MOTION PLANNING ALGORITHMS FOR CONFIGURATION SPACES IN THE HIGHER DIMENSIONAL CASE

Ayşe Borat

Abstract

The aim of this paper is to give an explicit motion planning algorithm for configuration spaces in the higher dimensional case.

1. Introduction

The topological approach to the motion planning problem was introduced by Farber in [2] and [3]. A motion planning problem is a rule assigning a continuous path to given two configurations - initial point and desired final point of a robot. Farber introduced the notion of topological complexity which measures the discontinuity of any motion planner in a configuration space. In [6], Rudyak introduced higher topological complexity, the concept fully developed in [1]. Higher topological complexity is related to motion planning problem which assigns a continuous path (with n-legs) to given n configurations. More precisely, it can be understood as a motion planning algorithm when a robot travels from the initial point A_{1} to A_{2}, then from A_{2} to A_{3}, and this keeps going until it reaches at the desired final point A_{n}.

This paper is based on the work of Mas-Ku and Torres-Giese who gave an explicit motion planning algorithm for configuration spaces $F\left(\mathbb{R}^{2}, k\right)$ and $F\left(\mathbb{R}^{n}, k\right)$, in [5]. In the last section, we will consider the higher dimensional case

[^0]in the sense of Rudyak in [6], and give an explicit motion planning algorithm for this case.

2. Preliminaries

In this section, we will re-phrase the definitions and propositions for $F\left(\mathbb{R}^{n}, k\right)$ which are given in [5].

A vector $A=\left(a_{1}, \ldots, a_{l}\right)$ (where a_{i} is a positive integer for $i=1, \ldots, l$) which satisfies $\sum a_{i}=k$ is called a partition of k. Here, the number $|A|=l$ is called the number of levels of A.

Recall the reverse lexicographic order on $\mathbb{R}^{n}:\left(b_{1}, \ldots, b_{n}\right) \leq\left(c_{1}, \ldots, c_{n}\right)$ if there is an index $k \in\{1, \ldots, n\}$ such that $b_{i}=c_{i}$ for $k<i \leq n$ and $b_{k}<c_{k}$.

As stated in [5], if $x=\left(x_{1}, \ldots, x_{k}\right) \in F\left(\mathbb{R}^{2}, k\right)$, then there is a unique permutation $\sigma \in \Sigma_{k}$ such that $x_{\sigma(1)}<\ldots<x_{\sigma(k)}$. Such a permutation is denoted by σ_{x}. A similar argument can be stated for $F\left(\mathbb{R}^{n}, k\right)$, namely, if $x=$ $\left(x_{1}, \ldots, x_{k}\right) \in F\left(\mathbb{R}^{n}, k\right)$, then there is a unique permutation $\sigma \in \Sigma_{k}$ such that $x_{\sigma(1)}<\ldots<x_{\sigma(k)}$.

Let $\pi_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, given by $\pi_{n}\left(x_{1}, \ldots, x_{n}\right)=x_{n}$, be the projection to the n-th factor. For the configuration $x=\left(x_{1}, \ldots, x_{k}\right) \in F\left(\mathbb{R}^{n}, k\right)$ which is reverse lexicographically ordered, we can find positive integers a_{1}, \ldots, a_{l} as follows:

$$
\begin{aligned}
\pi_{n}\left(x_{1}\right) & =\ldots=\pi_{n}\left(x_{a_{1}}\right)<\pi_{n}\left(x_{a_{1}+1}\right) \\
\pi_{n}\left(x_{a_{1}+1}\right) & =\ldots=\pi_{n}\left(x_{a_{1}+a_{2}}\right)<\pi_{n}\left(x_{a_{1}+a_{2}+1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \pi_{n}\left(x_{a_{1}+\ldots+a_{l-2}+1}\right)=\ldots=\pi_{n}\left(x_{a_{1}+\ldots+a_{l-1}}\right)<\pi_{n}\left(x_{a_{1}+\ldots+a_{l-1}+1}\right), \\
& \pi_{n}\left(x_{a_{1}+\ldots+a_{l-1}+1}\right)=\ldots=\pi_{n}\left(x_{a_{1}+\ldots+a_{l}}\right)=\pi_{n}\left(x_{k}\right) .
\end{aligned}
$$

Since $a_{1}+\ldots+a_{l}=k,\left(a_{1}, \ldots, a_{l}\right)$ is a partition of k. This partition is denoted by A_{x}. If A is obtained from the configuration x as in the above paragraph, then x is called an A-configuration.

Let $x=\left(x_{1}, \ldots, x_{k}\right) \in F\left(\mathbb{R}^{n}, k\right)$ be an A-configuration. Then x has $|A|$ levels. Moreover, x_{i} and x_{j} are said to have the same level if $\pi_{n}\left(x_{i}\right)=\pi_{n}\left(x_{j}\right)$. Given a partition A of k and a permutation $\sigma \in \Sigma_{k}$, let

$$
F_{A, \sigma}=\left\{x=\left(x_{1}, \ldots, x_{k}\right) \in F\left(\mathbb{R}^{n}, k\right): \sigma_{x}=\sigma \text { and } x \text { is an } A \text {-configuration }\right\} .
$$

Define

$$
F_{A}=\bigcup_{\sigma \in \Sigma_{k}} F_{A, \sigma} .
$$

In fact, F_{A} denotes the set consisting of configurations x which produce A. Moreover, notice that $F\left(\mathbb{R}^{n}, k\right)=\bigcup_{A} F_{A}$.
3. m-dimensional motion planners on $F\left(\mathbb{R}^{n}, k\right)$

Definition 3.1 ([6, 3.1. Definition $])$. Let $J_{m}(m \in \mathbb{N})$ be the wedge sum of m closed intervals $[0,1]_{i}$ for $i=1, \ldots, m$, where the zeros 0_{i} are identified. Let X be a path-connected space and $X^{J_{m}}$ denote the set of paths with m-legs. Then there is a fibration $e_{m}: X^{J_{m}} \rightarrow X^{m}$ given by $e_{m}(f)=\left(f\left(1_{1}\right), \ldots, f\left(1_{m}\right)\right)$. The higher topological complexity $T C_{m}(X)$ is defined to be the Schwarz genus of e_{m}.

For $i \in\{m, m+1, \ldots, m k\}$, let us define

$$
F_{i}=\bigcup_{\left|A_{1}\right|+\ldots+\left|A_{m}\right|=i} F_{A_{1}} \times \ldots \times F_{A_{m}} .
$$

Notice that F_{i} 's are disjoint and they cover $F\left((R)^{n}, k\right)^{m}$. The ideas in Lemmas 13 and 14 in [5] tells that:
(1) F_{i} 's are ENR (Euclidean Neighbourhood Retract).
(2) The expression for F_{i} (as a union) in te formula in display above, is in fact a topological disjoint union, so that a function defined on F_{i} which is continuous on each of the products $F_{A_{1}} \times \ldots \times F_{A_{m}}$ must be necessarily be continuous on the whole of F_{i}.

Higher dimensional analog of motion planner can be defined as follows:
Definition 3.2. Let X be a path-connected space and let $e_{m}: X^{J_{m}} \rightarrow X^{m}$ be the fibration as in 3.1. A motion planner in X is given by finitely many subsets $U_{1}, \ldots, U_{n} \subset X^{m}$ and by continuous maps $s_{i}: U_{i} \rightarrow X^{J_{m}}$ where $i=1, \ldots, n$ such that the following is satisfied:
(a) Sets U_{i} are disjoint and they cover X^{m}.
(b) $e_{m} \circ s_{i}=\mathrm{id}_{U_{i}}$ for any $i=1, \ldots, n$.
(c) Each U_{i} is an ENR.

We will call such motion planners a m-dimensional motion planner, in order to indicate that it is related to the m-dimensional topological complexity.

A construction of motion planners. Let us denote the coordinates of \mathbb{R}^{n} by y_{1}, \ldots, y_{n} to avoid any confusion. Let $\pi_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the projection to the first factor. Let $\bar{p}:\left(\mathbb{R}^{n}\right)^{m k} \rightarrow \mathbb{R}$ be given by $\left(x_{1}, \ldots, x_{m k}\right) \mapsto \max _{1 \leq j \leq m k}\left\{\pi_{1}\left(x_{j}\right)\right\}$, where $x_{i} \in \mathbb{R}^{n}$ for $i=1, \ldots, m k$. The map \bar{p} is continuous [5 , Lemma 16].

Take $x=\left(x^{1}, \ldots, x^{m}\right) \in F_{A_{1}, 1} \times \ldots \times F_{A_{m}, 1} \subset F_{q} \subset F\left(\mathbb{R}^{n}, k\right)^{m}$, where $q=$ $\left|A_{1}\right|+\ldots+\left|A_{m}\right|$. Notice that each $x^{i} \in F\left(\mathbb{R}^{n}, k\right)$ can be written as $\left(x_{1}^{i}, \ldots, x_{k}^{i}\right)$, where $x_{j}^{i}=\left(x_{j 1}^{i}, \ldots, x_{j n}^{i}\right)$ and $x_{j s}^{i} \in \mathbb{R}$ for $s=1, \ldots, n$.

Define $p: F\left(\mathbb{R}^{n}, k\right)^{m} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
&\left(x^{1}, \ldots, x^{m}\right)=\left(\left(x_{1}^{1}, \ldots, x_{k}^{1}\right), \ldots,\left(x_{1}^{m}, \ldots, x_{k}^{m}\right)\right) \\
& \mapsto
\end{aligned} \max _{1 \leq j_{1}, \ldots, j_{m} \leq k}\left\{\pi_{1}\left(x_{j_{1}}^{1}\right), \ldots, \pi_{1}\left(x_{j_{m}}^{m}\right)\right\} .
$$

Since the map p is the restriction of the map \bar{p} to $F\left(\mathbb{R}^{n}, k\right)^{m}, p$ is continuous.
A_{i}-configuration $x^{i} \in F_{A_{i}, 1}$ is mapped to a configuration by means of straight lines to the line $L_{x^{i}}$ which is parallel to the y_{n}-axis and which intersects the y_{1} axis at the point $\left(p\left(x^{1}, \ldots, x^{m}\right)+i, 0, \ldots, 0\right)$. The set of these lines (paths) determines a path $Q_{x^{i}}$ in $F\left(\mathbb{R}^{n}, k\right)$.

Take a fixed configuration $x^{0} \in F_{A_{0}, 1}$ for a vector of positive integers A_{0} which lies on the y_{n}-axis. Let $\alpha\left(x^{0}, x^{i}\right)$ be the path from $Q_{x^{0}}$ to $Q_{x^{i}}$ that connects by means of straight lines. The path from x^{0} to x^{i} is given by

$$
Q_{x^{0}} \cdot \alpha\left(x^{0}, x^{i}\right) \cdot Q_{x^{i}}^{-1} .
$$

Since the path $Q_{x^{0}}$ is constant, it is the path $\alpha\left(x^{0}, x^{i}\right) \cdot Q_{x^{i}}^{-1}:[0,1]_{i} \rightarrow F\left(\mathbb{R}^{n}, k\right)$, where $[0,1]_{i}$ is a notation to emphasize that it is the interval $[0,1]$ corresponding to x^{i}. Here, we have m different paths. Let us consider the wedge sum of the images of these paths, namely, $\operatorname{Im}\left(\alpha\left(x^{0}, x^{1}\right) \cdot Q_{x^{1}}^{-1}\right) \vee \ldots \vee \operatorname{Im}\left(\alpha\left(x^{0}, x^{m}\right) \cdot Q_{x^{m}}^{-1}\right)$, where $\left(\alpha\left(x^{0}, x^{i}\right) \cdot Q_{x^{i}}^{-1}\right)\left(0_{i}\right)$ are identified for $i=1,2, \ldots, m$ and 0_{i} is the zero of the interval $[0,1]_{i}$. In fact, $\operatorname{Im}\left(\alpha\left(x^{0}, x^{1}\right) \cdot Q_{x^{1}}^{-1}\right) \vee \ldots \vee \operatorname{Im}\left(\alpha\left(x^{0}, x^{m}\right) \cdot Q_{x^{m}}^{-1}\right)$ is a path with m-legs in $F\left(\mathbb{R}^{n}, k\right)^{m}$. Let us denote the corresponding path (with m-legs) by $\beta_{x^{0}, \ldots, x^{m}}: J^{m} \rightarrow F\left(\mathbb{R}^{n}, k\right)$. Then, for a fixed A_{0}-configuration x^{0}, the motion planner $s_{A_{1}, \ldots, A_{m}}$ is determined by the formula

$$
\left(x^{1}, \ldots, x^{m}\right) \mapsto \beta_{x^{0}, \ldots, x^{m}}
$$

In the above calculation, we considered the case $F_{A_{1}, 1} \times \ldots \times F_{A_{m}, 1}$. Without loss of generality, it can be extended to the case $F_{A_{1}, \sigma_{1}} \times \ldots \times F_{A_{m}, \sigma_{m}}$.

Theorem 3.3. The collection of pairs $\left(F_{q}, s_{q}\right)$ (where s_{q} is given by means of motion planners on each $F_{A_{1}, \sigma_{1}} \times \ldots \times F_{A_{m}, \sigma_{m}} \subset F_{q}$ for $\left.q=\left|A_{1}\right|+\ldots+\left|A_{m}\right|\right)$ forms m-dimensional motion planning algorithm for $m \leq q \leq m k$. Consequently, $T C_{m}\left(F\left(\mathbb{R}^{n}, k\right)\right) \leq m(k-1)+1$.

In view of Theorem 1.3 in [4], the m-dimensional motion planner described in Theorem 3.3 is optimal when n is odd, while the motion planner is within 1 unit from being optimal when n is even.

Acknowledgements. The author thanks Jesus Gonzalez for having suggested this problem to the author, and for his comments during and after the preparation of this work.

References

[1] I. Basabe, J. Gonzalez, Y. Rudyak and D. Tamaki, Higher topological complexity and its symmetrization, Algebraic and Geometric Topology 14 (2014), 2103-2124.
[2] M. Farber, Instabilities of robot motion, Topology Appl. 140 (2004), 245-266.
[3] \qquad , Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), 211-221.
[4] J. Gonzalez and M. Grant, Sequential motion planning of non-colliding particles in Euclidean spaces, Proc. Amer. Math. Soc. 143 (2015), 4503-4512.
[5] H. Mas-Ku and E. Torres-Giese, Motion planning algorithms for configuration spaces, Bol. Soc. Mat. Mex., DOI 10.1007/s40590-014-0046-2.
[6] Yu. Rudyak, On higher analogs of topological complexity, Topology Appl. 157 (2010), 916-920; Erratum: Topology Appl. 157 (2010), p. 1118.

Ayşe Borat

Bursa Technical University
Faculty of Natural Sciences
Architecture and Engineering
Department of Mathematics
Bursa, TURKEY
E-mail address: ayse.borat@btu.edu.tr

[^0]: 2010 Mathematics Subject Classification. 55R80.
 Key words and phrases. Motion planning algorithm; configuration spaces.

