then (5.5) has a solution in S2
+(−→ω ) (resp. in S2

−(−→ω )).

In view of Theorem 5.1 and Lemma 5.2 we must prove that the equation

d2x

dt
+ c

dx

dt
+ g(x) = p(Θ · t)

has a bounded solution. This is a consequence of the results in [1] or in [18].
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6. Appendix: a remark on an example by R. A. Johnson

On the footsteps of the example 3.5 in [9], we will prove that, for any given
ξ ∈ R\Q there exists a function A : T2 → R which fulfills the following conditions

A ∈ C(T2) with mean value zero,

sup
t∈R

∣∣∣∣ ∫ t

0

A(Θ · s) ds

∣∣∣∣ = ∞ for all Θ ∈ T2,

inf
t∈R

∫ t

0

A(Θ · s) ds > −∞ for almost every Θ ∈ T2,

where Θ = (θ1, θ2) ∈ T2 and Θ · t = (θ1 + t, θ2 + ξt) is the linear flow on T2

associated to ξ.

Lemma 6.1. Assume that it is possible to find a sequence of functions{Ln}n≥1

satisfying the conditions below

(1) Ln ∈ C(T2), Ln ≥ 0 on T2,
(2) ‖Ln‖∞ →∞ as n →∞,
(3)

∑∞
n=1 µ(Jn) < ∞ where Jn = supp (Ln),

(4) Ln has directional derivative D−→ω Ln along −→ω = (1, ξ), and it belongs to
C(T2). We shall employ the notation An := D−→ω Ln,

(5)
∑∞

n=1 ‖An‖∞ < ∞.

Then the function

A :=
∞∑

n=1

An

has the required properties.

Proof. Since
∫

T2 An =
∫

T2 D−→ω Ln = 0 then
∫

T2 A =
∑∞

n=1

∫
T2 An = 0.

Define

L(Θ) =
∞∑

n=1

Ln(Θ).

The sum L(Θ) belongs to [0,∞] and we define the set

Ω = {Θ ∈ T2 | L(Θ) < ∞}.

The set Ω is invariant since, if Θ ∈ Ω, then for every t and any integer N we
have

N∑
n=1

Ln(Θ · t) =
N∑

n=1

Ln(Θ)+
∫ t

0

N∑
n=1

An(Θ ·s) ds ≤ L(Θ)+
( ∞∑

n=1

‖An‖∞
)
|t| < ∞.

Next we show that µ(Ω) = 1. It is clear that Ω contains the set

V = {Θ ∈ T2 : ∃nΘ | Θ 6∈ Jn if n ≥ nΘ}.
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Since the complement of V is the set
⋂∞

n=1

⋃∞
m=n Jm we have

µ(T2 \ V ) ≤ µ

( ∞⋃
m=n

Jm

)
≤

∞∑
m=n

µ(Jm) → 0 as n →∞.

Now it is easy to show that for each Θ ∈ Ω,

L(Θ · t)− L(Θ) =
∫ t

0

A(Θ · s) ds for all t ∈ R.

Thus it is clear that the primitive of A(Θ·t) has a lower bound if Θ ∈ Ω. Namely,∫ t

0

A(Θ · s) ds ≥ −L(Θ) for all t ∈ R.

It remains to prove that the primitive is unbounded for any Θ ∈ T2. It is
sufficient to prove it for some Θ0 (see for instance [8]). By a contradiction
argument, assume that for a given Θ0 ∈ Ω one has∫ t

0

A(Θ0 · s) ds ≤ M0 for all t ∈ R.

Then

Ln(Θ0 · t) ≤ L(Θ0 · t) = L(Θ0) +
∫ t

0

A(Θ · s) ds ≤ L(Θ0) + M0.

Since the orbit of Θ0 is dense in T2 and Ln is continuous,

‖Ln‖∞ ≤ L(Θ0) + M0

and this contradicts our assumptions. �

It remains to show that the assumptions of the above lemma may be realized.
Let us begin by localizing the support Jn of the function Ln. Consider the orbit
on T2 starting form (0, 0), namely {(t, ξt) | t ∈ R}. Since ξ 6∈ Q, the orbit does
not have self-intersections and, for any given Tn > 0, we can find an εn > 0 such
that the same happens to the strip {(t, θ2 + ξt) | |θ2| ≤ εn |t| ≤ Tn}. We shall
employ (θ2, t), θ2 ∈ Qn = [−εn, εn], t ∈ In = [−Tn, Tn] as local coordinates for
the strip. The flow transforms diffeomorphically the region Qn × In (lying on
the plane) onto the strip in the torus. Moreover, this transformation transports
the Lebesgue measure on the plane to the Haar measure on the torus. Finally,
the directional derivative D−→ω on the torus becomes ∂/∂t in the plane.

We shall construct Ln with support on the strip, so that

µ(Jn) ≤ 4εnTn for all n.

By using the local coordinates we define

Ln(Θ) = Γn r

(
θ2

εn

)
g

(
t

Tn

)



60 R. Ortega — M. Tarallo

where Γn is a positive real number, and r ≥ 0, g ≥ 0 are C∞ functions supported
in (−1, 1) and satisfying ‖r‖∞ = ‖g‖∞ = 1. Thus ‖Ln‖∞ = Γn.

To conclude the construction, choose Γn such that Γn → ∞ as n → ∞, Tn

such that
∑

n≥1 Γn/Tn < ∞ and εn such that
∑

n≥1 εnTn < ∞.

Before ending this appendix we make some remarks concerning the regularity
of A. The previous construction does not allow to obtain a function in C1(T2)
and we do not know which is the optimal regularity for a function A satisfying
the conditions stated at the beginning of this appendix. Certainly A cannot be
very smooth if ξ satisfies an arithmetic condition of diophantine type. On the
other hand it is easy to check that for each Θ ∈ T2 the function t 7→ A(Θ · t)
belongs to C∞(R). This follows from the previous construction because

‖Dk−→ω Ln‖∞ ≤ Γn

T k
n

‖gk‖∞.

Thus, in the example of Section 4, the nonlinearity for the partial differential
equation (4.7) is not smooth. The ordinary differential equation (4.2) is smooth
but does not depend smoothly on the parameter Θ.
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