A GENERIC PROPERTY FOR THE EIGENFUNCTIONS OF THE LAPLACIAN

Antônio Luiz Pereira - Marcone Corrêa Pereira

Abstract

In this work we show that, generically in the set of \mathcal{C}^{2} bounded regions of $\mathbb{R}^{n}, n \geq 2$, the inequality $\int_{\Omega} \phi^{3} \neq 0$ holds for any eigenfunction of the Laplacian with either Dirichlet or Neumann boundary conditions.

1. Introduction

Perturbation of the boundary for boundary value problems in PDEs have been investigated by several authors, from many points of view, since the pioneering works of Rayleigh ([8]) and Hadamard ([3]). There is, for example, a extensive literature under the label "shape analysis" or "shape optimization", on which the main issue is to determine conditions for a region to be optimal with respect to some cost functional (see, for example [2], [11] and [10]).

In particular, generic properties for solutions of boundary value problems have been considered by Micheletti ([7]), Uhlenbeck ([12]), Saut and Teman ([9]) and others. Many problems of this kind have also been considered by Henry in [4] where a kind of Differential Calculus with the domain as the independent variable was developed. This approach allows the utilization of standard analytic tools such as Implicit Function Theorems and Lyapunov-Schmidt method. In his

[^0]work, Henry also formulated and proved a generalized form of the Transversality Theorem, which will be the main tool used in our arguments.

We consider here the following question: is it true, generically in the set of \mathcal{C}^{2} regions in $\mathbb{R}^{n} n \geq 2$, that

$$
\int_{\Omega} \phi^{3} \neq 0 \quad \text { for any eigenfunction of the Laplacian }
$$

(with either Neumann or Dirichlet boundary condition?)

The result is easily seen to be false for $n=1$. In fact, in this case, $\int_{I} \phi^{3}=0$ for any nonconstant eigenfunction in the interval I. We will show, however, that the situation is quite different if $n \geq 2$; the property is indeed generic in a sense to be made precise below.

As pointed out to the first author by Prof. K. Rybakowski, the question above appears in connection with the study of stability for nonconstant equilibria of the reaction-diffusion system

$$
\begin{cases}\partial_{t} u=\left(D_{0}+\mu D_{1}\right) \Delta u+g(u)=0 & \text { in } \Omega, \\ \frac{\partial u}{\partial N}=0 & \text { on } \partial \Omega,\end{cases}
$$

where $g: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p} \in \mathcal{C}^{2}, g(0)=0, D g(0)=0$.
The plan of this paper is as follows. In Section 2, we state some background results needed in the sequel. We prove the result for Dirichlet boundary conditions in Section 3, and for Neumann boundary conditions in Section 4.

The authors wish to dedicate this work to the memory of Professor Dan Henry, whose untimely death is a great loss to the mathematical community. Dan's ideas helped to shape the mathematical thinking of a great number of researchers working in the field of qualitative theory of partial differential equations. The first author also wishes to acknowledge his immense debt to Dan as a teacher and to express continuing admiration both for his exceptional mathematical skills and for his courage in the face of misfortune.

2. Preliminaries

The results in this section were taken from the monograph of Henry [4], where full proofs can be found. The formulas in Section 2.2 can also be found in [10].
2.1. Some notation and geometrical preliminaries. Given a function f defined in a neighbourhood of $x \in \mathbb{R}^{n}$, its m-derivative at x can be considered as a homogeneous polynomial of degree m

$$
h \rightarrow D^{m} f(x) h^{m}
$$

in \mathbb{R}^{n}, with norm

$$
\left|D^{m} f(x)\right|=\max _{|h| \leq 1}\left|D^{m} f(x) h^{m}\right|,
$$

or as a m-linear symmetric form, or as the collection of partial derivatives

$$
D^{m} f(x)=\left\{\left.\left(\frac{\partial}{\partial x}\right)^{\alpha}| | \alpha \right\rvert\,=m\right\}
$$

with (equivalent) norm

$$
\left\|D^{m} f(x)\right\|=\max _{|\alpha|=m}\left\|\left(\frac{\partial}{\partial x}\right)^{\alpha} f(x)\right\|
$$

If Ω is an open subset of \mathbb{R}^{n} and E is a normed vector space, $\mathcal{C}^{m}(\Omega, E)$ is the space of m-times continuously and bounded differentiable functions on Ω whose derivatives extend continuously to the closure $\bar{\Omega}$, with the usual norm

$$
\|f\|_{\mathcal{C}^{m}(\Omega, E)}=\max _{0 \leq j \leq m} \sup _{x \in \Omega}\left|D^{m} f(x)\right| .
$$

If $E=\mathbb{R}$, we write simply $\mathcal{C}^{m}(\Omega)$.
$\mathcal{C}_{\text {inif }}^{m}(\Omega, E)$ is the closed subspace of $\mathcal{C}^{m}(\Omega, E)$ of functions whose m-th derivative is uniformly continuous. If Ω is bounded, this is $\mathcal{C}^{m}(\Omega, E)$.

We say that an open set $\Omega \subset \mathbb{R}^{n}$ is \mathcal{C}^{m}-regular if there exists $\phi \in \mathcal{C}^{m}\left(\mathbb{R}^{n}, \mathbb{R}\right)$, which is at least in $\mathcal{C}_{\text {inif }}^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$, such that

$$
\Omega=\left\{x \in \mathbb{R}^{n} \mid \phi(x)>0\right\}
$$

and $\phi(x)=0$ implies $|\nabla \phi| \geq 1$.
Let m be a non negative integer and $p \geq 1$ a real number. We define the Sobolev spaces $W^{m, p}(\Omega)$ and $W_{0}^{m, p}(\Omega)$, as the completion of $\mathcal{C}^{m}(\Omega)$ and $\mathcal{C}_{0}^{m}(\Omega)$, respectively, under the norm

$$
\|u\|=\left(\int_{\Omega} \sum_{|\alpha| \leq m}\left|D^{\alpha} u\right|^{p} d x\right)^{1 / p}
$$

where $\mathcal{C}_{0}^{m}(\Omega)$ is the subspace of functions on $\mathcal{C}^{m}(\Omega)$ with compact support (when $p=2$ we usually write $H^{m}(\Omega)=W^{m, 2}(\Omega)$ and $\left.H_{0}^{m}(\Omega)=W_{0}^{m, 2}(\Omega)\right)$.

We sometimes need to use differential operators (gradient, divergence and Laplacian) in a hypersurface $S \subset \mathbb{R}^{n}$. The following definitions are all equivalent to the corresponding formulas in Riemannian geometry, in the metric induced in S by the surrounding ambient space. These formulas are intrinsic to S but our interest is precisely in their relation to a neighbourhood of S (see Theorem 2.1).

Let S be a \mathcal{C}^{1} hypersurface in \mathbb{R}^{n} and let $\phi: S \rightarrow \mathbb{R}$ be \mathcal{C}^{1} (so it can be extended to be \mathcal{C}^{1} on a neighbourhood of S), then $\nabla_{S} \phi$ is the tangent vector field in S such that, for each \mathcal{C}^{1} curve $t \rightarrow x(t) \subset S$, we have

$$
\frac{d}{d t} \phi(x(t))=\nabla_{S} \phi(x(t)) \cdot \dot{x}(t)
$$

Let S be a \mathcal{C}^{2} hypersurface in \mathbb{R}^{n} and $\vec{a}: S \rightarrow \mathbb{R}^{n}$ a \mathcal{C}^{1} vector field tangent to S. Then $\operatorname{div}_{S} \vec{a}: S \rightarrow \mathbb{R}^{n}$ is the continuous function such that, for every \mathcal{C}^{1}, $\phi: S \rightarrow \mathbb{R}$ with compact support in S,

$$
\int_{S}\left(\operatorname{div}_{S} \vec{a}\right) \phi=-\int_{S} \vec{a} \cdot \nabla_{S} \phi
$$

Finally, if $u: S \rightarrow \mathbb{R}$ is \mathcal{C}^{2}, then $\Delta_{S} u=\operatorname{div}_{S}\left(\nabla_{S} u\right)$ or, equivalently, for all \mathcal{C}^{1}, $\phi: S \rightarrow \mathbb{R}$ with compact support

$$
\int_{S} \phi \Delta_{S} u=-\int_{S} \nabla_{S} \phi \cdot \nabla_{S} u
$$

Theorem 2.1.
(1) If S is a \mathcal{C}^{1} hypersurface and $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is \mathcal{C}^{1} in a neighbourhood of S, then, on $S, \nabla_{S} \phi(x)$ is the component of $\nabla \phi(x)$ tangent S at x, that is

$$
\nabla_{S} \phi(x)=\nabla \phi(x)-\frac{\partial \phi}{\partial N}(x) N(x)
$$

where N is an unit normal field on S.
(2) If S is a \mathcal{C}^{2} hypersurface in $\mathbb{R}^{n}, \vec{a}: S \rightarrow \mathbb{R}^{n}$ is \mathcal{C}^{1} in a neighbourhood of $S, N: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a \mathcal{C}^{1} unit normal field in a neighbourhood of S and $H=\operatorname{div} N$ is the mean curvature of S, then

$$
\operatorname{div}_{S} \vec{a}=\operatorname{div} \vec{a}-H \vec{a} \cdot N-\frac{\partial}{\partial N}(a \cdot N)
$$

on S.
(3) If S is a \mathcal{C}^{2} hypersurface, $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is \mathcal{C}^{2} in a neighbourhood of S and N is a normal vector field for S, then

$$
\Delta_{S} u=\Delta u-H \frac{\partial u}{\partial N}-\frac{\partial^{2} u}{\partial N^{2}}+\nabla_{S} u \cdot \frac{\partial N}{\partial N}
$$

on S. We may choose N so that $\partial N / \partial N=0$ on S and then the final term vanishes.

We often need the Cauchy's uniqueness theorem for second order elliptic equations. We state here a fairly general version whose proof can be found in $[5$, Theorem 8.9.1].

Theorem 2.2. Suppose $Q \subset \mathbb{R}^{n}$ is an open connected set, B is a ball which intersects ∂Q in a \mathcal{C}^{2} hypersurface $B \cap \partial Q, a_{i j}=a_{j i}: Q \rightarrow \mathbb{R}$ is a \mathcal{C}^{1} function for $1 \leq i, j \leq n$, with $\sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j} \geq c_{0}|\xi|^{2}$ for all $x \in Q$ and $\xi \in \mathbb{R}^{n}$ for some constant $c_{0}>0$. Assume $u \in H^{2}(Q)$ and, for some constant K,

$$
\left|\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2} u}{\partial x_{i} x_{j}}\right| \leq K(|\nabla u(x)|+|u(x)|)
$$

for a.e. $x \in Q$ and $u=0, \partial u / \partial N=0$ on $B \cap \partial Q$. Then $u=0$ a.e. in Q.
2.2. Differential calculus of boundary perturbation. Given an open bounded, \mathcal{C}^{m} region $\Omega_{0} \subset \mathbb{R}^{n}$, consider the following open subset of $\mathcal{C}^{m}\left(\Omega, \mathbb{R}^{n}\right)$
$\operatorname{Diff}^{m}(\Omega)=\left\{h \in \mathcal{C}^{m}\left(\Omega, \mathbb{R}^{n}\right) \mid h\right.$ is injective and $1 /\left|\operatorname{det} h^{\prime}(x)\right|$ is bounded in $\left.\Omega\right\}$ and the collection of all regions $\left\{h\left(\Omega_{0}\right) \mid h \in \operatorname{Diff}^{m}\left(\Omega_{0}\right)\right\}$.

We introduce a topology in this set by defining a (sub-basis of) the neighbourhoods of a given Ω by

$$
\left\{h(\Omega) \mid\left\|h-i_{\Omega}\right\|_{\mathcal{C}^{m}\left(\Omega, \mathbb{R}^{n}\right)}<\varepsilon, \varepsilon>0 \text { suficiently small }\right\} .
$$

When $\left\|h-i_{\Omega}\right\|_{\mathcal{C}^{m}\left(\Omega, \mathbb{R}^{n}\right)}$ is small, h is a \mathcal{C}^{m} imbedding of Ω in \mathbb{R}^{n}, a \mathcal{C}^{m} diffeomorphism to its image $h(\Omega)$. Michelleti in [7] shows this topology is metrizable, and the set of regions \mathcal{C}^{m}-diffeomorphic to Ω may be considered a separable metric space which we denote by $\mathcal{M}_{m}(\Omega)$, or simply \mathcal{M}_{m}. We say that a function F defined in the space \mathcal{M}_{m} with values in a Banach space is \mathcal{C}^{m} or analytic if $h \mapsto F(h(\Omega))$ is \mathcal{C}^{m} or analytic as a map of Banach spaces (h near i_{Ω} in $\left.\mathcal{C}^{m}\left(\Omega, \mathbb{R}^{n}\right)\right)$. In this sense, we may express problems of perturbation of the boundary of a boundary value problem as problems of differential calculus in Banach spaces.

More specifically, consider a formal non-linear differential operator $u \mapsto v$

$$
v(y)=f\left(y, u(y), \frac{\partial u}{\partial y_{1}}(y), \ldots, \frac{\partial u}{\partial y_{n}}(y), \frac{\partial^{2} u}{\partial y_{1}^{2}}(x), \frac{\partial^{2} u}{\partial y_{1} \partial y_{2}}(y), \ldots\right), \quad y \in \mathbb{R}^{n}
$$

To simplify the notation, we define a constant matrix coefficient differential operator L

$$
L u(y)=\left(u(y), \frac{\partial u}{\partial y_{1}}(y), \ldots, \frac{\partial u}{\partial y_{n}}(y), \frac{\partial^{2} u}{\partial y_{1}^{2}}(y), \frac{\partial^{2} u}{\partial y_{1} \partial y_{2}}(y), \ldots\right), \quad y \in \mathbb{R}^{n}
$$

with as many terms as needed, so our nonlinear operator becomes

$$
u \mapsto v(\cdot)=f(\cdot, L u(\cdot)) .
$$

More precisely, suppose $L u(\cdot)$ has values in \mathbb{R}^{p} and $f(y, \lambda)$ is defined for (y, λ) in some open set $O \subset \mathbb{R}^{n} \times \mathbb{R}^{p}$. For subsets $\Omega \subset \mathbb{R}^{n}$ define F_{Ω} by

$$
F_{\Omega}(u)(y)=f(y, L u(y)), \quad y \in \Omega
$$

for sufficiently smooth functions u in Ω such that $(y, L u(y)) \in O$ for any $y \in \bar{\Omega}$. For example, if f is continuous, Ω is bounded and L involves derivatives of order $\leq m$, the domain of F_{Ω} is an open subset (perhaps empty) of $\mathcal{C}^{m}(\Omega)$, and the values of F_{Ω} are in $\mathcal{C}^{0}(\Omega)$. (Other function spaces could be used with obvious modifications).

If $h: \Omega \mapsto \mathbb{R}^{n}$ is a \mathcal{C}^{k} imbedding, we can also consider $F_{h(\Omega)}: \mathcal{C}^{m}(h(\Omega)) \mapsto$ $\mathcal{C}^{0}(h(\Omega))$. But then the problem will be posed in different spaces. To bring it back to the original spaces we consider the "pull-back" of h

$$
h^{\star}: \mathcal{C}^{k}(h(\Omega)) \mapsto \mathcal{C}^{k}(\Omega) \quad(0 \leq k \leq m)
$$

defined by $h^{\star}(\varphi)=\varphi \circ h$ (which is a diffeomorphism) and then $h^{\star} F_{h(\Omega)} h^{\star-1}$ is again a map from $\mathcal{C}^{m}(\Omega)$ into $\mathcal{C}_{0}(\Omega)$. This is more convenient if we wish to use tools like the Implicit Function or Transversality theorems. On the other hand, a new variable h is introduced. We then need to study the differentiability properties of the function $(h, u) \mapsto h^{\star} F_{h(\Omega)} h^{\star-1} u$. This has been done in [4] where it is shown that, if $(y, \lambda) \mapsto f(y, \lambda)$ is \mathcal{C}^{k} or analytic then so is the map above, considered as a map from $\operatorname{Diff}^{m}(\Omega) \times \mathcal{C}^{m}(\Omega)$ to $\mathcal{C}^{0}(\Omega)$ (other function spaces can be used instead of \mathcal{C}^{m}). To compute the derivative we then need only compute the Gateaux derivative that is, the t-derivative along a smooth curve $t \mapsto(h(t, \cdot), u(t, \cdot)) \in \operatorname{Diff}^{m}(\Omega) \times \mathcal{C}^{m}(\Omega)$.

Suppose we wish to compute

$$
\frac{\partial}{\partial t} F_{\Omega(t)}(v)(y)=\frac{\partial}{\partial t} f(y, L v(y))
$$

with $y=h(t, x)$ fixed in $\Omega(t)=h(t, \Omega)$. To keep y fixed we must take $x=x(t)$, $y=h(t, x(t))$ with

$$
0=\frac{\partial h}{\partial t}+\frac{\partial h}{\partial x} x^{\prime}(t) \Rightarrow x^{\prime}(t)=-\left(\frac{\partial h}{\partial x}\right)^{-1} \frac{\partial h}{\partial t}
$$

that is, $x(t)$ is the solution of the differential equation $d x / d t=-U(x, t)$ where $U(x, t)=(\partial h / \partial x)^{-1}(\partial h / \partial t)$. The differential operator

$$
D_{t}=\frac{\partial}{\partial t}-U(x, t) \frac{\partial}{\partial x}, \quad U(x, t)=\left(\frac{\partial h}{\partial x}\right)^{-1} \frac{\partial h}{\partial t}
$$

is called the anti-convective derivative. The results (Theorems 2.3, 2.6) below are the main tools we use to compute derivatives.

Theorem 2.3. Suppose $f(t, y, \lambda)$ is \mathcal{C}^{1} in an open set in $\mathbb{R} \times \mathbb{R}^{n} \times \mathbb{R}^{p}$, L is a constant-coefficient differential operator of order $\leq m$ with $L v(y) \in \mathbb{R}^{p}$ (where defined). For open sets $Q \subset \mathbb{R}^{n}$ and \mathcal{C}^{m} functions v on Q, let $F_{Q}(t) v$ be the function

$$
y \rightarrow f(t, y, L v(y)), \quad y \in Q
$$

where defined. Suppose $t \rightarrow h(t, \cdot)$ is a curve of imbeddings of an open set $\Omega \subset \mathbb{R}^{n}, \Omega(t)=h(t, \Omega)$ and for $|j| \leq m,|k| \leq m+1,(t, x) \rightarrow \partial_{t} \partial_{x}^{j} h(t, x)$, $\partial_{x}^{k} h(t, x), \partial_{x}^{k} u(t, x)$ are continuous on $\mathbb{R} \times \Omega$ near $t=0$, and $h(t, \cdot)^{*-1} u(t, \cdot)$ is in the domain of $F_{\Omega(t)}$. Then, at points of Ω

$$
D_{t}\left(h^{*} F_{\Omega(t)}(t) h^{*-1}\right)(u)=\left(h^{*} \dot{F}_{\Omega(t)}(t) h^{*-1}\right)(u)+\left(h^{*} F_{\Omega(t)}^{\prime}(t) h^{*-1}\right)(u) \cdot D_{t} u
$$

where D_{t} is the anti-convective derivative defined above,

$$
\dot{F}_{Q}(t) v(y)=\frac{\partial f}{\partial t}(t, y, L v(y))
$$

and

$$
F_{Q}^{\prime}(t) v \cdot w(y)=\frac{\partial f}{\partial \lambda}(t, y, L v(y)) \cdot L w(y), \quad y \in Q
$$

is the linearization of $v \rightarrow F_{Q}(t) v$.
REmARK 2.4. Suppose we deal with a linear operator

$$
A=\sum_{|\alpha| \leq m} a_{\alpha}(y)\left(\frac{\partial}{\partial y}\right)^{\alpha}
$$

not explicitly dependent on t, and $h(t, x)=x+t V(x)+o(t)$ as $t \rightarrow 0$ and $x \in \Omega$. Then at $t=0$

$$
\begin{aligned}
\left.\frac{\partial}{\partial t}\left(h^{*} A h^{*-1} u\right)\right|_{t=0} & =\left.D_{t}\left(h^{*} A h^{*-1} u\right)\right|_{t=0}+\left.h_{x}^{-1} h_{t} \nabla\left(h^{*} A h^{*-1} u\right)\right|_{t=0} \\
& =A\left(\frac{\partial u}{\partial t}-V \cdot \nabla u\right)+V \cdot \nabla(A u)=A \frac{\partial u}{\partial t}+[V \cdot \nabla, A] u
\end{aligned}
$$

since $(\partial A / \partial t)=0$. Note that the commutator $[V \cdot \nabla, A](\cdot)$ is still an operator of order m.

We also need to be able to differentiate boundary conditions, and a quite general form is

$$
b\left(t, y, L v(y), M N_{\Omega(t)}(y)\right)=0 \quad \text { for } y \in \partial \Omega(t)
$$

where L, M are constant-coefficient differential operators and $N_{\Omega(t)}(y)$ is the outward unit normal for $y \in \partial \Omega(t)$, extended smoothly as a unit vector field on a neighbourhood of $\partial \Omega(t)$. We choose some extension of N_{Ω} in the reference region and then define $N_{\Omega(t)}=N_{h(t, \Omega)}$ by

$$
\begin{equation*}
h^{*} N_{h(t, \Omega)}(x)=N_{h(t, \Omega)}(h(x))=\frac{\left(h_{x}^{-1}\right)^{T} N_{\Omega}(x)}{\left\|\left(h_{x}^{-1}\right)^{T} N_{\Omega}(x)\right\|} \tag{2.2}
\end{equation*}
$$

for x near $\partial \Omega$, where $\left(h_{x}^{-1}\right)^{T}$ is the inverse-transpose of the Jacobian matrix h_{x} and $\|\cdot\|$ is the Euclidean norm. This is the extension understood in the above boundary condition: $b\left(t, y, L v(y), M N_{\Omega(t)}(y)\right)$ is defined for $y \in \Omega$ near $\partial \Omega$ and has limit zero (in some sense, depending on the functional space employed) as $y \rightarrow \partial \Omega$.

LEmma 2.5. Let Ω be a \mathcal{C}^{2}-regular region, $N_{\Omega(\cdot)}$ a \mathcal{C}^{1} unit-vector field defined on a neighbourhood of $\partial \Omega$ which is the outward normal on $\partial \Omega$, and for a \mathcal{C}^{2}
function $h: \Omega \rightarrow \mathbb{R}^{n}$ define $N_{h(\Omega)}$ on a neighbourhood of $h(\partial \Omega)=\partial h(\Omega)$ by (2.2) above. Suppose $h(t, \cdot)$ is an imbedding for each t, defined by

$$
\frac{\partial}{\partial t} h(t, x)=V(t, h(t, x)) \quad \text { for } x \in \Omega, h(0, x)=x
$$

$(t, y) \rightarrow V(t, y)$ is \mathcal{C}^{2} and $\Omega(t)=h(t, \Omega), N_{\Omega(t)}=N_{h(t, \Omega)}$. Then for x near $\partial \Omega$, $y=h(t, x)$ near $\partial \Omega(t)$, we may compute the derivative $(\partial / \partial t)_{y=\text { constant }}$ and, if $y \in \partial \Omega$,

$$
\frac{\partial}{\partial t} N_{\Omega(t)}(y)=D_{t}\left(h^{*} N_{h(t, \Omega)}\right)(x)=-\left(\nabla_{\partial \Omega(t)} \sigma+\sigma \frac{\partial N_{\Omega(t)}}{\partial N_{\Omega(t)}}(y)\right)
$$

where $\sigma=V \cdot N_{\Omega(t)}$ is the normal velocity and $\nabla_{\partial \Omega(t)} \sigma$ is the component of the gradient tangent to $\partial \Omega$.

Theorem 2.6. Let $b\left(t, y, \operatorname{Lv}(y), M N_{\Omega(t)}(y)\right)$ be a \mathcal{C}^{1} function on an open set of $\mathbb{R} \times \mathbb{R}^{n} \times \mathbb{R}^{p} \times \mathbb{R}^{q}$ and let L, M be constant-coefficient differential operators with order $\leq m$ of appropriate dimensions so $b\left(t, y, L v(y), M N_{\Omega(t)}(y)\right)$ makes sense. Assume that Ω is a \mathcal{C}^{m+1} region, $N_{\Omega}(x)$ is a \mathcal{C}^{m} unit-vector field near $\partial \Omega$ which is the outward normal on $\partial \Omega$, and define $N_{h(t, \Omega)}$ by (2.2) when $h: \Omega \rightarrow \mathbb{R}^{n}$ is a \mathcal{C}^{m+1} smooth imbedding. Also define $\mathcal{B}_{h(\Omega)}(t)$ by

$$
\mathcal{B}_{h(\Omega)} v(y)=b\left(t, y, L v(y), M N_{h(\Omega)}(y)\right)
$$

for $y \in h(\Omega)$ near $\partial h(\Omega)$. If $t \rightarrow h(t, \cdot)$ is a curve of \mathcal{C}^{m+1} imbeddings of Ω and for $|j| \leq m,|k| \leq m+1,(t, x) \rightarrow\left(\partial_{t} \partial_{x}^{j} h, \partial_{x}^{k}, \partial_{t} \partial_{x}^{j} u, \partial_{x}^{k} u\right)(t, x)$ are continuous on $\mathbb{R} \times \Omega$ near $t=0$, then at points of Ω near $\partial \Omega$

$$
\begin{aligned}
D_{t}\left(h^{*} \mathcal{B}_{h(\Omega)} h^{*-1}\right)(u)= & \left(h^{*} \dot{\mathcal{B}}_{h(\Omega)} h^{*-1}\right)(u)+\left(h^{*} \mathcal{B}^{\prime}{ }_{h(\Omega)} h^{*-1}\right)(u) \cdot D_{t} u \\
& +\left(h^{*} \frac{\partial \mathcal{B}_{h(\Omega)}}{\partial N} h^{*-1}\right)(u) \cdot D_{t}\left(h^{*} N_{\Omega(t)}\right)
\end{aligned}
$$

where $h=h(t, \cdot), \dot{\mathcal{B}}_{h(\Omega)}$ and $\mathcal{B}^{\prime}{ }_{h(\Omega)}$ are defined as in Theorem 2.3,

$$
\frac{\partial \mathcal{B}_{h(\Omega)}}{\partial N}(v) \cdot n(y)=\frac{\partial b}{\partial \mu}\left(t, y, L v(y), M N_{h(\Omega)}(y)\right) \cdot M n(y)
$$

and $\left.D_{t}\left(h^{*} N_{\Omega(t)}\right)\right|_{\partial \Omega}$ is computed in Lemma 2.5.
2.3. The Transversality Theorem. A basic tool for our results will be the Transversality Theorem in the form below, due to D. Henry (see [4]). We first recall some definitions.

A map $T \in \mathcal{L}(X, Y)$ where X and Y are Banach spaces is a semi-Fredholm map if the range of T is closed and at least one (or both, for Fredholm) of dim $\operatorname{ker}(T)$, codim $\operatorname{Im}(T)$ is finite; the index of T is then

$$
\operatorname{index}(T)=\operatorname{ind}(T)=\operatorname{dim} \operatorname{ker}(T)-\operatorname{codim} \operatorname{Im}(T)
$$

We say that a subset F of a topological space X is rare if its closure has empty interior and meager if it is contained in a countable union of rare subsets of X. We say that F is residual if its complement in X is meager. We also say that X is a Baire space if any residual subset of X is dense.

Let f be a \mathcal{C}^{k} map between Banach spaces. We say that x is a regular point of f if the derivative $f^{\prime}(x)$ is surjective and its kernel is finite-dimensional. Otherwise, x is called a critical point of f. A point is critical if it is the image of some critical point of f.

Let now X be a Baire space and $I=[0,1]$. For any closed or σ-closed $F \subset X$ and any nonnegative integer m we say that the codimension of F is greater or equal to $m(\operatorname{codim} F \geq m)$ if the subset $\left\{\phi \in \mathcal{C}\left(I^{m}, X\right) \mid \phi\left(I^{m}\right) \cap\right.$ F is non-empty $\}$ is meager in $\mathcal{C}\left(I^{m}, X\right)$. We say $\operatorname{codim} F=k$ if k is the largest integer satisfying codim $F \geq m$.

Theorem 2.7. Suppose given positive numbers k and m, Banach manifolds X, Y, Z of class \mathcal{C}^{k}, an open set $A \subset X \times Y$, a \mathcal{C}^{k} map $f: A \mapsto Z$ and a point $\xi \in Z$. Assume for each $(x, y) \in f^{-1}(\xi)$ that:
(1) $(\partial f / \partial x)(x, y): T_{x} X \mapsto T_{\xi} Z$ is semi-Fredholm with index $<k$.
(2) Either
$(\alpha) D f(x, y)=(\partial f / \partial x, \partial f / \partial y): T_{x} X \times T_{y} Y \mapsto T_{\xi} Z$ is surjective
or
$(\beta) \operatorname{dim}\{\operatorname{Im}(D f(x, y)) / \operatorname{Im}(\partial f(x, y) / \partial x)\} \geq m+\operatorname{dim} \operatorname{ker}(\partial f(x, y) / \partial x)$.
Further assume:
(3) $(x, y) \mapsto y: f^{-1}(\xi) \mapsto Y$ is σ-proper, $f^{-1}(\xi)=\bigcup_{j=1}^{\infty} \mathcal{M}_{j}$ is a countable union of sets \mathcal{M}_{j} such that $(x, y) \mapsto y: \mathcal{M}_{j} \mapsto Y$, is a proper map for each j. (Given $\left(x_{\nu}, y_{\nu}\right) \in \mathcal{M}_{j}$ such that y_{ν} converges in Y, there exists a subsequence (or subnet) with limit in \mathcal{M}_{j}).

We note that (3) holds if $f^{-1}(\xi)$ is Lindelöf (every open cover has a countable subcover) or, more specifically, if $f^{-1}(\xi)$ is a separable metric space, or if X, Y are separable metric spaces.

Let $A_{y}=\{x \mid(x, y) \in A\}$ and

$$
Y_{\text {crit }}=\left\{y \mid \xi \text { is a critical value of } f(\cdot, y): A_{y} \mapsto Z\right\}
$$

Then $Y_{\text {crit }}$ is a meager set in Y and, if $(x, y) \mapsto y$ such that $f^{-1}(\xi) \mapsto Y$ is proper, $Y_{\text {crit }}$ is also closed. If ind $\partial f / \partial x \leq-m<0$ on $f^{-1}(\xi)$, then $(2)(\alpha)$ implies $(2)(\beta)$ and

$$
Y_{\text {crit }}=\left\{y \mid \xi \in f\left(A_{y}, y\right)\right\}
$$

has codimension $\geq m$ in Y. (Note $Y_{\text {crit }}$ is meager if and only if $\operatorname{codim} Y_{\text {crit }} \geq 1$).

Remark 2.8. The usual hypothesis is that ξ is a regular value of f, so $(2)(\alpha)$ holds. If $(2)(\beta)$ holds at some point then ind $(\partial f / \partial x) \leq-m$ at this point, since

$$
\operatorname{codim} \operatorname{Im}\left(\frac{\partial f}{\partial x}\right) \geq \operatorname{dim}\left\{\frac{\operatorname{Im}(D f)}{\operatorname{Im}(\partial f / \partial x)}\right\}
$$

If ind $(\partial f / \partial x) \leq-m$ and $(2)(\alpha)$ holds, then $(2)(\beta)$ also holds. Thus $(2)(\beta)$ is more general for the case of negative index.

3. A generic property for the eigenfunctions of the Dirichlet Problem

We will show that, generically in the set of open, connected, bounded \mathcal{C}^{2} regions $\Omega \subset \mathbb{R}^{n}$ with $n \geq 2$, the normalized eigenfunctions u of

$$
\begin{equation*}
\Delta u+\lambda u=0 \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega, u \neq 0 \tag{3.1}
\end{equation*}
$$

satisfy $\int_{\Omega} u^{3} \neq 0$. We need first some preliminary results
Lemma 3.1. Given $h_{0} \in \operatorname{Diff}^{2}(\Omega)$ there exists a neighbourhood V_{0} of h_{0} in $\operatorname{Diff}^{2}(\Omega)$ such that, for all $h \in V_{0}$ and $u \in H^{2} \cap H_{0}^{1}(\Omega)$

$$
\left\|\left(h^{*} \Delta h^{*-1}-h_{0}^{*} \Delta h_{0}^{*-1}\right) u\right\|_{L^{2}(\Omega)} \leq \varepsilon(h)\|u\|_{H^{2} \cap H_{0}^{1}(\Omega)}
$$

with $\varepsilon(h) \rightarrow 0$ as $h \rightarrow h_{0}$ in $\mathcal{C}^{2}\left(\Omega, \mathbb{R}^{n}\right)$.
Proof. It is sufficient to consider the case $h_{0}=i_{\Omega}$. We have

$$
\begin{aligned}
h^{*} \frac{\partial}{\partial y_{i}} h^{*-1} u(x) & =\frac{\partial}{\partial y_{i}}\left(u \circ h^{-1}\right)(h(x)) \\
& =\sum_{j=1}^{n} \frac{\partial u}{\partial x_{j}}(x)\left(h_{x}^{-1}\right)_{j i}(x)=\sum_{j=1}^{n} b_{i j}(x) \frac{\partial u}{\partial x_{j}}(x)
\end{aligned}
$$

where $b_{i j}(x)=\left(h_{x}^{-1}\right)_{j i}(x)$, that is, $b_{i j}(x)$ is the i, j-th entry in the transposed inverse of the Jacobian matrix of $h_{x}=\left(\partial h_{i} / \partial x_{j}\right)_{i, j=1}^{n}$. Therefore

$$
\begin{aligned}
h^{*} \frac{\partial^{2}}{\partial y_{i}^{2}} h^{*-1} u(x)= & \sum_{k=1}^{n} b_{i k}(x) \frac{\partial}{\partial x_{k}}(x)\left(\sum_{j=1}^{n} b_{i j} \frac{\partial u}{\partial x_{j}}\right)(x) \\
= & \sum_{k=1}^{n} b_{i k}(x) \sum_{j=i}^{n}\left[\left(\frac{\partial}{\partial x_{k}} b_{i j}\right)(x) \frac{\partial u}{\partial x_{j}}(x)+b_{i j}(x) \frac{\partial^{2} u}{\partial x_{k} \partial x_{j}}(x)\right] \\
= & \sum_{j, k=1}^{n} b_{i k}(x) b_{i j}(x)\left(\frac{\partial^{2} u}{\partial x_{k} \partial x_{j}}\right)(x) \\
& +\sum_{j, k=1}^{n} b_{i k}(x)\left(\frac{\partial}{\partial x_{k}} b_{i j}(x)\right)(x) \frac{\partial u}{\partial x_{j}}(x) \\
= & \left(\frac{\partial^{2}}{\partial x_{i}^{2}}(u)\right)(x)+L_{i}(u)(x)
\end{aligned}
$$

where

$$
\begin{aligned}
L_{i}(u)(x)= & \left(b_{i i}^{2}(x)-1\right)\left(\frac{\partial^{2}}{\partial x_{i}^{2}}(u)\right)(x) \\
& +\sum_{j, k=1}^{n}\left(1-\delta_{i, j, k}\right) b_{i, k}(x) b_{i, j}(x)\left(\frac{\partial^{2} u}{\partial x_{k} \partial x_{j}}\right)(x) \\
& \left.+\sum_{j, k=1}^{n} b_{i, k}(x)\left(\frac{\partial}{\partial x_{k}} b_{i j}\right)(x)\right)(x) \frac{\partial u}{\partial x_{j}}(x) .
\end{aligned}
$$

Thus $\left(h^{*} \Delta h^{*-1}(u)\right)=\Delta u+L u$ with $L u=\sum_{i=1}^{n} L_{i} u$.
Since $b_{j, k} \rightarrow \delta_{j, k}$ in $\mathcal{C}^{2}\left(\Omega, \mathbb{R}^{n}\right)$ when $h \rightarrow i_{\Omega}$ in $\mathcal{C}^{2}\left(\Omega, \mathbb{R}^{n}\right)$ the coefficients of L go to 0 uniformly in x as $h \rightarrow i_{\Omega}$ in $\mathcal{C}^{2}\left(\Omega, \mathbb{R}^{n}\right)$. It follows that

$$
\|L u\|_{L^{2}(\Omega)} \leq \varepsilon(h)\|u\|_{H^{2} \cap H_{0}^{1}(\Omega)}
$$

where $\varepsilon(h)$ goes to zero as $h \rightarrow i_{\Omega}$ in $\mathcal{C}^{2}\left(\Omega, \mathbb{R}^{n}\right)$.
Let $\Omega \subset \mathbb{R}^{n}$ be a $\mathcal{C}^{k}(k \geq 2)$, open, bounded, connected region and consider the set

$$
\begin{aligned}
D_{M}=\left\{h \in \operatorname{Diff}^{k}(\Omega)\right. & \mid M \text { is not an eigenvalue of }(3.1) \text { in } h(\Omega) \\
& \text { and all the eigenvalues } \lambda \in(0, M) \text { in } h(\Omega) \text { are simple }\} .
\end{aligned}
$$

Lemma 3.2. D_{M} is an open and dense subset of $\operatorname{Diff}^{k}(\Omega)$.
Proof. Define

$$
D=\left\{h \in \operatorname{Diff}^{k}(\Omega) \mid \text { all the eigenvalues of (3.1) in } h(\Omega) \text { are simple }\right\}
$$

and
$\widetilde{D_{M}}=\left\{h \in \operatorname{Diff}^{k}(\Omega) \mid\right.$ all the eigenvalues $\lambda \in(0, M)$ in $h(\Omega)$ are simple $\}$.
We first show that D_{M} is open. Let $h_{0} \in D_{M}$ and let $\lambda_{1}, \ldots, \lambda_{k}$ be the (simple) eigenvalues of Δ in $h_{0}(\Omega)$ smaller M. Let also γ be the circle of radius M with center in the origin.

From the previous lemma and Theorems 2.14, 3.16 of [6] it follows that there exists a neighbourhood V_{0} of h_{0} such that the dimension of the eigenspace associated to the eigenvalues smaller than M of $h^{*} \Delta h^{*-1}$ is constant and there are no eigenvalues in γ for $h \in V_{0}$. From the implicit function theorem (see [4] for details) the simple eigenvalues of $h_{0}{ }^{*} \Delta h_{0}{ }^{*-1}$ depend continuously of h in a neighbourhood of h_{0} in \mathcal{C}^{k}. Therefore, for each $1 \leq i \leq k$ there exists a neighbourhood $V_{i} \subset \operatorname{Diff}^{k}(\Omega)$ of h_{0} and continuous functions $\Lambda_{i}: V_{i} \rightarrow(0, M)$ such that $\Lambda_{i}(h)$ is a simple eigenvalue of $h^{*} \Delta h^{*-1}$ for any $h \in V_{i}$ with $\Lambda_{i}\left(h_{0}\right)=\lambda_{i}$ and the sets $\Lambda_{i}\left(V_{i}\right)$ are pairwise disjoint. Define then $V=\bigcap_{i=0}^{k} V_{i}$, neighbourhood of h_{0} in $\operatorname{Diff}^{k}(\Omega)$. Observe that for all $h \in V, h^{*} \Delta h^{*-1}$ has k eigenvalues smaller than M, which are all simple. Therefore, D_{M} is open.

To prove density we observe that D is dense in $\operatorname{Diff}^{k}(\Omega)$ (see [4] or [7]) and therefore $\widetilde{D_{M}}$ is also dense. To conclude the proof we just need to show that, if M is an eigenvalue of (3.1) in Ω, there exists h near i_{Ω} such that this does not hold anymore in $h(\Omega)$. To this end, it is enough to take $h(x)=(1+\varepsilon) x$. A simple computation shows that each eigenvalue λ of Δ in Ω changes to $\lambda /(1+\varepsilon)^{2}$ in $h(\Omega)$.

Before proceeding, we try to outline the main steps of our argument. Let $\Omega \subset \mathbb{R}^{n}$ be an open, connected, bounded \mathcal{C}^{2}-regular region and consider the mapping

$$
\begin{aligned}
& F: H^{2} \cap H_{0}^{1}(\Omega)-\{0\} \times(0, M) \times D_{M} \rightarrow L^{2}(\Omega) \times \mathbb{R} \times \mathbb{R} \\
& (u, \lambda, h) \rightarrow\left(h^{*}(\Delta+\lambda) h^{*-1} u, \int_{\Omega} u^{2} \operatorname{det} h^{\prime}, \int_{\Omega} u^{3} \operatorname{det} h^{\prime}\right)
\end{aligned}
$$

We would like to show that, for each $M \in \mathbb{N}$, the set

$$
B_{M}=\left\{h \in D_{M} \mid(0,1,0) \in F\left(H^{2} \cap H_{0}^{1}(\Omega)-\{0\} \times(0, M), h\right)\right\}
$$

is meager in D_{M}. Since the operator $\partial F(u, \lambda, h) / \partial(u, \lambda)$ from $H^{2} \cap H_{0}^{1}(\Omega) \times \mathbb{R}$ into $L^{2}(\Omega) \times \mathbb{R} \times \mathbb{R}$ is Fredholm with ind $(\partial F(u, \lambda, h) / \partial(u, \lambda)) \leq-1$ for all $(u, \lambda, h) \in F^{-1}(0,1,0)$ (see Theorem 3.7 below), this would follow from the Transversality Theorem 2.7 if we could prove that $(0,1,0)$ is a regular value of F. We try to do that and fail. However, we do show that a critical point must have very special properties, which enables us to show that they can only occur in a "exceptional" set of regions. Repeating the argument in the complement of this set we can, finally, prove our result.

Lemma 3.3. Let $\Omega \subset \mathbb{R}^{n}$ be an open connected, bounded, \mathcal{C}^{5}-regular region. If $(u, \lambda, h) \in H^{2} \cap H_{0}^{1}(\Omega)-\{0\} \times(0, M) \times D_{M}$ is a critical point of F, with $F(u, \lambda, h)=(0,1,0)$ then there exists $\psi \in H_{0}^{2}(h(\Omega))$ satisfying $(\Delta+\lambda) \psi=-u^{2}$.

Proof. By "transferring the origin", we can suppose $h=i_{\Omega}$. We prove below (see proof of Theorem 3.7) that the "partial derivative" $\partial F / \partial(u, \lambda)$ is Fredlholm and thus, its range has finite codimension. It follows that $\operatorname{Im} D F\left(u, \lambda, i_{\Omega}\right)$ also has finite codimension and, therefore, is closed. Suppose $\left(u, \lambda, i_{\Omega}\right) \in H^{2} \cap$ $H_{0}^{1}(\Omega)-\{0\} \times(0, M) \times D_{M}$ is a critical point of F with $F\left(u, \lambda, i_{\Omega}\right)=(0,1,0)$. We prove below (see proof of Theorem 3.7), that then, there exists $(\psi, \alpha, \theta) \in$ $L^{2}(\Omega) \times \mathbb{R} \times \mathbb{R}$ orthogonal to $\operatorname{Im} D F\left(u, \lambda, i_{\Omega}\right)$, that is,

$$
\begin{align*}
0= & \int_{\Omega}\{\psi[(\Delta+\lambda)(\dot{u}-\dot{h} \cdot \nabla u)+\dot{\lambda} u] \tag{3.2}\\
& \left.+\alpha\left[2 u \dot{u}+u^{2} \operatorname{div}(\dot{h})\right]+\theta\left[3 u^{2} \dot{u}+u^{3} \operatorname{div}(\dot{h})\right]\right\}
\end{align*}
$$

for all $(\dot{u}, \dot{\lambda}, \dot{h}) \in H^{2} \cap H_{0}^{1}(\Omega)-\{0\} \times \mathbb{R} \times \mathcal{C}^{5}\left(\Omega, \mathbb{R}^{n}\right)$.

Taking $\dot{u}=\dot{h}=0$ in (3.2), we obtain $\int_{\Omega} \psi u=0$. Taking $\dot{h}=\dot{\lambda}=0$, we have

$$
\begin{equation*}
\int_{\Omega}\left\{\psi(\Delta+\lambda) \dot{u}+2 \alpha u \dot{u}+3 \theta u^{2} \dot{u}\right\}=0 \quad \text { for all } \dot{u} \in H^{2} \cap H_{0}^{1}(\Omega) \tag{3.3}
\end{equation*}
$$

If $\dot{u}=u$ in (3.3) it follows that $\alpha=0$ and so, by regularity of solutions of elliptic problems we conclude that $\psi \in H^{2} \cap H_{0}^{1}(\Omega) \cap \mathcal{C}_{\alpha}^{2}(\Omega)$ for all $0<\alpha<1$ and $(\Delta+\lambda) \psi=-3 \theta u^{2}$. Taking now, $\dot{u}=\dot{\lambda}=0$ in (3.2)

$$
\begin{equation*}
\int_{\Omega} \psi(\Delta+\lambda)(\dot{h} \cdot \nabla u)=\int_{\Omega} \theta u^{3} \operatorname{div}(\dot{h}) \quad \text { for all } \dot{h} \in \mathcal{C}^{5}\left(\Omega, \mathbb{R}^{n}\right) \tag{3.4}
\end{equation*}
$$

Let N a unit vector field normal to $\partial \Omega$. Since

$$
\begin{aligned}
\int_{\Omega} \psi(\Delta+\lambda)(\dot{h} \cdot \nabla u) & =\int_{\Omega}(\dot{h} \cdot \nabla u)(\Delta+\lambda) \psi-\int_{\partial \Omega} \frac{\partial u}{\partial N} \frac{\partial \psi}{\partial N} \dot{h} \cdot N \\
& =-\int_{\Omega} 3 \theta u^{2}(\dot{h} \cdot \nabla u)-\int_{\partial \Omega} \frac{\partial u}{\partial N} \frac{\partial \psi}{\partial N} \dot{h} \cdot N
\end{aligned}
$$

we obtain, substituting in (3.4)

$$
\begin{equation*}
\int_{\Omega} \theta u^{3} \operatorname{div}(\dot{h})=-\int_{\Omega} 3 \theta u^{2}(\dot{h} \cdot \nabla u)-\int_{\partial \Omega} \frac{\partial u}{\partial N} \frac{\partial \psi}{\partial N} \dot{h} \cdot N \tag{3.5}
\end{equation*}
$$

for all $\dot{h} \in \mathcal{C}^{5}\left(\Omega, \mathbb{R}^{n}\right)$. Observe now that $\operatorname{div}\left(u^{3} \dot{h}\right)=3 u^{2} \nabla u \cdot \dot{h}+u^{3} \operatorname{div}(\dot{h})$ and so

$$
\begin{equation*}
\int_{\Omega} \theta u^{3} \operatorname{div}(\dot{h})=-\int_{\Omega} 3 \theta u^{2}(\dot{h} \cdot \nabla u) . \tag{3.6}
\end{equation*}
$$

Therefore, substituting (3.6) in (3.5), we have

$$
\begin{equation*}
\int_{\partial \Omega} \frac{\partial u}{\partial N} \frac{\partial \psi}{\partial N} \dot{h} \cdot N=0 \quad \text { for all } \dot{h} \in \mathcal{C}^{5}\left(\Omega, \mathbb{R}^{n}\right) \tag{3.7}
\end{equation*}
$$

from which, $(\partial u / \partial N)(\partial \psi / \partial N)=0$ on $\partial \Omega$. Since u is not identically zero it follows from Theorem 2.2 that $\partial \psi / \partial N=0$ on $\partial \Omega$ and (multiplying ψ by a constant if needed) our result follows.

REMARK 3.4. Observe that, by regularity in the elliptic problem, $\psi \in H^{4} \cap$ $H_{0}^{2}(\Omega) \cap \mathcal{C}^{4, \alpha}(\Omega)$ since $u^{2} \in H^{2} \cap H_{0}^{1}(\Omega) \cap \mathcal{C}^{2, \alpha}(\Omega)$ for all $0<\alpha<1$.

Lemma 3.5. Let $\Omega \subset \mathbb{R}^{n}$ be an open connected, bounded \mathcal{C}^{5}-regular region. If $\psi \in H_{0}^{2}(\Omega)$ satisfies $(\Delta+\lambda) \psi=u^{2}$ for some $u \in H^{2} \cap H_{0}^{1}(\Omega) \cap \mathcal{C}_{\alpha}^{2}(\Omega)$, then
(1) $\partial \psi / \partial x_{i}=0$ in $\partial \Omega$ for all $1 \leq i \leq n$,
(2) $\partial^{2} \psi /\left(\partial x_{i} \partial x_{j}\right)=0$ in $\partial \Omega$ for all $1 \leq i, j \leq n$,
(3) $\partial^{3} \psi /\left(\partial x_{i} \partial x_{j} \partial x_{k}\right)=0$ in $\partial \Omega$ for all $1 \leq i, j, k \leq n$.

Proof. From $\psi=0$ and $\partial \psi / \partial N=0$ in $\partial \Omega$ it follows that $\nabla \psi=(\partial \psi / \partial N)$. $N=0$ in $\partial \Omega$ and thus $\partial \psi / \partial x_{i}=0$ on $\partial \Omega$ for all $1 \leq i \leq n$.

From (2.1) we obtain

$$
0=u^{2}=(\Delta+\lambda) \psi=\frac{\partial^{2} \psi}{\partial N^{2}}+H \frac{\partial \psi}{\partial N}
$$

in $\partial \Omega$ where $H=\operatorname{div}(N)$ which implies $\partial^{2} \psi / \partial N^{2}=0$ in $\partial \Omega$.
Now, since $\partial \psi / \partial N=0$ and $\partial^{2} \psi / \partial N^{2}=0$ in $\partial \Omega$ we have

$$
\nabla\left(\frac{\partial \psi}{\partial N}\right)=\frac{\partial}{\partial N} \frac{\partial \psi}{\partial N} \cdot N=0
$$

and then $\nabla(\partial \psi / \partial N)=0$ in $\partial \Omega$. Therefore, for all $0 \leq i \leq n$ we have

$$
\frac{\partial}{\partial x_{i}} \frac{\partial \psi}{\partial N}=0
$$

in $\partial \Omega$ from which it follows that

$$
\frac{\partial}{\partial x_{i}} \sum_{k=1}^{n} N_{k} \frac{\partial \psi}{\partial x_{k}}=0
$$

in $\partial \Omega$, that is,

$$
\sum_{k=1}^{n} N_{k} \frac{\partial^{2} \psi}{\partial x_{k} \partial x_{i}}=\frac{\partial}{\partial N} \frac{\partial \psi}{\partial x_{i}}=0
$$

in $\partial \Omega$, for all $0 \leq i \leq n$. Therefore we have

$$
\frac{\partial \psi}{\partial x_{i}}=\frac{\partial}{\partial N} \frac{\partial \psi}{\partial x_{i}}=0
$$

on $\partial \Omega$ which implies $\nabla\left(\partial \psi / \partial x_{i}\right)=0$ in $\partial \Omega$, that is, $\partial^{2} \psi /\left(\partial x_{i} \partial x_{j}\right)=0$ in $\partial \Omega$ for all $1 \leq i, j \leq n$.

To obtain the last equality, observe that

$$
\frac{\partial}{\partial x_{i}}\left(u^{2}\right)=\frac{\partial}{\partial x_{i}}(\Delta+\lambda) \psi=(\Delta+\lambda) \frac{\partial \psi}{\partial x_{i}}
$$

in Ω, and so

$$
\begin{aligned}
0 & =2 u \frac{\partial u}{\partial x_{i}}=(\Delta+\lambda) \frac{\partial \psi}{\partial x_{i}} \\
& =\Delta_{\partial \Omega} \frac{\partial \psi}{\partial x_{i}}+H \frac{\partial}{\partial N} \frac{\partial \psi}{\partial x_{i}}+\frac{\partial^{2}}{\partial N^{2}} \frac{\partial \psi}{\partial x_{i}}+\lambda \frac{\partial \psi}{\partial x_{i}}=\frac{\partial^{2}}{\partial N^{2}} \frac{\partial \psi}{\partial x_{i}}
\end{aligned}
$$

on $\partial \Omega$, since $\partial \psi / \partial x_{i}=\partial^{2} \psi /\left(\partial x_{i} \partial x_{j}\right)=0$ on $\partial \Omega, 1 \leq i, j \leq n$. Now, since

$$
\frac{\partial}{\partial N} \frac{\partial \psi}{\partial x_{i}}=\frac{\partial^{2}}{\partial N^{2}} \frac{\partial \psi}{\partial x_{i}}=0
$$

on $\partial \Omega$ we have

$$
\nabla \frac{\partial}{\partial N} \frac{\partial \psi}{\partial x_{i}}=0
$$

on $\partial \Omega$, and so,

$$
0=\frac{\partial}{\partial x_{k}}\left(\frac{\partial}{\partial N} \frac{\partial \psi}{\partial x_{i}}\right)=\sum_{j=1}^{n}\left(\frac{\partial N_{j}}{\partial x_{k}} \frac{\partial^{2} \psi}{\partial x_{i} \partial x_{j}}+N_{j} \frac{\partial^{3} \psi}{\partial x_{i} \partial x_{j} \partial x_{k}}\right)=\frac{\partial}{\partial N} \frac{\partial^{2} \psi}{\partial x_{i} \partial x_{k}}
$$

on $\partial \Omega$. Therefore

$$
\frac{\partial^{2} \psi}{\partial x_{i} \partial x_{j}}=\frac{\partial}{\partial N} \frac{\partial^{2} \psi}{\partial x_{i} \partial x_{j}}=0
$$

on $\partial \Omega$ which implies $\nabla\left(\partial^{2} \psi / \partial x_{i} \partial x_{j}\right)=0$ on $\partial \Omega$, that is, $\partial^{3} \psi /\left(\partial x_{i} \partial x_{j} \partial x_{k}\right)=0$ on $\partial \Omega$ for all $1 \leq i, j, k \leq n$.

Lemma 3.6. Let $\Omega \subset \mathbb{R}^{n}$ be an open, connected, bounded, \mathcal{C}^{5}-regular region. Consider the mapping

$$
G: H^{2} \cap H_{0}^{1}(\Omega) \times[0, M] \times H^{4} \cap H_{0}^{2}(\Omega) \times D_{M} \rightarrow L^{2}(\Omega) \times L^{2}(\Omega) \times H^{-1 / 2}(\partial \Omega)
$$

defined by

$$
\begin{aligned}
& G(u, \lambda, \psi, h) \\
& \quad=\left(h^{*}(\Delta+\lambda) h^{*-1} u, h^{*}(\Delta+\lambda) h^{*-1} \psi+u^{2},\left.h^{*} \frac{\partial^{3}}{\partial N^{3}} h^{*-1} \psi\right|_{\partial h(\Omega)}\right) .
\end{aligned}
$$

Then, the set

$$
C_{M}=\left\{h \in D_{M} \mid(0,0,0) \in G\left(H^{2} \cap H_{0}^{1}(\Omega) \times[0, M] \times H^{4} \cap H_{0}^{2}(\Omega), h\right)\right\}
$$

is meager and closed in D_{M}.
Proof. We will apply the Transversality Theorem. We note that, as mentioned previously, the mapping G is analytic in h. It is clearly also analytic in the other variables.

Let $(u, \lambda, \psi, h) \in G^{-1}(0,0,0)$. As before, we may assume that $h=i_{\Omega}$. The partial derivative $(\partial G / \partial(u, \lambda, \psi))\left(u, \lambda, \psi, i_{\Omega}\right)$ defined from $H^{2} \cap H_{0}^{1}(\Omega) \times \mathbb{R} \times$ $H^{4} \cap H_{0}^{2}(\Omega)$ into $L^{2}(\Omega) \times L^{2}(\Omega) \times H^{-1 / 2}(\partial \Omega)$ is given by

$$
\begin{aligned}
& \frac{\partial G}{\partial(u, \lambda, \psi)}\left(u, \lambda, \psi, i_{\Omega}\right)(\cdot) \\
& =\left(\frac{\partial G_{1}}{\partial(u, \lambda, \psi)}\left(u, \lambda, \psi, i_{\Omega}\right), \frac{\partial G_{2}}{\partial(u, \lambda, \psi)}\left(u, \lambda, \psi, i_{\Omega}\right), \frac{\partial G_{3}}{\partial(u, \lambda, \psi)}\left(u, \lambda, \psi, i_{\Omega}\right)\right)(\cdot)
\end{aligned}
$$

where

$$
\begin{aligned}
\frac{\partial G_{1}}{\partial(u, \lambda, \psi)}\left(u, \lambda, \psi, i_{\Omega}\right)(\dot{u}, \dot{\lambda}, \dot{\psi}, \dot{h}) & =(\Delta+\lambda) \dot{u}+\dot{\lambda} u \\
\frac{\partial G_{2}}{\partial(u, \lambda, \psi)}\left(u, \lambda, \psi, i_{\Omega}\right)(\dot{u}, \dot{\lambda}, \dot{\psi}, \dot{h}) & =(\Delta+\lambda) \dot{\psi}+\dot{\lambda} \psi+2 u \dot{u} \\
\frac{\partial G_{3}}{\partial(u, \lambda, \psi)}\left(u, \lambda, \psi, i_{\Omega}\right)(\dot{u}, \dot{\lambda}, \dot{\psi}, \dot{h}) & =\frac{\partial^{3}}{\partial N^{3}} \dot{\psi}
\end{aligned}
$$

Now $D G\left(u, \lambda, \psi, i_{\Omega}\right)$ defined from $H^{2} \cap H_{0}^{1}(\Omega) \times \mathbb{R} \times H^{4} \cap H_{0}^{2}(\Omega) \times \mathcal{C}^{5}\left(\Omega, \mathbb{R}^{n}\right)$ into $L^{2}(\Omega) \times L^{2}(\Omega) \times H^{-1 / 2}(\partial \Omega)$ is given by

$$
D G\left(u, \lambda, \psi, i_{\Omega}\right)(\cdot)=\left(D G_{1}\left(u, \lambda, \psi, i_{\Omega}\right), D G_{3}\left(u, \lambda, \psi, i_{\Omega}\right), D G_{3}\left(u, \lambda, \psi, i_{\Omega}\right)\right)(\cdot)
$$

where

$$
\begin{aligned}
& D G_{1}\left(u, \lambda, \psi, i_{\Omega}\right)(\dot{u}, \dot{\lambda}, \dot{\psi}, \dot{h})=(\Delta+\lambda)(\dot{u}-\dot{h} \cdot \nabla u)+\dot{\lambda} u \\
& D G_{2}\left(u, \lambda, \psi, i_{\Omega}\right)(\dot{u}, \dot{\lambda}, \dot{\psi}, \dot{h})=(\Delta+\lambda)(\dot{\psi}-\dot{h} \cdot \nabla \psi)+\dot{\lambda} \psi+2 u \dot{u}
\end{aligned}
$$

$$
D G_{3}\left(u, \lambda, \psi, i_{\Omega}\right)(\dot{u}, \dot{\lambda}, \dot{\psi}, \dot{h})=\frac{\partial^{3}}{\partial N^{3}}(\dot{\psi}-\dot{h} \cdot \nabla \psi)+(\dot{h} \cdot N) \frac{\partial^{4} \psi}{\partial N^{4}}
$$

We observe here that, since $\psi \in H^{4}$ then $\partial^{4} \psi / \partial N^{4}$ is in L^{2} so its restriction to the boundary is actually in $H^{-1 / 2}(\partial \Omega)$.

The first two components are easy to compute. To compute the third component we first observe that

$$
\begin{aligned}
\frac{\partial^{3}}{\partial N^{3}} \psi= & \nabla[\nabla(\nabla \psi \cdot N) \cdot N] \cdot N \\
= & \sum_{k=1}^{n} N_{k} \frac{\partial}{\partial x_{k}}\left[\sum_{j=1}^{n} N_{j} \frac{\partial}{\partial x_{j}}\left(\sum_{i=1}^{n} N_{i} \frac{\partial \psi}{\partial x_{i}}\right)\right] \\
= & \sum_{i, j, k=1}^{n}\left[N_{k} \frac{\partial N_{j}}{\partial x_{k}} \frac{\partial N_{i}}{\partial x_{j}} \frac{\partial \psi}{\partial x_{i}}+N_{k} N_{j} \frac{\partial^{2} N_{i}}{\partial x_{j} \partial x_{k}} \frac{\partial \psi}{\partial x_{i}}\right. \\
& \left.+N_{k} N_{j} \frac{\partial N_{i}}{\partial x_{j}} \frac{\partial^{2} \psi}{\partial x_{i} \partial x_{k}}+N_{k} N_{j} \frac{\partial N_{i}}{\partial x_{k}} \frac{\partial^{2} \psi}{\partial x_{i} \partial x_{j}}+N_{k} N_{j} N_{i} \frac{\partial^{3} \psi}{\partial x_{i} \partial x_{j} \partial x_{k}}\right] .
\end{aligned}
$$

Using Theorem 2.6, we obtain

$$
h^{*} \frac{\partial^{3}}{\partial N^{3}} h^{*-1} \psi=h^{*} \mathcal{B}_{h(\Omega)} h^{*-1} \psi=b\left(L v(y), M N_{h(\Omega)}(y)\right)
$$

where $v=h^{*-1} \psi, y=h(x)$,

$$
\begin{array}{r}
M N_{h(\Omega)}=\left(\left(\left(N_{h(\Omega)}\right)_{i}, 1 \leq i \leq n\right),\left(\frac{\partial\left(N_{h(\Omega)}\right)_{i}}{\partial y_{j}}, 1 \leq i, j \leq n,\right)\right. \\
\\
\left.\quad\left(\frac{\partial^{2}\left(N_{h(\Omega)}\right)_{i}}{\partial y_{j} \partial y_{k}}, 1 \leq i, j, k \leq n\right)\right) \\
L v=\left(\left(\frac{\partial v}{\partial y_{i}}, 1 \leq i \leq n\right),\left(\frac{\partial^{2} v}{\partial y_{i} \partial y_{j}}, 1 \leq i, j \leq n\right)\right. \\
\\
\left.\quad\left(\frac{\partial^{3} v}{\partial y_{i} \partial y_{j} \partial y_{k}}, 1 \leq i, j, k \leq n\right)\right)
\end{array}
$$

and $b: \mathbb{R}^{n+n^{2}+n^{3}} \times \mathbb{R}^{n+n^{2}+n^{3}} \rightarrow \mathbb{R}$ is given by

$$
\begin{aligned}
b(\lambda, \mu)= & \sum_{i, j, k=1}^{n}\left\{\mu_{k} \mu_{i j} \mu_{j k} \lambda_{i}+\mu_{k} \mu_{j} \mu_{i j k} \lambda_{i}+\mu_{k} \mu_{j} \mu_{i j} \lambda_{k i}\right. \\
& \left.+\mu_{k} \mu_{j} \mu_{i k} \lambda_{i j}+\mu_{k} \mu_{i} \mu_{j k} \lambda_{i j}+\mu_{k} \mu_{i} \mu_{j} \lambda_{i j k}\right\}
\end{aligned}
$$

if

$$
\begin{aligned}
& \lambda=\left(\left(\lambda_{i}, 1 \leq i \leq n\right),\left(\lambda_{i, j}, 1 \leq i, j \leq n\right),\left(\lambda_{i, j, k}, 1 \leq i, j, k \leq n\right)\right) \\
& \mu=\left(\left(\mu_{i}, 1 \leq i \leq n\right),\left(\mu_{i, j}, 1 \leq i, j \leq n\right),\left(\mu_{i, j, k}, 1 \leq i, j, k \leq n\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial}{\partial t} \\
& \left.\left(h^{*} \mathcal{B}_{h(\Omega)} h^{*-1}\right)(\psi)\right|_{t=0} \\
& =\left.D_{t}\left(h^{*} \mathcal{B}_{h(\Omega)} h^{*-1}\right)(\psi)\right|_{t=0}+\left.h_{x}^{-1} h_{t} \nabla\left[\left(h^{*} \mathcal{B}_{h(\Omega)} h^{*-1}\right)(\psi)\right]\right|_{t=0} \\
& =\left.\left(h^{*} \dot{\mathcal{B}}_{h(\Omega)} h^{*-1}\right)(\psi)\right|_{t=0}+\left.\left(h^{*} \mathcal{B}^{\prime}{ }_{h(\Omega)} h^{*-1}\right)(\psi) \cdot D_{t} \psi\right|_{t=0} \\
& \quad+\left.\left(h^{*} \frac{\partial \mathcal{B}_{h(\Omega)}}{\partial N} h^{*-1}\right)(\psi) \cdot D_{t}\left(h^{*} N_{h(\Omega)}\right)\right|_{t=0} \\
& \quad+\left.h_{x}^{-1} h_{t} \nabla\left[\left(h^{*} \mathcal{B}_{h(\Omega)} h^{*-1}\right)(\psi)\right]\right|_{t=0} .
\end{aligned}
$$

Observe that

$$
\begin{aligned}
\dot{\mathcal{B}}_{h(\Omega)} & \equiv 0 \\
\mathcal{B}^{\prime}{ }_{h(\Omega)}(v(y)) \cdot w(y) & =\frac{\partial^{3}}{\partial N^{3}} w(y) \\
\frac{\partial \mathcal{B}_{h(\Omega)}}{\partial N}(v) \cdot n(y) & =\frac{\partial b}{\partial \mu}\left(L v(y), M N_{h(\Omega)}\right) \cdot n(y) .
\end{aligned}
$$

Now

$$
\begin{aligned}
\frac{\partial b}{\partial \mu} & \left.\left(L v, M N_{h(\Omega)}\right)\right|_{t=0} \\
= & \sum_{i, j, k=1}^{n}\left\{\frac{\partial N_{i}}{\partial x_{j}} \frac{\partial N_{i}}{\partial x_{k}} \frac{\partial \psi}{\partial x_{i}} n_{k}+N_{k} \frac{\partial N_{j}}{\partial x_{k}} \frac{\partial \psi}{\partial x_{i}} \frac{\partial n_{i}}{\partial x_{j}}+N_{k} \frac{\partial N_{i}}{\partial x_{j}} \frac{\partial \psi}{\partial x_{i}} \frac{\partial n_{i}}{\partial x_{j}}\right. \\
& +N_{j} \frac{\partial^{2} N_{i}}{\partial x_{j} \partial x_{k}} \frac{\partial \psi}{\partial x_{i}} n_{k}+N_{k} \frac{\partial^{2} N_{i}}{\partial x_{j} \partial x_{k}} \frac{\partial \psi}{\partial x_{i}} n_{j}+N_{k} N_{j} \frac{\partial \psi}{\partial x_{i}} \frac{\partial^{2} n_{i}}{\partial x_{j} \partial x_{k}} \\
& +N_{j} \frac{\partial N_{i}}{\partial x_{j}} \frac{\partial^{2} \psi}{\partial x_{i} \partial x_{k}} n_{k}+N_{k} \frac{\partial N_{i}}{\partial x_{j}} \frac{\partial^{2} \psi}{\partial x_{i} \partial x_{k}} n_{j}+N_{k} N_{j} \frac{\partial^{2} \psi}{\partial x_{i} \partial x_{k}} \frac{\partial n_{i}}{\partial x_{j}} \\
& +N_{k} \frac{\partial N_{i}}{\partial x_{k}} \frac{\partial^{2} \psi}{\partial x_{i} \partial x_{j}} n_{j}+N_{j} \frac{\partial N_{i}}{\partial x_{k}} \frac{\partial^{2} \psi}{\partial x_{i} \partial x_{j}} n_{k}+N_{k} N_{j} \frac{\partial^{2} \psi}{\partial x_{i} \partial x_{j}} \frac{\partial n_{i}}{\partial x_{k}} \\
& +N_{i} \frac{\partial N_{j}}{\partial x_{k}} \frac{\partial^{2} \psi}{\partial x_{i} \partial x_{j}} n_{k}+N_{k} \frac{\partial N_{j}}{\partial x_{k}} \frac{\partial^{2} \psi}{\partial x_{i} \partial x_{j}} n_{i}+N_{k} N_{i} \frac{\partial^{2} \psi}{\partial x_{i} \partial x_{j}} \frac{\partial n_{i}}{\partial x_{k}} \\
& \left.+N_{i} N_{j} \frac{\partial^{3} \psi}{\partial x_{i} \partial x_{j} \partial x_{k}} n_{k}+N_{k} N_{j} \frac{\partial^{3} \psi}{\partial x_{i} \partial x_{j} \partial x_{k}} n_{i}+N_{i} N_{k} \frac{\partial^{3} \psi}{\partial x_{i} \partial x_{j} \partial x_{k}} n_{j}\right\}=0 .
\end{aligned}
$$

In fact, by Lemma 3.5, $\partial \psi / \partial x_{i}=0$ for all $1 \leq i \leq n, \partial^{2} \psi /\left(\partial x_{i} \partial x_{j}\right)=0$ for all $1 \leq i, j \leq n$ and $\partial^{3} \psi /\left(\partial x_{i} \partial x_{j} \partial x_{k}\right)=0$ for all $1 \leq i, j, k \leq n$ on $\partial \Omega$.

Now, we can easily see that the hypothesis (1) of the Transversality Theorem is satisfied, in fact $\operatorname{ker}\left((\partial G / \partial(u, \lambda, \psi))\left(u, \lambda, \psi, i_{\Omega}\right)\right)$ is one dimensional and generated by $(u, 0,2 \psi)$ since λ is a simple eigenvalue of Δ and $(\Delta+\lambda)$ is injective in $H^{4} \cap H_{0}^{2}(\Omega)$ by Theorem 2.2. Therefore, ind $\left(\partial G\left(u, \lambda, \psi, i_{\Omega}\right) / \partial(u, \lambda, \psi)\right) \leq 1$.

We now prove that (2β) also holds, that is, we show that

$$
\operatorname{dim}\left\{\frac{\operatorname{Im}\left(D G\left(u, \lambda, \psi, i_{\Omega}\right)\right)}{\operatorname{Im}\left(\partial G\left(u, \lambda, \psi, i_{\Omega}\right) / \partial(u, \lambda, \psi)\right)}\right\}=\infty
$$

Suppose this is not true and so, there exist $\theta_{1}, \ldots, \theta_{m} \in L^{2}(\Omega) \times H^{-1 / 2}(\Omega) \times$ $L^{2}(\partial \Omega)$ such that, for all $\dot{h} \in \mathcal{C}^{5}\left(\Omega, \mathbb{R}^{n}\right)$ there exist $\dot{u}, \dot{\psi}, \dot{\lambda}$ and c_{1}, \ldots, c_{m} with

$$
\begin{equation*}
D G\left(u, \lambda, \psi, i_{\Omega}\right)(\dot{u}, \dot{\lambda}, \dot{\psi}, \dot{h})=\sum_{j=1}^{n} c_{j} \theta_{j} \tag{3.8}
\end{equation*}
$$

that is

$$
\begin{aligned}
((\Delta+\lambda)(\dot{u}-\dot{h} \cdot \nabla u)+\dot{\lambda} u,(\Delta+\lambda)(\dot{\psi}-\dot{h} \cdot \nabla \psi)+\dot{\lambda} \psi+2 u \dot{u} \\
\left.\frac{\partial^{3}}{\partial N^{3}}(\dot{\psi}-\dot{h} \cdot \nabla \psi)+(\dot{h} \cdot N) \frac{\partial^{4} \psi}{\partial N^{4}}\right)=\sum_{j=1}^{n} c_{j} \theta_{j}
\end{aligned}
$$

with $(\dot{u}, \dot{\lambda}, \dot{\psi}, \dot{h}) \in H^{2} \cap H_{0}^{1}(\Omega) \times \mathbb{R} \times H^{4} \cap H_{0}^{2}(\Omega) \times \mathcal{C}^{5}\left(\Omega, \mathbb{R}^{n}\right)$, where $\theta_{j}=$ $\left(\theta_{j}^{1}, \theta_{j}^{2}, \theta_{j}^{3}\right)$.

Define the operators

$$
\mathcal{A}_{\Delta+\lambda}: L^{2}(\Omega) \rightarrow H^{2} \cap H_{0}^{1}(\Omega), \quad \mathcal{S}_{\Delta+\lambda}: H^{2}(\Omega) \rightarrow H^{4} \cap H_{0}^{2}(\Omega)
$$

by

$$
\begin{array}{ll}
v=\mathcal{A}_{\Delta+\lambda} f & \text { where }(\Delta+\lambda) v-f \in \operatorname{ker}(\Delta+\lambda), \quad v \perp \operatorname{ker}(\Delta+\lambda) \\
\varphi=\mathcal{S}_{\Delta+\lambda} g & \text { where }(\Delta+\lambda) \varphi-g \in \operatorname{ker}(\Delta+\lambda) \text { in } H^{4} \cap H_{0}^{2}(\Omega) \\
& \varphi \perp \operatorname{ker}(\Delta+\lambda)
\end{array}
$$

From the first component in (3.8), we obtain

$$
\dot{u}-\dot{h} \cdot \nabla u=\xi u+\sum_{j=1}^{m} c_{j} \mathcal{A}_{\Delta+\lambda} \theta_{j}^{1}
$$

and similarly for $\dot{\psi}-\dot{h} \cdot \nabla \psi$. Substituting in the third component of (3.8), we conclude that

$$
(\dot{h} \cdot N) \frac{\partial^{4} \psi}{\partial N^{4}}
$$

belongs to a finite dimensional subspace of $H^{-1 / 2}(\partial \Omega)$ for each $\dot{h} \in \mathcal{C}^{5}\left(\Omega, \mathbb{R}^{n}\right)$. But this can only occur (in dimension ≥ 2) if $\partial^{4} \psi / \partial N^{4} \equiv 0$ in $\partial \Omega$.

Now, since $(\Delta+\lambda) \psi=u^{2}$ in Ω we have

$$
\frac{\partial^{2}}{\partial N^{2}}(\Delta+\lambda) \psi=\frac{\partial^{2}}{\partial N^{2}} u^{2}
$$

on $\partial \Omega$, and so

$$
\frac{\partial^{2}}{\partial N^{2}} \Delta \psi=\frac{\partial^{2}}{\partial N^{2}} u^{2}-\lambda \frac{\partial^{2} \psi}{\partial N^{2}}=2\left(\frac{\partial^{2} u}{\partial N^{2}}\right)^{2} \quad \text { on } \partial \Omega
$$

Observe that

$$
\begin{aligned}
\frac{\partial^{2}}{\partial N^{2}} \Delta \psi= & \Delta \frac{\partial^{2} \psi}{\partial N^{2}}-\sum_{i, j, k=1}^{n}\left[\frac{\partial^{2} N_{j}}{\partial x_{k}^{2}}\left(\frac{\partial N_{i}}{\partial x_{j}} \frac{\partial \psi}{\partial x_{i}}+N_{i} \frac{\partial^{2} \psi}{\partial x_{i} \partial x_{j}}\right)\right. \\
& +2 \frac{\partial N_{i}}{\partial x_{k}}\left(\frac{\partial^{2} N_{i}}{\partial x_{k} \partial x_{j}} \frac{\partial \psi}{\partial x_{i}}+\frac{\partial N_{i}}{\partial x_{j}} \frac{\partial^{2} \psi}{\partial x_{i} \partial x_{k}}+\frac{\partial N_{i}}{\partial x_{k}} \frac{\partial^{2} \psi}{\partial x_{i} \partial x_{j}}\right. \\
& \left.+N_{i} \frac{\partial^{3} \psi}{\partial x_{i} \partial x_{j} \partial x_{k}}\right) \\
& +N_{j}\left(\frac{\partial^{3} N_{i}}{\partial x_{k}^{2} \partial x_{j}} \frac{\partial \psi}{\partial x_{i}}+2 \frac{\partial^{2} N_{i}}{\partial x_{k} \partial x_{j}} \frac{\partial^{2} \psi}{\partial x_{i} \partial x_{k}}+\frac{\partial^{2} N_{i}}{\partial x_{k}^{2}} \frac{\partial^{2} \psi}{\partial x_{i} \partial x_{j}}\right. \\
& \left.\left.+2 \frac{\partial N_{i}}{\partial x_{k}} \frac{\partial^{3} \psi}{\partial x_{i} \partial x_{j} \partial x_{k}}\right)\right]=\Delta \frac{\partial^{2} \psi}{\partial N^{2}}
\end{aligned}
$$

on $\partial \Omega$, by Lemma 3.5 and, therefore

$$
2\left(\frac{\partial u}{\partial N}\right)^{2}=\frac{\partial^{2}}{\partial N^{2}} \Delta \psi=\Delta \frac{\partial^{2} \psi}{\partial N^{2}}=\Delta_{\partial \Omega} \frac{\partial^{2} \psi}{\partial N^{2}}+H \frac{\partial^{3} \psi}{\partial N^{3}}+\frac{\partial^{4} \psi}{\partial N^{4}}=\frac{\partial^{4} \psi}{\partial N^{4}}=0
$$

on $\partial \Omega$, that is , $\partial u / \partial N=0$ on $\partial \Omega$. By uniqueness in the Cauchy Problem (Theorem 2.2) $u \equiv 0$, which is a contradiction.

Since the spaces are separable, the hypothesis (3) is automatically satisfied. The result is, therefore, proved.

TheOrem 3.7. For a generic set of open, connected, bounded \mathcal{C}^{2}-regular regions $\Omega \subset \mathbb{R}^{n},(n \geq 2)$ the eigenfunctions u of (3.1) satisfy $\int_{\Omega} u^{3} \neq 0$.

Proof. We prove first that the property holds for any eigenfunction associated to eigenvalues smaller than a fixed natural number M, in a open dense set of $\operatorname{Diff}^{3}(\Omega)$. The result then follows easily, taking intersection. The openness property is easy to obtain using the continuity of the (simple) eigenfunctions. To prove density, we may first approximate (in the \mathcal{C}^{2} topology) by a more regular region and then use stronger norms.

Consider the map

$$
\begin{gathered}
F: H^{2} \cap H_{0}^{1}(\Omega)-\{0\} \times(0, M) \times D_{M}-C_{M} \rightarrow L^{2}(\Omega) \times \mathbb{R} \times \mathbb{R}, \\
\quad(u, \lambda, h) \rightarrow\left(h^{*}(\Delta+\lambda) h^{*-1} u, \int_{\Omega} u^{2} \operatorname{det} h^{\prime}, \int_{\Omega} u^{3} \operatorname{det} h^{\prime}\right) .
\end{gathered}
$$

Observe that, by Lemmas 3.2 and $3.6, D_{M}-C_{M}$ is an open dense subset of $\operatorname{Diff}^{5}(\Omega)$. We wish to apply the Transversality Theorem to conclude that the set

$$
B_{M}=\left\{h \in D_{M}-C_{M} \mid(0,1,0) \in F\left(H^{2} \cap H_{0}^{1}(\Omega)-\{0\} \times(0, M), h\right)\right\}
$$

is a meager set in $D_{M}-C_{M}$ and, therefore, its complement is dense in $\operatorname{Diff}^{5}(\Omega)$.

We claim first that the operator $\partial F(u, \lambda, h) / \partial(u, \lambda)$ from $H^{2} \cap H_{0}^{1}(\Omega) \times$ $\mathbb{R} \rightarrow L^{2}(\Omega) \times \mathbb{R} \times \mathbb{R}$ is Fredholm with ind $(\partial F(u, \lambda, h) / \partial(u, \lambda)) \leq-1$, for all $(u, \lambda, h) \in F^{-1}(0,1,0)$.

Let $(u, \lambda, h) \in F^{-1}(0,1,0)$. Again, we assume without loss of generality that $h=i_{\Omega}$. Computing the derivatives (using (2.3)), we have

$$
\begin{gathered}
D F\left(u, \lambda, i_{\Omega}\right): H^{2} \cap H_{0}^{1}(\Omega)-\{0\} \times \mathbb{R} \times \mathcal{C}^{5}\left(\Omega, \mathbb{R}^{n}\right) \rightarrow L^{2}(\Omega) \times \mathbb{R} \times \mathbb{R} \\
\quad(\dot{u}, \dot{\lambda}, \dot{h}) \rightarrow\left(D F_{1}\left(u, \lambda, i_{\Omega}\right), D F_{2}\left(u, \lambda, i_{\Omega}\right), D F_{3}\left(u, \lambda, i_{\Omega}\right)\right)(\dot{u}, \dot{\lambda}, \dot{h}),
\end{gathered}
$$

where

$$
\begin{aligned}
D F_{1}\left(u, \lambda, i_{\Omega}\right)(\dot{u}, \dot{\lambda}, \dot{h}) & =(\Delta+\lambda) \dot{u}+\dot{\lambda} u+[\dot{h} \cdot \nabla,(\Delta+\lambda)] u \\
& =(\Delta+\lambda)(\dot{u}-\dot{h} \cdot \nabla u)+\dot{\lambda} u \\
D F_{2}\left(u, \lambda, i_{\Omega}\right)(\dot{u}, \dot{\lambda}, \dot{h}) & =\int_{\Omega}\left\{2 u \dot{u}+u^{2} \operatorname{div}(\dot{h})\right\} \\
D F_{3}\left(u, \lambda, i_{\Omega}\right)(\dot{u}, \dot{\lambda}, \dot{h}) & =\int_{\Omega}\left\{3 u^{2} \dot{u}+u^{3} \operatorname{div}(\dot{h})\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial F}{\partial(u, \lambda)} & \left(u, \lambda, i_{\Omega}\right)(\dot{u}, \dot{\lambda}) \\
& =\left(\frac{\partial F_{1}}{\partial(u, \lambda)}\left(u, \lambda, i_{\Omega}\right), \frac{\partial F_{2}}{\partial(u, \lambda)}\left(u, \lambda, i_{\Omega}\right), \frac{\partial F_{3}}{\partial(u, \lambda)}\left(u, \lambda, i_{\Omega}\right)\right)(\dot{u}, \dot{\lambda}) \\
& =\left((\Delta+\lambda) \dot{u}+\dot{\lambda} u, \int_{\Omega} 2 u \dot{u}, \int_{\Omega} 3 u^{2} \dot{u}\right) .
\end{aligned}
$$

Clearly $\partial F\left(u, \lambda, i_{\Omega}\right) / \partial(u, \lambda)$ is Fredholm, since $\partial F_{1}\left(u, \lambda, i_{\Omega}\right) / \partial(u, \lambda)$ is Fredholm and F_{2}, F_{3} have finite dimensional range. Observe now that the mapping

$$
\begin{equation*}
\left(\frac{\partial F_{1}}{\partial(u, \lambda)}\left(u, \lambda, i_{\Omega}\right), \frac{\partial F_{2}}{\partial(u, \lambda)}\left(u, \lambda, i_{\Omega}\right)\right): H^{2} \cap H_{0}^{1}(\Omega) \times \mathbb{R} \rightarrow L^{2}(\Omega) \times \mathbb{R} \tag{3.9}
\end{equation*}
$$

is surjective. In fact, given $(f, x) \in L^{2}(\Omega) \times \mathbb{R}$, let $(v, \xi) \in H^{2} \cap H_{0}^{1}(\Omega) \times \mathbb{R}$ be defined by

$$
v=v_{0}+\frac{x u}{2} \quad \text { and } \quad \xi=\int_{\Omega} u f
$$

where $v_{0} \in H^{2} \cap H_{0}^{1}(\Omega)$ satisfy $(\Delta+\lambda) v_{0}=f-\xi u$ and $v_{0} \perp u$. Note that such a v_{0} exists, since $(f-\xi u) \perp u$. Thus

$$
\begin{aligned}
\frac{\partial F_{1}}{\partial(u, \lambda)}\left(u, \lambda, i_{\Omega}\right)(\dot{u}, \dot{\lambda}) & =(\Delta+\lambda) v+\xi u=f-\xi u+\frac{x}{2}(\Delta+\lambda) u+\xi u=f \\
\frac{\partial F_{2}}{\partial(u, \lambda)}\left(u, \lambda, i_{\Omega}\right)(\dot{u}, \dot{\lambda}) & =\int_{\Omega} 2 u\left(v_{0}+\frac{x}{2} u\right)=x \int_{\Omega} u^{2}=x
\end{aligned}
$$

Observe also that $\left(\partial F_{1}\left(u, \lambda, i_{\Omega}\right) / \partial(u, \lambda),\left(\partial F_{2}\left(u, \lambda, i_{\Omega}\right) / \partial(u, \lambda)\right)\right)$ is injective, since

$$
\begin{aligned}
\left(\frac{\partial F_{1}}{\partial(u, \lambda)}\left(u, \lambda, i_{\Omega}\right), \frac{\partial F_{2}}{\partial(u, \lambda)}\left(u, \lambda, i_{\Omega}\right)\right) & (v, \xi)=(0,0) \\
& \Leftrightarrow(\Delta+\lambda) v+\xi u=0 \text { and } \int_{\Omega} 2 u v=0
\end{aligned}
$$

Now $(\Delta+\lambda) v+\xi u=0 \Rightarrow u(\Delta+\lambda) v+\xi u^{2}=0$ from which $-\int_{\Omega} u(\Delta+\lambda) v=\xi$ if and only if $\xi=0$. Therefore, $(\Delta+\lambda) v=0$ with $\int_{\Omega} 2 u v=0$, that is, $u \perp v$ and $(\Delta+\lambda) v=0$. Since λ is a simple eigenvalue associated to u, it follows that $v \equiv 0$. Now, since (3.9) is a continuous surjective operator with domain $H^{2} \cap H_{0}^{1}(\Omega)$ it follows, from the Closed Graph Theorem, that its inverse is continuous in $L^{2}(\Omega)$ and thus, (3.9) is an isomorphism so $\partial F\left(u, \lambda, i_{\Omega}\right) / \partial(u, \lambda)$ is not surjective. Furthermore, since its kernel is trivial, we have ind $\left(\partial F\left(u, \lambda, i_{\Omega}\right) / \partial(u, \lambda)\right) \leq-1$. Therefore, for all $(u, \lambda, h) \in F^{-1}(0,1,0)$, ind $(\partial F(u, \lambda, h) / \partial(u, \lambda)) \leq-1$, as we wish to show.

Now, by Lemma 3.3 and the definition of C_{M}, (see also Remark 3.4) it follows that $(0,1,0)$ is a regular value of F. Therefore, by the Transversality Theorem, we conclude that B_{M} is meager as claimed. The result is, therefore, proved.

4. A generic property for the eigenfunctions of the Neumann Problem

We now consider the same property of the previous section in the case of Neumann boundary conditions. We show that, generically in the set of open, connected, bounded \mathcal{C}^{3} regions $\Omega \subset \mathbb{R}^{n}$ with $n \geq 2$, the normalized eigenfunctions u of

$$
\begin{array}{rlrl}
\Delta u+\lambda u & =0 & & \text { in } \Omega \\
\frac{\partial u}{\partial N} & =0 & & \text { on } \partial \Omega, \tag{4.1}\\
u \neq 0, & &
\end{array}
$$

satisfy $\int_{\Omega} u^{3} \neq 0$.
Remark 4.1. We could prove the result for \mathcal{C}^{2} regions as in the previous section. However, we have chosen to work here in the setting of \mathcal{C}^{3} regions, which slightly simplify the arguments.

We first observe that the result is trivial if u is a constant eigenfunction and, therefore, we do not need to consider the eigenvalue 0 .

Let us define as before the set
$D_{M}=\left\{h \in \operatorname{Diff}^{3}(\Omega) \mid M\right.$ is not an eigenvalue of (4.1) in $h(\Omega)$
and all the eigenvalues $\lambda \in(0, M)$ in $h(\Omega)$ are simple $\}$.

This is again an open and dense subset of $\operatorname{Diff}^{3}(\Omega)$. The proof is very similar to the Dirichlet case. However, in the present case we need to consider the following subset of D_{M}

$$
\begin{aligned}
& E_{M}=\left\{h \in D_{M} \mid \nabla u \not \equiv 0 \text { on } \partial \Omega,\right. \\
& \quad \text { for any eigenfunction associated to an eigenvalue in }(0, M)\} .
\end{aligned}
$$

Lemma 4.2. E_{M} is an open dense subset of $\operatorname{Diff}^{3}(\Omega)$.
Proof. Openness is easy to obtain, by continuity of the eigenfunctions. To prove density, we apply the Transversality Theorem to the map

$$
G: H_{N}^{2}(\Omega) \backslash\{0\} \times(0, M) \times D_{M} \rightarrow L^{2}(\Omega) \times\left(L^{2}(\partial \Omega)\right)^{n}
$$

defined by

$$
G(u, \lambda, h)=\left(h^{*}(\Delta+\lambda) h^{*-1} u,\left.h^{*} \frac{\partial}{\partial x_{i}} h^{*-1} u\right|_{\partial h(\Omega)}, 1 \leq i \leq n\right)
$$

where

$$
H_{N}^{2}(\Omega)=\left\{u \in H^{2}(\Omega) \left\lvert\, \frac{\partial u}{\partial N}=0\right. \text { on } \partial \Omega\right\} .
$$

Let (u, λ, h) be such that $G(u, \lambda, h)=(0, \ldots, 0)$. As before, we may assume $h=i_{\Omega}$. Now, the kernel of $\partial G(u, \lambda, h) / \partial(u, \lambda)$ is finite-dimensional. Therefore, to use the Transversality Theorem, we need to prove that

$$
\begin{equation*}
\operatorname{dim}\left\{\frac{\operatorname{Im}(D G(u, \lambda, h))}{\operatorname{Im}(\partial G(u, \lambda, h) / \partial(u, \lambda))}\right\}=\infty \tag{4.2}
\end{equation*}
$$

The partial derivative $(\partial G / \partial(u, \lambda))\left(u, \lambda, i_{\Omega}\right): H_{N}^{2}(\Omega) \times \mathbb{R} \rightarrow L^{2}(\Omega) \times\left(L^{2}(\partial \Omega)\right)^{n}$ is given by

$$
\frac{\partial G}{\partial(u, \lambda)}\left(u, \lambda, i_{\Omega}\right)(\cdot)=\left(\frac{\partial G_{1}}{\partial(u, \lambda)}\left(u, \lambda, i_{\Omega}\right), \frac{\partial G_{i+1}}{\partial(u, \lambda)}\left(u, \lambda, i_{\Omega}\right), 1 \leq i \leq n\right)(\cdot)
$$

where

$$
\begin{aligned}
\frac{\partial G_{1}}{\partial(u, \lambda)}\left(u, \lambda, i_{\Omega}\right)(\dot{u}, \dot{\lambda}, \dot{h}) & =(\Delta+\lambda) \dot{u}+\dot{\lambda} u \\
\frac{\partial G_{i+1}}{\partial(u, \lambda)}\left(u, \lambda, i_{\Omega}\right)(\dot{u}, \dot{\lambda}, \dot{h}) & =\left.\frac{\partial \dot{u}}{\partial x_{i}}\right|_{\partial \Omega}, \quad 1 \leq i \leq n
\end{aligned}
$$

On the other hand, $D G\left(u, \lambda, i_{\Omega}\right)$ defined from $H_{N}^{2}(\Omega) \times \mathbb{R} \times \mathcal{C}^{3}\left(\Omega, \mathbb{R}^{n}\right)$ into $L^{2}(\Omega) \times\left(L^{2}(\partial \Omega)\right)^{n}$ is given by

$$
D G\left(u, \lambda, i_{\Omega}\right)(\cdot)=\left(D G_{1}\left(u, \lambda, i_{\Omega}\right), D G_{i+1}\left(u, \lambda, i_{\Omega}\right), 1 \leq i \leq n\right)(\cdot)
$$

where

$$
\begin{aligned}
D G_{1}\left(u, \lambda, i_{\Omega}\right)(\dot{u}, \dot{\lambda}, \dot{h}) & =(\Delta+\lambda)(\dot{u}-\dot{h} \cdot \nabla u)+\dot{\lambda} u \\
D G_{i+1}\left(u, \lambda, i_{\Omega}\right)(\dot{u}, \dot{\lambda}, \dot{h}) & =\left.\left\{\frac{\partial}{\partial x_{i}}(\dot{u}-\dot{h} \cdot \nabla u)+\dot{h} \cdot \nabla\left(\frac{\partial u}{\partial x_{i}}\right)\right\}\right|_{\partial \Omega}
\end{aligned}
$$

for $1 \leq i \leq n$. Suppose (4.2) is false, that is, there exist $\theta_{1}, \ldots, \theta_{m} \in L^{2}(\Omega) \times$ $\left(L^{2}(\partial \Omega)\right)^{n}$ such that, for any $\dot{h} \in \mathcal{C}^{3}\left(\Omega, \mathbb{R}^{n}\right)$ there exist $\dot{u}, \dot{\lambda}$ and c_{1}, \ldots, c_{m} with

$$
\begin{equation*}
D G\left(u, \lambda, i_{\Omega}\right)(\dot{u}, \dot{\lambda}, \dot{h})=\sum_{j=1}^{n} c_{j} \theta_{j} \tag{4.3}
\end{equation*}
$$

where $\theta_{j}=\left(\theta_{j}^{1}, \ldots, \theta_{j}^{n+1}\right)$. Define the operator

$$
\begin{equation*}
\mathcal{L}_{\Delta+\lambda}: L^{2}(\Omega) \rightarrow H_{N}^{2}(\Omega) \tag{4.4}
\end{equation*}
$$

by

$$
v=\mathcal{L}_{\Delta+\lambda} f \quad \text { where }(\Delta+\lambda) v-f \in \operatorname{ker}(\Delta+\lambda) \text { in } H_{N}^{2}(\Omega), v \perp \operatorname{ker}(\Delta+\lambda)
$$

We obtain, from the first equation in (3.8),

$$
\dot{u}-\dot{h} \cdot \nabla u=\xi u+\sum_{j=1}^{m} c_{j} \mathcal{L}_{\Delta+\lambda} \theta_{j}^{1} .
$$

Substituting in the $(i+1)$-th component of (4.3), we conclude that

$$
\left.\dot{h} \cdot \nabla\left(\frac{\partial u}{\partial x_{i}}\right)\right|_{\partial \Omega}
$$

belongs to a finite dimensional subspace of $L^{2}(\partial \Omega)$ when \dot{h} varies in $\mathcal{C}^{3}\left(\Omega, \mathbb{R}^{n}\right)$. But this can only happen (in $\operatorname{dim} \Omega \geq 2$) if $\nabla\left(\partial u / \partial x_{i}\right) \equiv 0$ in $\partial \Omega$, for $1 \leq$ $i \leq n$, that is, $\partial^{2} u / \partial x_{i} \partial x_{j} \equiv 0$ in $\partial \Omega$ for $1 \leq i, j \leq n$. Therefore, for each $1 \leq i \leq n$, $\partial u / \partial x_{i}$ satisfies (4.1) in Ω and $\partial u / \partial x_{i}=0$ on $\partial \Omega$. By uniqueness in the Cauchy problem, we have $\partial u / \partial x_{i}=0$ in Ω and so u is constant in Ω contradicting the hypothesis. Since our spaces are separable, the hypothesis (3) of the Transversality Theorem is verified, and the result claimed follows.

Theorem 4.3. For a generic set of open, connected, bounded \mathcal{C}^{3}-regular regions $\Omega \subset \mathbb{R}^{n},(n \geq 2)$ the eigenfunctions u of (4.1) satisfy $\int_{\Omega} u^{3} \neq 0$.

Proof. We prove first that the property holds for any eigenfunction associated to eigenvalues smaller than a fixed natural number M, in a open dense set of $\operatorname{Diff}^{3}(\Omega)$. The result then follows easily, taking intersection. The openness property is, as in lemma (4.2), easy to obtain. To prove density, we again use the Transversality Theorem.

Consider the mapping

$$
\begin{gathered}
F: H_{N}^{2}(\Omega) \times(0, M) \times E_{M} \rightarrow L^{2}(\Omega) \times \mathbb{R} \times \mathbb{R}, \\
(u, \lambda, h) \rightarrow\left(h^{*}(\Delta+\lambda) h^{*-1} u, \int_{\Omega} u^{2} \operatorname{det} h^{\prime}, \int_{\Omega} u^{3} \operatorname{det} h^{\prime}\right) .
\end{gathered}
$$

We wish to prove that the set $\left\{h \in E_{M} \mid(0,1,0) \in F\left(H_{N}^{2}(\Omega)-\{0\} \times\right.\right.$ $(0, M), h)\}$ is a meager set in E_{M} and, therefore, in $\operatorname{Diff}^{3}(\Omega)$.

We claim first that $\partial F(u, \lambda, h) / \partial(u, \lambda)$ is Fredholm, with ind $(\partial F(u, \lambda, h) /$ $\partial(u, \lambda)) \leq-1$ for all $(u, \lambda, h) \in F^{-1}(0,1,0)$. The proof is almost the same as the one in Theorem 3.7. We need to prove that hypotheses $(2)(\alpha)$ of the Transversality Theorem is satisfied. Suppose it is not, and $\left(u, \lambda, i_{\Omega}\right) \in H_{N}^{2}(\Omega) \times$ $(0, M) \times E_{M}$ is a critical point, with $F\left(u, \lambda, i_{\Omega}\right)=(0,1,0)$. Then, there exists $(\psi, \alpha, \beta) \in L^{2}(\Omega) \times \mathbb{R} \times \mathbb{R}$ orthogonal to $\operatorname{Im} \operatorname{DF}\left(u, \lambda, i_{\Omega}\right)$, that is,
(4.5) $0=\int_{\Omega}\left\{\psi[(\Delta+\lambda)(\dot{u}-\dot{h} \cdot \nabla u)+\dot{\lambda} u]+\alpha\left[2 u \dot{u}+u^{2} \operatorname{div}(\dot{h})\right]+\beta\left[3 u^{2} \dot{u}+u^{3} \operatorname{div}(\dot{h})\right]\right\}$ for all $(\dot{u}, \dot{\lambda}, \dot{h}) \in H_{N}^{2}(\Omega) \times \mathbb{R} \times \mathcal{C}^{3}\left(\Omega, \mathbb{R}^{n}\right)$.

If $\dot{u}=\dot{h}=0$ in (4.5) then $\int_{\Omega} \psi u=0$. If $\dot{h}=\dot{\lambda}=0$, then

$$
\begin{equation*}
\int_{\Omega}\left\{\psi(\Delta+\lambda) \dot{u}+2 \alpha u \dot{u}+3 \beta u^{2} \dot{u}\right\}=0 \quad \text { for all } \dot{u} \in H_{N}^{2} . \tag{4.6}
\end{equation*}
$$

If we take $\dot{u}=u$ in (4.6), then $\alpha=0$ and by regularity of solutions in the Cauchy problem we conclude that $\psi \in H_{N}^{2}(\Omega) \cap \mathcal{C}_{\alpha}^{2}(\Omega)$ for all $0<\alpha<1$ and satisfies

$$
(\Delta+\lambda) \psi=-3 \beta u^{2} \quad \text { in } \Omega .
$$

If now we take $\dot{u}=\dot{\lambda}=0$ in (4.5) then, since $\alpha=0$

$$
\begin{equation*}
0=-\int_{\Omega} \psi(\Delta+\lambda)(\dot{h} \cdot \nabla u)+\int_{\Omega} \beta u^{3} \operatorname{div}(\dot{h}) \tag{4.7}
\end{equation*}
$$

for all $\dot{h} \in \mathcal{C}^{3}\left(\Omega, \mathbb{R}^{n}\right)$. Now, we have

$$
\begin{aligned}
\int_{\Omega} & \psi(\Delta+\lambda)(\dot{h} \cdot \nabla u) \\
& =\int_{\Omega}(\dot{h} \cdot \nabla u)(\Delta+\lambda) \psi+\int_{\partial \Omega} \psi \frac{\partial}{\partial N}(\dot{h} \cdot \nabla u)-(\dot{h} \cdot \nabla u) \frac{\partial \psi}{\partial N} \\
& =-\int_{\Omega} 3 \beta u^{2}(\dot{h} \cdot \nabla u)+\int_{\partial \Omega} \psi \frac{\partial}{\partial N}(\dot{h} \cdot \nabla u) \\
& =\int_{\Omega} \beta\left\{u^{3} \operatorname{div}(\dot{h})-\operatorname{div}\left(u^{3} \dot{h}\right)\right\}+\int_{\partial \Omega} \psi \frac{\partial}{\partial N}(\dot{h} \cdot \nabla u) \\
& =\int_{\Omega} \beta u^{3} \operatorname{div}(\dot{h})+\int_{\partial \Omega}\left\{\psi \frac{\partial}{\partial N}(\dot{h} \cdot \nabla u)-\beta u^{3}(\dot{h} \cdot N)\right\}
\end{aligned}
$$

Substituting in (4.7), we obtain

$$
\begin{equation*}
\int_{\partial \Omega}\left\{\beta u^{3}(\dot{h} \cdot N)-\psi \frac{\partial}{\partial N}(\dot{h} \cdot \nabla u)\right\}=0 \tag{4.8}
\end{equation*}
$$

for all $\dot{h} \in \mathcal{C}^{3}\left(\Omega, \mathbb{R}^{n}\right)$.

If τ is any vector field in $\mathcal{C}^{3}\left(\Omega, \mathbb{R}^{n}\right)$ with $\tau \perp N=0 \in \partial \Omega$, and $\dot{h}=g \tau$, for some $g \in \mathcal{C}^{3}(\Omega, \mathbb{R}), g \equiv 0$ in $\partial \Omega$ then

$$
\begin{aligned}
0 & =\int_{\partial \Omega}\left\{\beta u^{3}(\dot{h} \cdot N)-\psi \frac{\partial}{\partial N}(\dot{h} \cdot \nabla u)\right\}=-\int_{\partial \Omega} \psi \frac{\partial}{\partial N}(\dot{h} \cdot \nabla u) \\
& =-\int_{\partial \Omega} \psi\left\{\frac{\partial g}{\partial N} \frac{\partial u}{\partial \tau}+g \frac{\partial}{\partial N}(\tau \cdot \nabla u)=-\int_{\partial \Omega} \psi \frac{\partial g}{\partial N} \frac{\partial u}{\partial \tau}\right.
\end{aligned}
$$

Since $\partial g / \partial N$ can be arbitrily chosen in $\partial \Omega$ and $\nabla u \not \equiv 0$ we must have

$$
\begin{equation*}
\psi \equiv 0 \tag{4.9}
\end{equation*}
$$

in a neighbourhood of $\partial \Omega$.
On the other hand, if $\dot{h}=g N$, we have

$$
\begin{aligned}
0 & =\int_{\partial \Omega}\left\{\beta u^{3}(\dot{h} \cdot N)-\psi \frac{\partial}{\partial N}(\dot{h} \cdot \nabla u)\right\} \\
& =\int_{\partial \Omega} \beta u^{3} g-\psi \frac{\partial g}{\partial N} \frac{\partial u}{\partial N}-\psi g \frac{\partial^{2} u}{\partial N^{2}}=\int_{\partial \Omega}\left(\beta u^{3}-\psi \frac{\partial^{2} u}{\partial N^{2}}\right) g
\end{aligned}
$$

for any $g \in \mathcal{C}^{3}(\Omega, \mathbb{R})$. Therefore, we must have

$$
\begin{equation*}
\beta u^{3}-\psi \frac{\partial^{2} u}{\partial N^{2}}=0 \quad \text { on } \partial \Omega . \tag{4.10}
\end{equation*}
$$

But then, it follows from (4.9) and (4.10) that $u \equiv 0$ in a neighbourhood of $\partial \Omega$ and, by uniqueness in the Cauchy problem $u \equiv 0$, a contradiction. The result is, therefore, proved.

5. Appendix. A Proof of the Transversality Theorem

For the sake of completeness we give here a proof of Theorem 2.7. Apart from a change of order and some other minor modification the proof is the same as in [4].

Lemma 5.1. Suppose $f\left(x_{0}, y_{0}\right)=\xi,(\partial f / \partial x)\left(x_{0}, y_{0}\right)$ is left-Fredholm and f is continuously differentiable on a neighbourhood W_{0} of $\left(x_{0}, y_{0}\right)$. Then there is a neighbourhood W of $\left(x_{0}, y_{0}\right)$ such that $\bar{W} \subset W_{0}$ and $(x, y) \rightarrow y: f^{-1}(\xi) \cap \bar{W} \rightarrow Y$ is proper.

Proof. The result is local, so we may assume X, Y, Z are Banach spaces. Now $L:=(\partial f / \partial x)\left(x_{0}, y_{0}\right)$ is left-Fredholm so $X_{1}=\operatorname{ker} L$ is finite dimensional and splits $X=X_{1} \oplus X_{2}$, and the restriction of L is an isomorphism from X_{2} onto $\operatorname{Im} L$, with a continuous inverse since $\operatorname{Im} L$ is closed. There exists $C_{0}>0$ so $\left|L x_{2}\right| \geq C_{0}\left|x_{2}\right|$ for all $x_{2} \in X_{2}$. Also, if $K=1+\left\|\partial f\left(x_{0}, y_{0}\right) / \partial y\right\|$, there is
a bounded neighbourhood W of $\left(x_{0}, y_{0}\right)$, so small that $\bar{W} \subset W_{0}$ and

$$
\begin{aligned}
\mid f(x, y)-f(u, & v)-L(x-u) \mid \\
& =\left|f(x, y)-f(u, v)-L(x-u) \pm \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)(y-v)\right| \\
& \leq \frac{C_{0}}{2}|x-u|+K|y-v|
\end{aligned}
$$

$(x, y),(u, v) \in W$. Now suppose $\left\{\left(x^{n}, y^{n}\right)\right\}_{n \geq 1}$ is a sequence in $f^{-1}(\xi) \cap \bar{W}$ such that $\left\{y^{n}\right\}$ converges. Then x_{1}^{n}, the component of x^{n} in X_{1}, is bounded in a finite-dimensional space and has a convergent subsequence, in fact, we suppose that $\left\{x_{1}^{n}\right\}$ converges.

$$
\begin{aligned}
C_{0}\left|x_{2}^{n}-x_{2}^{m}\right| & \leq\left|L\left(x_{2}^{n}-x_{2}^{m}\right)\right| \\
& \leq\left|L\left(x^{n}-x^{m}\right)\right|=\left|f\left(x^{n}, y^{n}\right)-f\left(x^{m}, y^{m}\right)-L\left(x^{n}-x^{m}\right)\right| \\
& \leq \frac{C_{0}}{2}\left|x^{n}-x^{m}\right|+K\left|y^{n}-y^{m}\right| \\
& \leq \frac{C_{0}}{2}\left(\left|x_{1}^{n}-x_{1}^{m}\right|+\left|x_{2}^{n}-x_{2}^{m}\right|\right)+K\left|y^{n}-y^{m}\right|
\end{aligned}
$$

so

$$
\left|x_{2}^{n}-x_{2}^{m}\right| \leq\left|x_{1}^{n}-x_{1}^{m}\right|+\frac{2 K}{C_{0}}\left|y^{n}-y^{m}\right|
$$

that converges for 0 as $n, m \rightarrow \infty$. Thus $\left\{x^{n}\right\}$ converges, which proves the lemma.

Remark 5.2. Next we show $f^{-1}(\xi)$ Lindelöf implies (3). Indeed, by Lemma 5.1, each point of $f^{-1}(\xi)$ has an open neighbourhood $W \subset \bar{W} \subset A$ such that $(x, y) \rightarrow y: f^{-1}(\xi) \cup \bar{W}$ is proper. By hypothesis, there is a countable subcover $\left\{f^{-1}(\xi) \cup \bar{W}\right\}_{j=1}^{\infty}$ so (3) holds with $M_{j}=\left\{f^{-1}(\xi)\right\}$.

Lemma 5.3. Let $k, m=1, X, Y, Z, A, f, \xi$ be given as in the Transversality Theorem, $\left(x_{0}, y_{0}\right) \in f^{-1}(\xi)$, and assume hypothesis (1) and $(2),(\alpha)$ or (β), hold at $\left(x_{0}, y_{0}\right)$. Then there exists open neighbourhoods U of x_{0}, V of y_{0}, and an open dense subset $V^{0} \subset V$, such that $\bar{U} \times \bar{V} \subset A$ and ξ is a regular value of $\left.f(\cdot, y)\right|_{U}$ whenever $y \in V^{0}$.

Proof. Since the result is local, near $\left(x_{0}, y_{0}\right) \in X \times Y$ and $\xi \in Z$, we may assume X, Y, Z are Banach spaces, $x_{0}=0, y_{0}=0, \xi=0, f$ is \mathcal{C}^{k} on a neighbourhood of $(0,0) \in X \times Y, f(x, y)=L x+M y+o(|x|+|y|), L$ is semi-Fredholm with index less then k, and either
$(\alpha) \operatorname{Im}(L, M)=\{L x+M y \mid$ for all $x, y\}=Z$ or
$(\beta) \operatorname{dim}\{\operatorname{Im}(L, M) / \operatorname{Im} L\}>\operatorname{dim} \operatorname{ker} L$.
Since $(\alpha) \Rightarrow(\beta)$ for negative index, it is enough to prove the result in case (α) when ind $L \geq 0$ and in case (β) when ind $L<0$.

Case (α). ind $L \geq 0, \operatorname{Im}(L, M)=Z . L$ is Fredholm so $X=X_{1} \oplus X_{2}$, $Z=Z_{1} \oplus Z_{2}, X_{1}=\operatorname{ker} L, Z_{2}=\operatorname{Im} L, L_{2}:=\left.L\right|_{X_{2}}: X_{2} \rightarrow Z_{2}$ is a isomorphism, and $\operatorname{ind} L=\operatorname{dim} X_{1}-\operatorname{dim} Z_{1}$. The complement Z_{1} to $\operatorname{Im} L$ is not unique and we may choose $Z_{1} \subset \operatorname{Im} M$. Then there is a subspace $Y_{1} \subset Y$ so $M_{1}:=\left.M\right|_{Y_{1}}: Y_{1} \rightarrow Z_{1}$ is an isomorphism; defining $Y_{2}=M^{-1} Z_{2}$, it follows that $Y=Y_{1} \oplus Y_{2}$. Writing f in terms of its components in these spaces,

$$
f\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\left(M_{1} y_{1}+g(x, y), L_{2} x_{2}+h(x, y)\right)
$$

where g, h are \mathcal{C}^{k} and $g, g_{x}, g_{y}, h, h_{x}$ all vanish at $(0,0)$, but perhaps $h_{y} \neq 0$. By the implicit function theorem, we may solve $f(x, y)=(0,0)$ for $y_{1}=\phi\left(x_{1}, y_{2}\right)$ and $x_{2}=\psi\left(x_{1}, y_{2}\right)$ with ϕ, ψ of class \mathcal{C}^{k} near $(0,0)$ since

$$
\begin{gathered}
D f_{x_{2}, y_{1}}(0,0): X_{2} \oplus Y_{1} \rightarrow Z_{1} \oplus Z_{2} \\
\left(\dot{x_{2}}, \dot{y_{1}}\right) \rightarrow\left(M_{1} \dot{y_{1}}, L_{2} \dot{x_{2}}+h_{y_{1}}(0,0) \dot{y_{1}}\right)
\end{gathered}
$$

is an isomorphism. In matrix form, $(\partial f / \partial x)(x, y)$ is

$$
\left(\begin{array}{cc}
g_{x_{1}} & g_{x_{2}} \\
h_{x_{1}} & L_{2}+h_{x_{2}}
\end{array}\right)=\left(\begin{array}{cc}
1 & p \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\Delta & 0 \\
0 & L_{2}+h_{x_{2}}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
q & 1
\end{array}\right)
$$

where $p: Z_{2} \rightarrow Z_{1}, q: X_{1} \rightarrow X_{2}$ and $\Delta: X_{1} \rightarrow Z_{1}$ are defined by $p=g_{x_{2}}\left(L_{2}+\right.$ $\left.h_{x_{2}}\right)^{-1}, q=g_{x_{2}}\left(L_{2}+h_{x_{2}}\right)^{-1}$ and $\Delta=g_{x_{1}}-g_{x_{2}}\left(L_{2}+h_{x_{2}}\right)^{-1} h_{x_{1}}$. Then $\partial f / \partial x$ is surjective if and only is Δ is surjective. Now, by the definition of ϕ and ψ, we have near $(0,0)$

$$
\begin{array}{r}
M_{1} \phi\left(x_{1}, y_{2}\right)+g\left(x_{1}, \psi\left(x_{1}, y_{2}\right), \phi\left(x_{1}, y_{2}\right), y_{2}\right)=0 \\
L_{2} \phi\left(x_{1}, y_{2}\right)+h\left(x_{1}, \psi\left(x_{1}, y_{2}\right), \phi\left(x_{1}, y_{2}\right), y_{2}\right)=0
\end{array}
$$

which implies

$$
\begin{aligned}
& M_{1} \phi_{x_{1}}+g_{x_{1}}+g_{x_{2}} \psi_{x_{1}}+g_{y_{1}} \phi_{x_{1}}=0, \\
& L_{2} \phi_{x_{1}}+h_{x_{1}}+h_{x_{2}} \psi_{x_{1}}+h_{y_{1}} \phi_{x_{1}}=0 .
\end{aligned}
$$

Now, by (5.2), $\psi_{x_{1}}=-\left(L_{2}+h_{x_{2}}\right)^{-1}\left[h_{x_{1}}+h_{y_{1}} \phi_{x_{1}}\right]$. Substitution in (5.1) gives

$$
\left\{M_{1}+g_{y_{1}}-g_{x_{2}}\left(L_{2}+h_{x_{2}}\right)^{-1} h_{y_{1}}\right\} \phi_{x_{1}}+\Delta=0
$$

and the coefficient of $\phi_{x_{1}}$ in equation above is an isomorphism when we are close to $(0,0)$.

Thus in a neighbourhood $\max \left\{\left|y_{1}\right|,\left|y_{2}\right|\right\}<\delta$ of $y=0$ in $Y, 0$ is regular value of $\left.f(\cdot, y)\right|_{\max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\}<\varepsilon}$, with $y=y_{1}+y_{2}$, if and only if y_{1} is a regular value of $\left.\phi\left(\cdot, y_{2}\right)\right|_{\left|x_{2}\right|<\varepsilon}$. Since $\phi\left(\cdot, y_{2}\right): X_{1} \rightarrow Y_{1}$ is \mathcal{C}^{k} near 0 and $k>\operatorname{dim} X_{1}-\operatorname{dim} Y_{1}$, Sard's theorem says, for every small y_{2}, there is a dense set of y_{1} such that 0 is a regular value of $f\left(\cdot, y_{1}+y_{2}\right)$ on $\left\{\left|x_{1}\right|<\varepsilon,\left|x_{2}\right|<\varepsilon\right\}$. This proves that V_{0} is dense.

Now, suppose that $V_{0} \subset Y$ is not open. Then there is $\left(x_{n}, y_{n}\right) \in X \times Y$, $y_{n} \rightarrow y_{0} \in V_{0} \subset Y$, with $f\left(x_{n}, y_{n}\right)=0$ and $\left(x_{n}, y_{n}\right)$ is a critical point of f. By Lemma 5.1, we can suppose that $\left(x_{n}, y_{n}\right) \rightarrow\left(x_{0}, y_{0}\right)$ with $x_{0} \in X$ and $f\left(x_{0}, y_{0}\right)=0$. Since $\left(x_{n}, y_{n}\right)$ is a critical point for all $n \in \mathbb{N}$, we have $\left(x_{0}, y_{0}\right)$ is a critical point, a contradiction. Thus V_{0} is open.

Case (β). ind $L<0, k=1, \operatorname{dim}\{\operatorname{Im}(L, M) / \operatorname{Im} L\}>\operatorname{dim} \operatorname{ker} L$. Let $n=\operatorname{dim} \operatorname{ker} L$. There exist $\left\{f_{1}, \ldots, f_{n+1}\right\}$ in $\operatorname{Im}(L, M)$ independent relative to $\operatorname{Im} L$, i.e. $\sum_{i=1}^{n+1} c_{i} f_{i} \in \operatorname{Im} L$ implies all $c_{i}=0$. Then $f_{i}=L x_{i}+M y_{i}$ where $\left\{y_{1}, \ldots, y_{n+1}\right\}$ are linearly independent in Y, a basis for subspace $Y_{1} \subset Y$ such that $M Y_{1} \cap \operatorname{Im} L=\{0\}$ and M is injective on Y_{1}. Let $Z_{1}=M Y_{1}$ and choose $Z_{2} \supset \operatorname{Im} L$ so that $Z=Z_{1} \oplus Z_{2}$. Let $Y_{2}=M^{-1} Z_{2}$; then $Y=Y_{1} \oplus Y_{2}$. Also let $X_{1}=\operatorname{ker} L, X=X_{1} \oplus X_{2}$, so $n=\operatorname{dim} X_{1}<\operatorname{dim} Z_{1}=\operatorname{dim} Y_{1}$.

Now f has the form

$$
f\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\left(M_{1} y_{1}+g(x, y), L_{2} x_{2}+h(x, y)\right)
$$

where $M_{1}=\left.M\right|_{Y_{1}}: Y_{1} \rightarrow Z_{1}$ is an isomorphism, and $L_{2}=\left.L\right|_{X_{2}}: X_{2} \rightarrow Z_{2}$ is injective with closed image. Further, g, h are \mathcal{C}^{1} and at $(0,0), g, g_{x}, g_{y}, h, h_{x}$ all vanish. By the implicit function theorem, we may solve $M_{1} y_{1}+g(x, y)=0$ for $y_{1}=\psi\left(x, y_{2}\right)$ a \mathcal{C}^{1} function with $\psi=0$ and $\psi_{x}=0$ at the origin.

Choose small $\delta>0$. Fix $y_{2} \in Y_{2},\left|y_{2}\right|<\delta$, and let

$$
S_{y_{2}}=\left\{x \in X| | x_{1}\left|\leq \delta,\left|x_{2}\right| \leq \delta, f\left(x_{1}, x_{2}, \psi\left(x, y_{2}\right), y_{2}\right)=0\right\}\right.
$$

Also let $P_{1}: X \rightarrow X_{1}$ be the projection on X_{1} and $\pi_{y_{2}}=\left.P_{1}\right|_{S_{y_{2}}}: S_{y_{2}} \rightarrow X_{1}$. If δ is small, $\pi_{y_{2}}$ is injective with Lipschitz inverse. Assuming this

$$
\psi\left(S_{y_{2}}, y_{2}\right)=\psi\left(\pi_{y_{2}}^{-1} \circ \pi_{y_{2}}\left(S_{y_{2}}\right), y_{2}\right) \subset Y_{1}
$$

is the Lipschitz image of a set in X_{1}, and $\operatorname{dim} X_{1}<\operatorname{dim} Y_{1}$. So $\psi\left(S_{y_{2}}, y_{2}\right)$ has measure zero in Y_{1}. Thus given any $\left|y_{1}\right|<\delta,\left|y_{2}\right|<\delta$, there exist $\widetilde{y_{1}}$ arbitrarily close to y_{1} but outside $\psi\left(S_{y_{2}}, y_{2}\right)$, hence $f\left(x_{1}, x_{2}, \widetilde{y_{1}}, y_{2}\right) \neq 0$ for all $\left|x_{1}\right|<\delta$, $\left|x_{2}\right|<\delta$. Openess follows from Lemma 5.1 as above, so it only remains to show $\pi_{y_{2}}$ has Lipschitz inverse.

Now $\left|L x_{2}\right| \geq c_{0}\left|x_{2}\right|$ for all $x_{2} \in X_{2}$ and some constant $c_{0}>0$. Since $\psi_{x}(0,0)=0$, for sufficiently small $\delta>0$ and $|x| \leq \delta,|\widetilde{x}| \leq \delta,\left|y_{2}\right| \leq \delta$

$$
\left|f\left(x, \psi\left(x, y_{2}\right), y_{2}\right)-f\left(\widetilde{x}, \psi\left(\widetilde{x}, y_{2}\right), y_{2}\right)-L(x-\widetilde{x})\right| \leq \frac{c_{0}}{2}|x-\widetilde{x}|
$$

If also $x, \widetilde{x} \in S_{y_{2}}$ then

$$
c_{0}\left|x_{2}-\widetilde{x_{2}}\right| \leq|L(x-\widetilde{x})| \leq \frac{c_{0}}{2}|x-\widetilde{x}| \leq \frac{c_{0}}{2}\left(\left|x_{1}-\widetilde{x_{1}}\right|+\left|x_{2}-\widetilde{x_{2}}\right|\right)
$$

so $\left|x_{2}-\widetilde{x_{2}}\right| \leq\left|x_{1}-\widetilde{x_{1}}\right|=\left|\pi_{y_{2}} x-\pi_{y_{2}} \widetilde{x_{2}}\right|$ implies $|x-\widetilde{x}| \leq 2\left|\pi_{y_{2}} x-\pi_{y_{2}} \widetilde{x}\right|$, which completes the proof.
5.1. Proof of the Transversality Theorem. Assuming the Lemma 5.3 and that $(x, y) \rightarrow y: f^{-1}(\xi) \rightarrow Y$ is proper, we prove

$$
Y_{\text {crit }}=\left\{y \in Y \mid \xi \text { is a critical value of } f(\cdot, y): A_{y} \rightarrow Z\right\}
$$

is closed and without interior.
Let $\left\{y_{n}\right\}_{n \geq 1}$ be a sequence in this set which converges in Y; for each n, there exist $x_{n} \in X$ so $\left(x_{n}, y_{n}\right) \in f^{-1}(\xi)$ and x_{n} is a critical point of $f\left(\cdot, y_{n}\right)$. By hypothesis, we may suppose $\left(x_{n}, y_{n}\right) \rightarrow(x, y)$, so $(x, y) \in f^{-1}(\xi)$. If $\partial f(x, y) / \partial x$ were onto, then so would be $(\partial f / \partial x)\left(x_{n}, y_{n}\right)$ for n large; hence x is critical point of $f(\cdot, y)$ and closeness is proved. It remains to show that for each $y \in Y$, there exists \widetilde{y} arbitrarily close to y such that ξ is a regular value of $f(\cdot, \widetilde{y})$.

Let $K_{y}=\{x \in X \mid f(x, y)=\xi\}$, by the properness assumption, this is a compact set. By Lemma 5.3, for each $x \in K_{y}$ there are open sets U_{x}, V_{x} neighbourhood of x and y respective and V_{x}^{0}, an open dense subset of V_{x}, such that $\overline{U_{x}} \times \overline{V_{x}} \subset A$ and $\left.f(\cdot, \widetilde{y})\right|_{U_{x}}$ has ξ as a regular value for all $\widetilde{y} \in V_{x}^{0}$. Choose a finite subcover $U_{x_{1}}, \ldots, U_{x_{N}}$ for K_{y} and let $\widetilde{U}=\bigcup_{i=1}^{N} U_{x_{i}}, \widetilde{V}=\bigcap_{i=1}^{N} V_{x_{i}}$ and $\widetilde{V^{0}}=\widetilde{V_{x_{i}}^{0}} \cdot \widetilde{V^{0}}$ is open and dense in $\widetilde{V}, \widetilde{V}$ and \widetilde{U} are open, $y \in \widetilde{V}, K_{y} \subset \widetilde{U}$, and ξ is a regular value of $f(\cdot, \widetilde{y})$ for all $\widetilde{y} \in \widetilde{V^{0}}$ sufficiently close to y. Otherwise there would exist $y_{n} \rightarrow y, y_{n} \in \widetilde{V^{0}}$, and critical points x_{n} of $f\left(\cdot, y_{n}\right)$ with $\left(x_{n}, y_{n}\right) \in f^{-1}(\xi)$, such that $\lim _{n \rightarrow \infty} x_{n}=x$ exists, then $(x, y) \in f^{-1}(\xi), x \in K_{y}$, and $x_{n} \in \widetilde{U}, y_{n} \in \widetilde{V^{0}}$ for n large, so x_{n} is not a critical point of $f\left(\cdot, y_{n}\right)$, a contradiction.

If Lemma 5.3 and (3) hold, the same argument shows

$$
\left\{y \in Y \mid \text { there is a critical point } x \text { of } f(\cdot, y) \text { with }(x, y) \in M_{j} \subset f^{-1}(\xi)\right\}
$$

is closed and nowhere dense for each $j \in \mathbb{N}$. Hence the union of these,

$$
\left\{y \in Y \mid \text { there is a critical point } x \text { of } f(\cdot, y) \text { with }(x, y) \in f^{-1}(\xi)\right\}
$$

is meager. This completes the first step of the demonstration of the theorem.
Now, we show the case $m>1$ of Transversality Theorem may be reduced to the case $m=1$, by change of variables. Suppose therefore $m>1, k=1$ and $(2)(\beta)$ holds and let $\widetilde{X}=X \times S^{m-1}, \widetilde{Y}=\mathcal{C}^{1}\left(S^{m-1}, Y\right), \widetilde{A}=\{(x, t, \widetilde{y}) \in \widetilde{X} \times \widetilde{Y} \mid$ $(x, \widetilde{y(t)}) \in A\}$ and $\widetilde{f}: \widetilde{A} \rightarrow Z:(x, t, \widetilde{y}) \rightarrow f(x, \widetilde{y(t)})$. Then \widetilde{f} is \mathcal{C}^{1} and the new problem satisfies the same hypothesis as the original problem, except that m is replaced by 1. If (3) holds for the original problem, it also holds for the new problem. If $f(x, y)=\xi$ and $y=\widetilde{y(t)}$, so $\widetilde{f}(x, t, \widetilde{y})=\xi$, we choose a maximal subset $\left\{\dot{t}_{1}, \ldots, \dot{t}_{q}\right\} \subset T_{t}\left(S^{m-1}\right)$ so $\left\{\left(\partial f \widetilde{y}^{\prime} / \partial y\right) \cdot \dot{t}_{i}\right\}_{i=1}^{q}$ are independent relative to $\operatorname{Im}(\partial f / \partial x)$. Then

$$
\begin{aligned}
\operatorname{dim} \operatorname{ker} \frac{\partial \widetilde{f}}{\partial(x, t)} & =\operatorname{dim} \operatorname{ker} \frac{\partial f}{\partial x}+\operatorname{dim} \operatorname{ker} \frac{\partial f}{\partial y} \widetilde{y}^{\prime}-\operatorname{dim}\left(\operatorname{Im} \frac{\partial f}{\partial x} \cap \operatorname{Im} \frac{\partial f}{\partial y} \widetilde{y}^{\prime}\right) \\
& =\operatorname{dim} \operatorname{ker} \frac{\partial f}{\partial x}+m-1-\widetilde{q}+\widetilde{q}-q=\operatorname{dim} \operatorname{ker} \frac{\partial f}{\partial x}+m-1-q
\end{aligned}
$$

where \widetilde{q} is the rank of $\partial f \widetilde{y}^{\prime} / \partial y<\infty$. Then we choose $\left\{\dot{y}_{1}, \ldots, \dot{y}_{p}\right\} \subset T_{y} Y$ so $\{\partial f \dot{y} / \partial y\}$ are independent relative to

$$
\operatorname{Im} \frac{\partial \widetilde{f}}{\partial(x, t)}=\operatorname{Im} \frac{\partial f}{\partial x}+\operatorname{Im} \frac{\partial f}{\partial y} \widetilde{y}^{\prime}(t)
$$

By $(2)(\beta)$, we may assume $p+q \geq m+\operatorname{dim} \operatorname{ker}(\partial f / \partial x)$, that is

$$
\operatorname{dim}\left\{\frac{\operatorname{Im} D \tilde{f}}{\operatorname{Im}(\partial \widetilde{f} / \partial(x, t))}\right\} \geq p \geq m-q+\operatorname{dim} \operatorname{ker} \frac{\partial f}{\partial x} \geq 1+\operatorname{dim} \operatorname{ker} \frac{\partial \tilde{f}}{\partial(x, t)}
$$

Thus, assuming the theorem is valid for $m=1$, we see

$$
\left\{\widetilde{y} \in \mathcal{C}^{1}\left(S^{m-1}, Y\right) \mid f(x, \widetilde{y}(t))=\xi \text { for some } x, t \text { with }(x, \widetilde{y}(t)) \in A\right\}
$$

is a meager set in $\mathcal{C}^{1}\left(S^{m-1}, Y\right)$, which means \mathcal{C}^{1}-codimen $\left\{y \in Y \mid \xi \in f\left(A_{y}, y\right)\right\}$ $>m-1$, the \mathcal{C}^{1}-codimension is $\geq m$ and so the codimension is $\geq m$, which completes the proof.

Acknowledgments. The authors wish to thank Professor K. Rybakowski for suggesting the problem and providing helpful remarks and Professor M. Pizzoti for useful discussions.

References

[1] R. Abraham and J. Robin, Transversal Mappings and Flows, W. A. Benjamin, 1967.
[2] M. C. Delfour and J. Zolésio, Velocity method and lagrangian formulation for the computation of the shape hessian, SIAM J. Control Optim. 29 (1991), 1414-1442.
[3] J. Hadamard, Mémoire sur le problème d'analyse relatif a l'equilibre des plaques élastiques encastrées, Ouvres de J. Hadamard, vol. II, 1968, pp. 515-641.
[4] D. B. Henry, Perturbation of the Boundary in Boundary Value Problems of PDEs, Unpublished notes, 1982.
[5] L. Hörmander, Linear partial differential operators., Springer-Verlag, Berlin, New York, 1980.
[6] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, Heidelberg, New York, 1980.
[7] A. M. Micheletti, Perturbazione dello spectro dell' operatore de Laplace in relazione ad una variazone del campo, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1972), 151169.
[8] J. W. Rayleigh, The Theory of Sound, Dover, 1945.
[9] J. C. Saut, R. Teman and G. S. Petrov, Generic properties of nonlinear boundary value problems, Comm. Partial Differential Equations (1979), 293-319.
[10] J. Simon, Differentiation with respect to the domain in boundary value problems, Numer. Funct. Anal. Optim. 2 (1980), 649-687.
[11] J. Sokolowski, Shape sensitivity analysis of boundary optimal control problems for parabolic systems, SIAM J. Control Optim. 26 (1988), 763-788.
[12] K. Uhlenbeck, Generic properties of eigenfunctions, Amer. J. Math. 98 (1976), 10591078.

Antônio Luiz Pereira
Departamento de Matemática
Instituto de Matemática e Estatística, USP
Rua do Matão, 1010
05508-900 São Paulo, BRAZIL
E-mail address: alpereir@ime.usp.br

Marcone Corrêa Pereira
Departamento de Matemática Aplicada
Instituto de Matemática e Estatística, USP
Rua do Matão, 1010
05508-900 São Paulo, BRAZIL
E-mail address: marcone@ime.usp.br

[^0]: 2000 Mathematics Subject Classification. Primary 35J25; Secondary 35B30, 58C40.
 Key words and phrases. Generic properties, boundary value problem, eigenfunction.
 During the preparation of this work the second author was supported by CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico.

