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THE EXISTENCE OF MINIMIZERS
OF THE ACTION FUNCTIONAL

WITHOUT CONVEXITY ASSUMPTION

Aleksandra Orpel

Abstract. We shall prove the existence of minimizers of the following

functional f(u) =
R T
0 L(x, u(x), u′(x)) dx without convexity assumption.

As a consequence of this result and the duality described in [10] we derive

the existence of solutions for the Dirichlet problem for a certain differen-

tial inclusion being a generalization of the Euler–Lagrange equation of the
functional f .

1. Introduction

We shall consider the following integral functional

(1) f(u) =
∫ T
0
L(x, u(x), u′(x)) dx

defined on the set A(Rn) of absolutely continuous functions u: [0, T ] → Rn sat-
isfying the below boundary condition

(2) u(T ) = u(0) = 0.
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We will prove the existence of a minimizer of (1) satisfying (2). Moreover, we will
derive a new result concerning the Dirichlet problem for the differential inclusion

(3) 0 ∈ ∂y(−L(x, u(x), u′(x))) +
d

dx
∂wL(x, u(x), u′(x)),

where ∂y(−L(x, y, w)) and ∂wL(x, y, w) denote subdifferentials of the functions
−L(x, · , w), w ∈ Rn, x ∈ [0, T ], and L(x, y, · ), y ∈ Rn, x ∈ [0, T ], respectively.
The above inclusion is a natural generalization of the Euler–Lagrange equation
of (1).
The work has been intended as an attempt to extend the results presented in

[10] to the case when the action functional is not additive separated in u and u′.
Section 2 is devoted to the study of the problem concerning the existence of
an argument from A(Rn), at which f attains its infimum. We shall derive an
interesting formula for this element and we will show that (2) holds for the
minimizer. The proof of these facts is similar in spirit to the one presented in [3]
where L has a special form: L(x, u, w) = −g(x, u)+h(x,w). Section 3 establishes
the relation between critical points of (1) and solutions of inclusion (3). We shall
also present some applications of this theory.
Now we repeat the relevant material from [3] and [6] without proofs. Let

F : [0, T ] × Rn → R. We will denote by F ∗∗ the bipolar of the function w →
F (x,w) and by ∂F (x,w) its subdifferential. Let us recall their properties, which
will be used later:

Lemma 1 ([6]). Assume that F : [0, T ] × Rn → R satisfies the Caratheodory
condition and

∫ T
0 F (x, v(x)) dx < ∞ for a certain v ∈ L

∞(0, T,R). Suppose
additionally that there exist a ∈ L1([0, T ],R) and constants b ≥ 0 and 1 < k <∞
such that

a(x) + b|w|k ≤ F (x,w)
for all w ∈ Rn, a.e. x ∈ [0, T ]. Then

(i) for all w ∈ Rn and x ∈ [0, T ] we have

F ∗∗(x,w) = min
{ n+1∑
i=1

λiF (x, ςi) :
n+1∑
i=1

λiςi = w,
n+1∑
i=1

λi = 1, λi ≥ 0
}
.

(ii) for every measurable function z: [0, T ] → Rn there exist measurable
vi: [0, T ] → Rn and pi: [0, T ] → [0, 1], i = 1, . . . , n + 1, such that for
a.e. x ∈ [0, T ]

n+1∑
i=1

pi(x) = 1,(4)

n+1∑
i=1

pi(x)vi(x) = z(x),(5)
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F ∗∗(x, z(x)) =
n+1∑
n=1

pi(x)F (x, vi(x)).(6)

Lemma 2 ([3]). Let F : [0, T ]× Rn → R satisfy the following conditions

(i) there exist b ∈ L1(0, T,R), m ∈ (1,∞) and k > 0 such that

(7) F (x,w) ≤ k|w|m + b(x)

for all w ∈ Rn and a.e. x ∈ [0, T ],
(ii) [0, T ] 3 x→ F (x,w) is measurable for every w ∈ Rn,
(iii) F is convex with respect to the second variable for a.e. x ∈ [0, T ].

Then for any continuous function u: [0, T ] → Rn the set valued map x →
∂u(F (x, u(x)) admits a selection δ ∈ L1(0, T,R).

2. The existence of the critical points of the action functional f

In this section we will be looking for the critical points of (1) defined on the
set A(Rn). To this effect it is necessary to put some restrictions on L. It is
required that

Hypothesis. The map L: [0, T ] × Rn × Rn → R satisfies the following as-
sumptions:

(H1) L(x, · , w) is concave for a.e. x ∈ [0, T ] and all w ∈ Rn,
(H2) L( · , u, w) is measurable for all u,w ∈ Rn,
(H3) L(x, · , · ) is continuous for a.e. x ∈ [0, T ],
(H4) there exist m, p, s ∈ (1,∞), p ≤ m, s ≥ p′, where p′ = p/(p− 1), and

d ∈ L1(0, T,R), k1 ∈ Ls(0, T,R+), constants l, k > 0 such that for
u,w ∈ Rn and a.e. x ∈ [0, T ]

−d(x) + 1
m
l1−m|w|m − 1

p
k|u|p ≤ L(x, u, w) ≤ g(x,w)− 〈k1(x), u〉,

where g: [0, T ]×Rn → R is measurable with respect to the first variable,
convex with respect to the second one and for a certain ball K(w, r) ⊂
Rn, centered at w of radius r, the function x → supw∈ K(w, r)g(x,w)
is summable on [0, T ],

(H5) in the case of p = m the following condition takes place

Q =
1
p′
k1−p

′
− 1
p′

∫ T
0
lxp

′/p dx > 0.

Set Am = {z ∈ A(Rn) : z′ ∈ Lm(0, T,Rn)}.
The above assumptions imply that the action functional f :Am → R is well-

defined. The results presented in [10, Proposition 1 and Theorem 7] imply the
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existence of a minimizer u for fc described by the bipolar Lw∗∗(x, u, w) of Rn 3
w → L(x, u, w) ∈ R, x ∈ [0, T ], u ∈ Rn in the following way

fc(u) =
∫ T
0
Lw∗∗(x, u(x), u′(x)) dx.

Moreover, u satisfies the equalities u(T ) = u(0) = 0.
Now we will consider the function [0, T ] × Rn 3 (x,w) → L(x, u(x), w). By

hypothesis (H1)–(H5) we can use the second part of Lemma 1 for u′ and obtain
that there exist measurable vi: [0, T ]→ Rn and pi: [0, T ]→ [0, 1], i = 1, . . . , n+1,
such that

∑n+1
i=1 pi(x) = 1 and

n+1∑
i=1

pi(x)vi(x) = u′(x),(8)

Lw∗∗(x, u(x), u′(x)) =
n+1∑
n=1

pi(x)L(x, u(x), vi(x)).(9)

Let us denote by ℵB the characteristic function of a set B ⊂ Rn.

Lemma 3. Let (Kj)j∈N be a sequence of disjoint compact subsets of [0, T ]
and let N ⊂ [0, T ] be a set, whose measure is equal to zero, such that [0, T ] =
N ∪
⋃∞
j=1Kj. Then if (E

i
j)i=1,... ,n+1 is a measurable partition of Kjwith the

property that for every j ∈ N

(10)
∫
Kj

n+1∑
i=1

pi(x)L(x, u(x), vi(x)) dx =
∫
Kj

n+1∑
i=1

ℵEij (x)L(x, u(x), vi(x)) dx

then a function

x→
∞∑
j=1

n+1∑
i=1

ℵEij (x)L(x, u(x), vi(x))

and a function

x→
∞∑
j=1

n+1∑
i=1

ℵEij (x)vi(x)

belong to L1(0, T,R) and Lm(0, T,Rn), respectively.

Proof. By (9) and hypothesis (H1)–(H5) we can assert that the map

x→
n+1∑
i=1

pi(x)L(x, u(x), vi(x))

is integrable on [0, T ]. Set Sq =
⋃
j≤qKj , q = 1, 2, . . .

Let us consider the sequence of maps:

(11) Sq(x) =
∑
j≤q

n+1∑
i=1

ℵEij (x)[L(x, u(x), vi(x)) + γ(x)],
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where γ(x) = d(x) + (1/p)k|u(x)|p. It is easily seen that the following equality
holds ∫ T

0
Sq(x) dx =

∑
j≤q

∫
Kj

n+1∑
i=1

ℵEij (x)[L(x, u(x), vi(x)) + γ(x)] dx.

Taking into account (10), (9) we can compute:

∑
j≤q

∫
Kj

n+1∑
i=1

ℵEij (x)[L(x, u(x), vi(x)) + γ(x)] dx

=
∑
j≤q

∫
Kj

n+1∑
i=1

pi(x)[L(x, u(x), vi(x)) + γ(x)] dx

=
∑
j≤q

∫
Kj

[Lw∗∗(x, u(x), u′(x)) + γ(x)] dx

=
∫ T
0
ℵSq (x)[L

w∗∗(x, u(x), u′(x)) + γ(x)] dx

≤
∫ T
0
[Lw∗∗(x, u(x), u′(x)) + γ(x)] dx <∞.

According to the assumptions concerning L we have that the sequence (11)
is nondecreasing. Thus the previous chain of relations gives∫ T

0

∞∑
j=1

n+1∑
i=1

ℵEij (x)[L(x, u(x), vi(x)) + γ(x)] dx =
∫ T
0
lim
q→∞
Sq(x) dx

= lim
q→∞

∫ T
0
Sq(x) dx ≤

∫ T
0
[Lw∗∗(x, u(x), u(x)) + γ(x)] dx.

We have proved the integrability of x→
∑∞
j=1

∑n+1
i=1 ℵEij (x)L(x, u(x), vi(x))

on [0, T ].
It can be noticed that almost every x from [0, T ] belongs to exactly one of Eij ,

which implies that for a.e. x ∈ [0, T ] there exists i0 ∈ {1, . . . , n+ 1} such that∑∞
j=1

∑n+1
i=1 ℵEji (x)vi(x) = vi0(x). Using this fact and hypothesis (H1)–(H5) we

obtain:∣∣∣∣ ∞∑
j=1

n+1∑
i=1

ℵEji (x)vi(x)
∣∣∣∣m ≤ ∞∑

j=1

n+1∑
i=1

ℵEji (x)|vi(x)|
m

≤ c
∞∑
j=1

n+1∑
i=1

ℵEji (x)[L(x, u(x), vi(x)) + γ(x)],

where c = mlm−1. By the above chain of relations and the integrability of
[0, T ] 3 x →

∑∞
j=1

∑n+1
i=1 ℵEji (x)[L(x, u(x), vi(x)) + γ(x)] ∈ Rn, the function

[0, T ] 3 x→
∑∞
j=1

∑n+1
i=1 ℵEij (x)vi(x) ∈ Rn belongs to Lm(0, T,Rn). �
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Theorem 4. There exists u ∈ Am such that f(u) = infu∈Am f(u).

Proof. Using the Lusin’s theorem we infer the existence of a sequence
(Kj)j∈N of disjoint compact subsets of [0, T ] and a setN ⊂ [0, T ], whose measure
is equal to zero, such that [0, T ] = N∪

⋃∞
j=1Kj and the following condition takes

place: for every j ∈ N the restriction of the map x →
∑n+1
i=1 L(x, u(x), vi(x)),

x ∈ [0, T ], to Kj is continuous. For i ∈ {1, . . . , n+ 1} we shall define the vector
measures ϑi as follows

(12) ϑi(E) =
∫
E

vi(x)dx.

From an extension of the Liapunov’s theorem on the range of vector measures
for each Kj there exists a measurable partition (Eij)i=1,... ,n+1 of Kj such that

(13)
n+1∑
i=1

∫
Kj

ℵEij (x)vi(x) dx =
n+1∑
i=1

∫
Kj

pi(x)vi(x) dx.

Let us define the function u
′
: [0, T ]→ Rn

(14) u
′
(x) =

∞∑
j=1

n+1∑
i=1

ℵEij (x)vi(x).

It can be noticed that almost every x from [0, T ] belongs to exactly one of
Eij , which means: for a.e. x ∈ [0, T ] there exists i ∈ {1, . . . , n+ 1} such that
u
′
(x) = vi(x). It follows that

L(x, u(x), u
′
(x)) = L

(
x, u(x),

∞∑
j=1

n+1∑
i=1

ℵEij (x)vi(x)
)

(15)

=
∞∑
j=1

n+1∑
i=1

ℵEij (x)L(x, u(x), vi(x)).

By (13) and the above consideration we obtain for every j ∈ N

(16)
n+1∑
i=1

∫
Kj

ℵEij (x)L(x, u(x), vi(x)) dx =
n+1∑
i=1

∫
Kj

pi(x)L(x, u(x), vi(x)) dx.

Now we may state that the assumptions of Lemma 3 are satisfied. It implies
that the function x→

∑∞
j=1

∑n+1
i=1 ℵEij (x)L(x, u(x), vi(x)) is integrable on [0, T ]

and the map x →
∑∞
j=1

∑n+1
i=1 ℵEij (x)vi(x) belongs to L

m(0, T,Rn), so that,
u
′ ∈ Lm(0, T,Rn).
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Set u(x) =
∫ x
0 u
′
(s)ds, x ∈ [0, T ]. Of course u(0) = 0 and further, by (14),

(13) and (8)

u(T ) =
∫ T
0
u
′
(x) dx =

∫ T
0

∞∑
j=1

n+1∑
i=1

ℵEij (x)vi(x) dx

=
∞∑
j=1

∫
Kj

n+1∑
i=1

ℵEij (x)vi(x) dx

=
∞∑
j=1

∫
Kj

n+1∑
i=1

pi(x)vi(x) dx =
∫ T
0
u′(x) dx = 0.

We shall show now that

(17)
∫ T
0
L(x, u(x), u

′
(x)) dx =

∫ T
0
Lw∗∗(x, u(x), u′(x)) dx.

From (9), (16), (15) and (14) we have∫ T
0
Lw∗∗(x, u(x), u′(x)) dx

=
∫ T
0

n+1∑
i=1

pi(x)L(x, u(x), vi(x)) dx =
∞∑
j=1

∫
Kj

n+1∑
i=1

pi(x)L(x, u(x), vi(x)) dx

=
∞∑
j=1

∫
Kj

n+1∑
i=1

ℵEij (x)L(x, u(x), vi(x)) dx

=
∞∑
j=1

∫
Kj

L

(
x, u(x),

n+1∑
i=1

ℵEij (x)vi(x)
)
dx =

∫ T
0
L(x, u(x), u

′
(x)) dx.

Set
∂uL(x, u, u

′
(x)) = −∂u(−L(x, u, u

′
(x)))

for x ∈ [0, T ], u ∈ Rn, where ∂u(−L(x, u, u
′
(x))) is the subdifferential of the

function u→ −L(x, u, u′(x)). Applying hypothesis (H1)–(H5) and Lemma 2 we
obtain the existence of an integrable selection δ of the set-valued map [0, T ] 3
x→ ∂uL(x, u(x), u

′
(x)). Let

B(x) =
∫ x
0
δ(s) ds,

for x ∈ [0, T ]. By (13) and the definition of (Eij)i=1,... ,n+1 we obtain for every
j ∈ N

(18)
n+1∑
i=1

∫
Kj

ℵEij (x)〈vi(x), B(T )−B(x)〉 dx

=
n+1∑
i=1

∫
Kj

pi(x)〈vi(x), B(T )−B(x)〉 dx.
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The description of δ( · ) and the properties of subdifferential give that for a.e.
x ∈ [0, T ]

−L(x, y, u′(x)) ≥ −L(x, u(x), u′(x)) + 〈−δ(x), y − u(x)〉,

where y ∈ Rn, and further that

L(x, u(x), u
′
(x)) ≥ L(x, u(x), u′(x)) + 〈δ(x), u(x)− u(x)〉.

Now we claim that ∫ T
0
〈δ(x), u(x)− u(x)〉 dx = 0.

Indeed, recalling the definition of B and denoting by ul the l-th component of a
vector u, we can compute∫ T

0
〈δ(x),u(x)− u(x)〉 dx =

∫ T
0

n∑
l=1

δl(x)(ul(x)− ul(x)) dx

=
n∑
l=1

∫ T
0
δl(x)
(∫ x
0
u′l(s) ds−

∫ x
0
u
′
l(s) ds

)
dx

=
n∑
l=1

∫ T
0
(u′l(s)− u

′
l(s))
∫ T
s

δl(x) dx ds

=
n∑
l=1

∫ T
0
(u′l(s)− u

′
l(s))(Bl(T )−Bl(s)) ds

=
∫ T
0
〈u′(s)− u′(s), B(T )−B(s)〉 ds

=
∞∑
j=1

∫
Kj

n+1∑
i=1

(pi(s)− ℵEij (s))〈vi(s), B(T )−B(s)〉 ds = 0.

The last equality follows from (18). By the above relation we obtain that

(19)
∫ T
0
L(x, u(x), u

′
(x)) dx ≥

∫ T
0
L(x, u(x), u

′
(x)) dx.

Combining (17) with (19) we have∫ T
0
Lw∗∗(x, u(x), u′(x)) dx

=
∫ T
0
L(x, u(x), u

′
(x)) dx ≥

∫ T
0
L(x, u(x), u

′
(x)) dx

≥
∫ T
0
Lw∗∗(x, u(x), u

′
(x)) dx ≥

∫ T
0
Lw∗∗(x, u(x), u′(x)) dx.

The above chain of inequalities and the duality principle from [10, Theorem 6]
give

f(u) = fc(u) = inf
u∈Am

fc(u) = inf
u∈Am

f(u). �
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3. Necessary conditions and regularity

Now we will take up an existence of solutions of the differential inclusion
(3) with the boundary condition (2). In the following section we shall apply
the results presented in the paper [10]. We will assume that the conditions of
hypothesis (H1)–(H5) are satisfied.
Let Bm = Rn⊕Lm(0, T,Rn). We use the fact that the space Am can be iden-

tified with Bm = Rn⊕Lm(0, T,Rn) normed by ‖u‖Am = |u(0)|+‖u′‖Lm(0,T,Rn).
The dual (Am)∗ of Am will be identified with Bm

′
= Rn ⊕ Lm′(0, T,Rn),

1/m+ 1/m′ = 1, under the pairing

〈z, (d, v)〉 = 〈z(0), d〉+
∫ T
0
〈z′(x), v(x)〉 dx,

where z ∈ (Am)∗, (d, v) ∈ Bm.
For u ∈ Am we shall define the perturbation fu:Bp → R of

f(u) =
∫ T
0
L(x, u(x), u′(x)) dx+ l0(u(0)) + l0(u(T ))

by

(20) fu(a, h) = −l0(u(0) + a)− l0(u(T ))−
∫ T
0
L(x, u(x) + h(x), u′(x)) dx,

where Bp = Rn ⊕ Lp(0, T,Rn), R = R ∪ {∞} and l0:Rn → R

l0(a) =

{
0 for a = 0,

∞ for a 6= 0.

It can be noticed that for all u ∈ Am we have fu(0, 0) = −f(u).
Let Ap

′
= {z ∈ A(Rn) : z′ ∈ Lp′(0, T,Rn)}. We will consider the functional

f#u :A
p′ → R, where u ∈ Am, defined in the following way

f#u (v) = sup
h∈Lp(0,T,Rn)

{∫ T
0
〈v′(x), h(x)〉 dx−

∫ T
0
−L(x, u(x) + h(x), u′(x)) dx

}
+ l0(u(T )) + inf

a∈Rn
{〈a, v(0)〉+ l0(u(0) + a)}.

Let G(x, y, w) = supu∈Rn{〈y, u〉+L(x, u, w)} for a.e. x ∈ [0, T ] and all y, w ∈ Rn.
Using hypothesis (H1)–(H5) and the description of G we obtain a simpler form
of the previous assertion

f#u (v) =
∫ T
0
G(x, v′(x), u′(x)) dx(21)

+
∫ T
0
〈v(x), u′(x)〉 dx+−〈u(T ), v(T )〉+ l0(u(T )).
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Put

H(x, u, v) = sup
w∈Rn
{〈v, w〉−L(x, u, w)}, LD(x, v, y) = sup

u∈Rn
{〈y, u〉−H(x, u, v)},

where x ∈ [0, T ] and u, y, v ∈ Rn.
Now we shall define the functional fD:Ap

′ → R, dual to f , by

(22) fD(v) =
∫ T
0
LD(x, v(x),−v′(x)) dx.

It can be shown that the definition of LD is equivalent to the following one

LD(x, v, y) = − sup
w∈Rn
{〈v, w〉 −G(x, y, w)},

for all y, v ∈ Rn and a.e. x ∈ [0, T ] (see [7]).
The conditions (H1)–(H5) imply that fD:Ap

′ → R is well-defined. Moreover,
for v ∈ Ap′ we get ([10])

(23) sup
u∈Am

{−f#u (−v)} = −fD(v).

Theorem 5. There exists v ∈ Ap′ , v(x) = v(0) +
∫ x
0 v
′(s) ds for a.e. x ∈

[0, T ], −v′ ∈ ∂fu(0, 0), (where ∂fu(0, 0) is the subdifferential of Lp(0, T,Rn) 3
g → fu(0, g) at zero) such that fD(v) = infv′∈Lp′ (0,T,Rn) supv(0)∈Rn f(v). More-
over,

(24) fu(0, 0) + f
#
u
(−v) = 0.

Proof. The definitions of u, fu and hypothesis (H1)–(H5) imply that the
function g → fu(0, g) is lower semicontinuous, convex and finite on Lp(0, T,Rn),
hence continuous. That is why ∂fu(0, 0) is not empty. It means there exists −v′,
which belongs to ∂fu(0, 0). Thus we have, for all g ∈ Lp(0, T,Rn),

fu(0, g) ≥ fu(0, 0) + 〈g,−v
′〉,

where 〈g,−v′〉 =
∫ T
0 〈g(x),−v

′(x)〉 dx. Since fu(0, 0) = −f(u), we get

f(u) ≥ −fu(0, g) +
∫ T
0
〈g(x),−v′(x)〉 dx

for all g ∈ Lp(0, T,Rn) and further, for d ∈ Rn,

f(u) ≥ sup
g∈Lp(0,T,Rn)

{∫ T
0
〈g(x),−v′(x)〉 − fu(0, g)

}
= f#
u
(−vd),

where vd(x) = d +
∫ x
0 v
′(s) ds. Hence for all d ∈ Rn the following chain of

relations holds

−f(u) ≤ −f#
u
(−vd) ≤ sup

u∈Am
{−f#u (−vd)} = −fD(vd).
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This implies that supd∈Rn fD(vd) ≤ f(u).
Using the assumptions made in hypothesis (H1)–(H5) we may state that

the functional Rn 3 d →
∫ T
0 −LD(x, vd(x), v

′(x)) dx is convex, lower semicon-
tinuous and coercive. Thus, its infimum is attained at some d. This leads to
supd∈Rn fD(vd) = fD(v), where v(x) = d+

∫ x
0 v
′(s) ds. Theorem 6 from [10] and

the last equality yield fD(v) = infv′∈Lp′ (0,T,Rn) supv(0)∈Rn fD(v).

From the definitions of fu and f
#
u
we have that the conjugate of Lp(0, T,Rn)3

g → fu(0, g) at −v′ is equal to f
#
u
(−v). Thus, by −v′ ∈ ∂fu(0, 0) and the

properties of subdifferential ([6]), we have assertion (24). �

Let us define the functional fc:Am ×Ap
′ → R

(25) fc(u, v) =
∫ T
0
[〈v′(x), u(x)〉+G(x,−v′(x), u′(x))] dx.

Theorem 6. For u ∈ Am from Theorem 4 and v ∈ Ap′ from Theorem 5,
the following equality holds

fD(v) = f(u) = fc(u, v)(26)

= inf{fc(u, v) : u ∈ Am, u(0) = u(T ) = 0, v ∈ Ap
′
}.

Moreover, there exists d1 such that v1(x) = d1 +
∫ x
0 v
′(s) ds, for a.e. x ∈ [0, T ],

satisfies (26) and the inclusion:

(27) (u(x), v1(x)) ∈ ∂G(x,−v′(x), u′(x))

for a.e. x ∈ [0, T ].

Proof. It can be noticed that the first assertion of (26) is a consequence of
descriptions of v and u. On the other hand, by (24), we obtain∫ T

0
L(x, u(x), u

′
(x)) dx =

∫ T
0
G(x,−v′(x), u′(x)) dx+

∫ T
0
〈u(x), v′(x)〉 dx,

and further f(u) = fc(u, v). By (25), we get that for u ∈ Am, v ∈ Ap
′
the

following chain of relations takes place

fc(u, v) =
∫ T
0
〈v′(x), u(x)〉 dx+

∫ T
0
G(x,−v′(x), u′(x)) dx

≥
∫ T
0
L(x, u(x), u′(x)) dx = f(u) ≥ f(u)

which implies fc(u, v) ≥ f(u) = fc(u, v). This gives (26).
By hypothesis (H1)–(H5) we can state that the functional

Rn 3 d→
∫ T
0
H(x, u(x), d+ v0(x)) dx,
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where v0(x) =
∫ x
0 v
′(s) ds, is convex, lower semicontinuous and coercive. Thus,

there exists d1 such that:∫ T
0
H(x, u(x), d1 + v0(x)) dx = inf

d∈Rn

∫ T
0
H(x, u(x), d+ v0(x)) dx.

Using the fact that for u, v ∈ Rn and a.e. x ∈ [0, T ]

H(x, u, v) = sup
y∈Rn, w∈Rn

{〈(y, w) | (u, v)〉 −G(x, y, w)},

where 〈(y, w) | (u, v)〉 = 〈y, u〉 + 〈w, v〉, y, w ∈ Rn and the above equality we
have (see [2])∫ T

0
H(x, u(x), v1(x)) dx = sup

u′∈Lm
sup
v′∈Lp

′
0

{∫ T
0
〈u(x),−v′(x)〉 dx

+
∫ T
0
[〈v1(x), u′(x)〉 −G(x,−v′(x), u′(x))] dx

}
,

where v1(x) = d1 +
∫ x
0 v
′(x) dx, Lp0 = {z ∈ Lp(0, T,Rn) :

∫ T
0 z(s) ds = 0}.

Now basing ourselves on the ideas of the proof of Theorem 8 from [10] we
can show the following assertion

(28)
∫ T
0
H(x, u(x), v1(x)) dx =

∫ T
0
〈u(x),−v′(x)〉 dx

+
∫ T
0
〈v1(x), u

′
(x)〉 dx−

∫ T
0
G(x,−v′(x), u′(x)) dx,

which leads to (27):

(u(x), v1(x)) ∈ ∂G(x,−v′(x), u
′
(x))

for a.e. x ∈ [0, T ]. Combining (25) with the equality (28) gives fc(u, v) =
fc(u, v1).
Now we claim, that fc(u, v1) = fD(v1). Using the definitions of fD and fc,

we get

fD(v1) ≤ sup
d∈Rn
fD(d+ v0) = fD(v) = fc(u, v1).

Substituting (25) into (28) we obtain

fc(u, v1) =
∫ T
0
[〈u(x),−v′(x)〉 −H(x, u(x), v1(x))] dx

≤
∫ T
0
LD(x, v1(x),−v(x)) dx = fD(v1).

Both inequalities give the required condition. We have just shown, that (u, v1)
satisfies (26). �
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Corollary 7. For (u, v) from Theorem 6 there exists d1 such that v1(x) =
d1 +
∫ x
0 v
′(s) ds for a.e. x ∈ [0, T ], satisfies (26) and

−v′(x) ∈ ∂y[−L(x, u(x), u
′
(x))],(29)

v1(x) ∈ ∂wL(x, u(x), u
′
(x)),(30)

for a.e. x ∈ [0, T ].

Proof. Theorem 6 implies the existence of d1 such that v1(x) = d1 +∫ x
0 v
′(s) ds, x ∈ [0, T ], satisfies (26) and (27). Combining (27) with (24) we

obtain, for a.e. x ∈ [0, T ],

H(x, u(x), v1(x)) + L(x, u(x), u
′
(x)) = 〈v1(x), u

′
(x)〉.

This gives the second assertion. Applying the description of u and (24) yields

−f(u) + f#
u
(−v) = 0

and further∫ T
0
[G(x,−v′1(x), u

′
(x))− L(x, u(x), u′(x)) + 〈v′1(x), u(x)〉] dx = 0.

So we conclude that (29) holds. �

4. Applications

Now we shall apply this theory to derive the existence results for solutions of
the Dirichlet problem for a certain class of the second order ordinary differential
equations.

Proposition 8. Let T > 0 and let a: [0, T ]→ R be a differentiable function.
Assume that the function G: [0, T ] × Rn → R satisfies the Caratheodory condi-
tion, G is concave and Gateaux differentiable with respect to the second variable.
Suppose additionally that there exist k, k1 ∈ R+, l1 ∈ L1(0, T,R+) such that

−d(x)− 1
3
k|u|3 ≤ G(x, u) ≤ −1

2
k1|u|2 − 〈l1(x), u〉

for all u ∈ Rn and a.e. x ∈ [0, T ]. Then there exists a solution u of the Dirichlet
problem for the following differential equation

(31)
d

dx
[|u′(x)|2u′(x) + a(x)u(x)]− u′′(x) = a(x)u′(x) +Gu(x, u(x)).

Moreover, u is the minimizer of the functional f given by

(32) f(u) =
∫ T
0

[
1
4
|u′(x)|4 − 1

2
|u′(x)|2 + a(x)〈u′(x), u(x)〉+G(x, u(x))

]
dx.
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Proof. Let us define L: [0, T ]× Rn × Rn → R as follows

(33) L(x, u, w) =
1
4
|w|4 − 1

2
|w|2 + a(x)〈w, u〉+G(x, u).

From the above assumptions L satisfies the conditions of hypothesis (H1)–(H5).
Applying Theorem 4 we obtain the existence of a minimizer u of (32). By
Corollary 7 we infer that u is the solution of the Dirichlet problem for (31). �

Now we present the example of the referee, which shows that we can not
omit assumption (H4).

Remark. Let us consider the following functional

f(u) =
∫ T
0
[(u′(x)− 1)2(u′(x) + 1)2 − xu′(x)u(x)] dx

defined on the set A(Rn) of absolutely continuous functions u: [0, T ] → Rn sat-
isfying the below boundary condition u(T ) = u(0) = 0. This minimization
problem has no solution. We prove that in this case Theorem 4 can not be
applied.

Proof. Indeed, we shall show that the assumption (H4) (the growth con-
dition) is not satisfied by the given functional. Suppose, contrary to our claim,
that there exist m, p, s ∈ (1,∞), p ≤ m, s ≥ p′, where p′ = p/(p− 1), and
d ∈ L1(0, 1, R), k1 ∈ Ls(0, 1,R+), constants l, k > 0 such that for u,w ∈ R and
a.e. x ∈ [0, 1]

−d(x) + 1
m
l1−m|w|m − 1

p
k|u|p ≤ −xuw + (w − 1)2(w + 1)2 ≤ g(x,w)− k1(x)u,

where g: [0, T ]× R → R is measurable with respect to the first variable, convex
with respect to the second one and for a certain ball K(w, r) ⊂ R, centered at
w of radius r, the function x→ supw∈K(w,r) g(x,w) is summable on [0, T ].
Let k1be in the equivalence class of k1. From the assumption there exists a

measurable set A ⊂ [0, 1] such that |[0, 1] \ A| = 0 and for all x ∈ A, u,w ∈ R
the following condition holds

(34) −xuw + (w − 1)2(w + 1)2 ≤ g(x,w)− k1(x)u.

In particular, (34) is satisfied for a certain x0 ∈ A \ {0} and all u,w ∈ R. If
k1(x0) > x0 then for w = 1 we get, by (34),

(35) u ≤ g(x0, 1)

(k1(x0)− x0)
for all u ∈ R.

When k1(x0) < x0 we obtain for w = 1

(36) u ≥ g(x0, 1)

(k1(x0)− x0)
for all u ∈ R.
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In the case k1(x0) = x0 we can choose w = 1/2. Then from (34) we derive

(37) u ≤
(
g

(
x0,
1
2

)
− 9
16

)
2
x0
for all u ∈ R.

Each of assertions (35)–(37) contradicts the unboundedness of R.
Summarizing: assumption (H4) is violated by the lagrangean function

L(x, u, w) = −xuw + (w − 1)2(w + 1)2

and, in consequence, Theorem 4 can not be applied in this case. �
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