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EQUILIBRIA ON L-RETRACTS IN RIEMANNIAN MANIFOLDS

Seyedehsomayeh Hosseini — Mohamad R. Pouryayevali

Abstract. We introduce a class of subsets of Riemannian manifolds called

the L-retract. Next we consider a topological degree for set-valued upper

semicontinuous maps defined on open sets of compact L-retracts in Rie-
mannian manifolds. Then, we present a theorem on the existence of equi-

libria (or zeros) of an upper semicontinuous set-valued map with nonempty

closed convex values satisfying the tangency condition defined on a compact
L-retract in a Riemannian manifold.

1. Introduction

Let M be a Banach space and φ be a set- (or single) valued map from M

into the family of nonempty closed subsets of M and let S ⊂M . The existence

of a solution to the set-valued constrained equation 0 ∈ φ(x), x ∈ S, plays an

important role in nonlinear analysis. A point x ∈ S such that 0 ∈ φ(x) is called

an “equilibrium” which originates from the calculus of variations and control

problems. Ky Fan and F. Browder proved that given a compact convex set S

in a Banach space M , an upper semicontinuous set-valued map φ : S ⇒M with

closed convex values has an equilibrium provided it is inward (or tangent) in

the sense that, for each x ∈ S, φ(x) ∩ TS(x) 6= ∅ where TS(x) stands for the

tangent cone to S at x ∈ S defined in the sense of convex analysis; see [4], [5]

and [12]. This result has been generalized in several directions by many authors;
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see, e.g. [7], [8], [18]. In [3] the authors proved that if S ⊂ M is a compact L-

retract with the nontrivial Euler characteristic χ(S) 6= 0 and if φ : S ⇒M is an

upper semicontinuous set-valued map with closed convex values satisfying the

inwardness condition, then φ has an equilibrium. Here the inwardness condition

means

φ(x) ∩ TS(x) 6= ∅, for all x ∈ S,
where TS(x) stands for the Clarke tangent cone to S at x ∈ S. If M is a smooth

manifold and TM is its tangent bundle, then the existence of equilibria of a set-

(or single) valued map φ : S ⇒ TM such that φ(x) ⊂ TxM may also be studied.

In [16] we introduced a notion of Euler characteristic of an epi-Lipschitz subset S

of a complete Riemannian manifold M and proved some equilibria theorems for

this class of sets. We defined the Euler characteristic of S by using the Cellina–

Lasota degree of upper semicontinuous mappings with compact convex values.

In this paper we introduce a notion of L-retract in the setting of Riemannian

manifolds. We assume that S is an L-retract in a Riemannian manifold M ,

therefore S is an absolute neighbourhood retract. Then, a topological degree

for a set-valued upper semicontinuous map Φ: Ω ⇒ TM , where TM is the

tangent bundle of M and Ω is an open set in a compact L-retract S, is presented.

The presented topological degree also can be exploited to prove the existence

of equilibria of an upper semicontinuous set-valued map with nonempty closed

convex values satisfying the tangency condition defined on a compact L-retract

with nontrivial Euler characteristic. These results are motivated by [3], [9], [10]

and can be viewed as generalizations of the corresponding notions to the setting

of manifolds.

2. Preliminaries

In this paper, we use the standard notations and known results of Riemannian

manifolds, see, e.g. [11], [21]. Throughout this paper, M is a finite dimensional

Riemannian manifold. As usual we denote by B(x, δ) the open ball centered at

x with radius δ, by intN(clN) the interior (closure) of the set N . Also, let S be

a nonempty closed subset of a Riemannian manifold M , we define dS : M → R by

dS(x) := inf{d(x, s) : s ∈ S},

where d is the Riemannian distance on M . Moreover,

B(S, ε) := {x ∈M : dS(x) < ε}.

Recall that the set S in a Riemannian manifold M is called convex if every

two points p1, p2 ∈ S can be joined by a unique minimizing geodesic whose

image belongs to S. For the point x ∈ M , expx : Ux → M will stand for the

exponential function at x, where Ux is an open subset of TxM . Recall that expx
maps straight lines of the tangent space TxM passing through 0x ∈ TxM into
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geodesics of M passing through x. We will also use the parallel transport of

vectors along geodesics. Recall that, for a given curve γ : I → M , a number

t0 ∈ I, and a vector V0 ∈ Tγ(t0)M , there exists a unique parallel vector field V (t)

along γ(t) such that V (t0) = V0. Moreover, the map defined by V0 7→ V (t1)

is a linear isometry between the tangent spaces Tγ(t0)M and Tγ(t1)M , for each

t1 ∈ I. In the case when γ is a minimizing geodesic and γ(t0) = x, γ(t1) = y, we

will denote this map by Lxy, and we will call it the parallel transport from TxM

to TyM along the curve γ. Note that, Lxy is well defined when the minimizing

geodesic connecting x to y is unique. For example, the parallel transport Lxy is

well defined when x and y are contained in a convex neighbourhood. In what

follows, Lxy will be used wherever it is well defined.

Remark 2.1. Let M be a Riemannian manifold.

(a) An easy consequence of the definition of the parallel translation along

a curve as a solution to an ordinary linear differential equation, implies that the

map

C : TM → Tx0
M, C(x, ξ) = Lxx0

(ξ),

is continuous at (x0, ξ0), that is, if (xn, ξn)→ (x0, ξ0) in TM then Lxnx0
(ξn)→

Lx0x0
(ξ0) = ξ0, for every (x0, ξ0) ∈ TM ; see [1, Remark 6.11].

(b) By the continuity properties of the parallel transport and the geodesic,

see [2, Theorem 35], for fixed point z ∈ M and for each ε > 0, there exists

a number δ > 0 such that:

‖LxyLzx − Lzy‖ ≤ ε provided that d(x, y) < δ.

Recall that a real valued function f defined on a Riemannian manifold M

is said to satisfy the Lipschitz condition of rank k on a given subset S of M if

|f(x) − f(y)| ≤ kd(x, y) for every x, y ∈ S, where d is the Riemannian distance

on M . A function f is said to be Lipschitz near x ∈M if it satisfies the Lipschitz

condition of some rank on an open neighbourhood of x. A function f is said

to be locally Lipschitz on M if it is Lipschitz near x, for every x ∈ M . Also, a

set-valued map F : X ⇒ Y , where X,Y are topological spaces is said to be upper

semicontinuous at x if for every open neighbourhood U of F (x), there exists an

open neighbourhood V of x, such that

y ∈ V → F (y) ⊆ U.

Furthermore, a set-valued map F : X ⇒ Y , where X,Y are topological spaces,

is said to be lower semicontinuous at x if for every open neighbourhood U with

U ∩ F (x) 6= ∅, there exists an open neighbourhood V of x, such that

y ∈ V → F (y) ∩ U 6= ∅.

A set-valued map F : X ⇒ Y , where X,Y are topological spaces, is said to be

lower semicontinuous (upper semicontinuous) if F is lower semicontinuous (upper
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semicontinuous) at every point x ∈ X. Let us continue with the definition of

the Clarke generalized directional derivative for locally Lipschitz functions on

Riemannian manifolds; see [15], [17]. Suppose f : M → R is a locally Lipschitz

function on a Riemannian manifold M . Let φx : Ux → TxM be an exponential

chart at x. Given another point y ∈ Ux, consider σy,v(t) := φ−1
y (tw), a geodesic

passing through y with derivative w, where (φy, y) is an exponential chart around

y and d(φx ◦ φ−1
y )(0y)(w) = v. Then, the generalized directional derivative of f

at x ∈M in the direction v ∈ TxM , denoted by f◦(x; v), is defined as

f◦(x, v) = lim sup
y→x, t↓0

f(σy,v(t))− f(y)

t
.

We recall some results of [15] which are needed in this paper.

Theorem 2.2. Let M be a Riemannian manifold and x ∈M . Suppose that

f : M → R is Lipschitz of rank K on an open neighbourhood U of x. Then:

(a) for each y ∈ U the function v 7→ f◦(y; v) is finite, positive homogeneous,

and sub-additive on TyM , and satisfies

|f◦(y; v)| ≤ K‖v‖;

(b) f◦(y; v) is upper semicontinuous on TM |U and, as a function of v alone,

is Lipschitz of rank K on TyM , for each y ∈ U ;

(c) f◦(y;−v) = (−f)◦(y; v) for each y ∈ U and v ∈ TyM .

Let us present some definitions and properties of normal and tangent cones.

Definition 2.3. Let S be a nonempty closed subset of a Riemannian mani-

fold M , x ∈ S and (ϕ,U) be a chart of M at x. Then the (Clarke) tangent cone

to S at x, denoted by TS(x), is defined as follows:

TS(x) := dϕ(x)−1[Tϕ(S∩U)(ϕ(x))],

where Tϕ(S∩U)(ϕ(x)) is the tangent cone to ϕ(S ∩U) as a subset of Rn at ϕ(x).

Obviously, 0x ∈ TS(x) and TS(x) is closed and convex.

Theorem 2.4. Let S be a closed subset of a Riemannian manifold M , x ∈ S
and v ∈ TxM . The following assertions hold.

(a) If d◦S(x, v) = 0, then v ∈ TS(x).

(b) Conversely, if in addition M is complete and v ∈ TS(x), then

d◦S(x, v) = 0.

In the case of submanifolds of Rn, the tangent space and the normal space

are orthogonal to one another. In an analogous manner, for a closed subset S of

a Riemannian manifold, the normal cone to S at x, denoted NS(x), is defined

as the (negative) polar of the tangent cone TS(x), i.e.

NS(x) := TS(x)◦ := {ξ ∈ TxM∗ : 〈ξ, z〉 ≤ 0 for all z ∈ TS(x)}.
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3. Degree for set-valued tangent maps

In this section we first recall definitions of the Lefschetz number of a function

f : S → S defined on an absolute neighbourhood retract S, the Euler character-

istic of S and the fixed point index of a compact continuous function defined on

an open subset of S, where S is a subset of a metric space M . Then, we introduce

a notion of L-retract in the setting of Riemannian manifolds and present a notion

of topological degree for set-valued upper semicontinuous maps defined on open

subsets of L-retracts. Finally, we prove a theorem on the existence of equilib-

ria (or zeros) of an upper semicontinuous set-valued map with nonempty closed

convex values satisfying the tangency condition defined on a compact L-retract

in a Riemannian manifold.

A metric space S is an absolute neighbourhood retract (ANR) if, given a met-

ric space M , a closed subset A ⊂ M , and a continuous map f : A → S, f can

be extended over some neighbourhood of A in M . This is equivalent to say

that, S is an ANR if, whenever S is a closed subset of a metric space M , S is

a neighbourhood retract of M , i.e. there is an open subset U of M containing S

and a continuous map r : U → S such that r(x) = x for x ∈ S; see, e.g. [6], [22].

If S is a compact ANR, then it is homotopy dominated by a compact polyhe-

dron and hence for any cohomology theory H∗( · ;Q) with rational coefficients,

the graded vector space H∗(S;Q) is of finite type. This means for all q ≥ 0,

βq := dimQH
q(S,Q) < ∞, and for almost all q ≥ 0, Hq(S,Q) = 0. Hence, for

a given continuous map f : S → S, one can consider the well-defined Lefschetz

number λ(f):

λ(f) :=
∑
q≥0

(−1)qtr f∗q ∈ Q,

where f∗q : Hq(S;Q)→ Hq(S;Q) is the induced homomorphism and tr denotes

the trace. The universal coefficient theorem (see [22]) yields λ(f) ∈ Z and the

Euler characteristic of S is defined as

χ(S) :=
∑
q≥0

(−1)qβq(S) = λ(iS),

where iS is the identity map on S; see [6], [22] for the details.

Assume that V is an open subset of S, f : V → S is a compact continuous

function and its fixed point set is compact. Take an open set U0 in a normed

linear space E that r-dominates S; for the definition of r-domination see [13].

Let s : S → U0 and r : U0 → S be such that r ◦ s = 1S . Then, the fixed point

index of f , denoted by I(f, V ), is defined by

I(f, V ) := I(s ◦ f ◦ r, r−1(V )),

where I(s ◦ f ◦ r, r−1(V )) is the Leray–Schaulder index of s ◦ f ◦ r; see [13].
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Assume that V is an open subset of S, f : clV → S is compact and has all

its fixed points in V . Moreover, assume that the fixed point set of f is compact.

Then, the fixed point index i(f, V ) of f is given by

i(f, V ) = I(f |V , V ).

Now we introduce the class of L-retracts in Riemannian manifolds.

Definition 3.1. Let M be a Riemannian manifold and S ⊂ M . The set S

is said to be an L-retract if there are a neighbourhood U of S in M , a retraction

r : U → S (i.e. r(x) = x, x ∈ S) and a constant L > 0 such that

d(x, r(x)) ≤ LdS(x), for all x ∈ U.

Therefore if M is a Riemannian manifold and S is an L-retract, then S

equipped with a topology induced from M is an absolute neighbourhood re-

tract. Let us start with an example from [16]. Recall that a subset S of

a Riemannian manifold M is said to be epi-Lipschitz if at every point x ∈ S,

NS(x) ∩ (−NS(x)) = {0}.

Example 3.2. In [16] it is proved that any compact epi-Lipschitz subset of

a complete Riemannian manifold is an L-retract. Indeed, it is proved that if S is

a compact epi-Lipschitz subset of a complete Riemannian manifold M , then there

exists a locally Lipschitz retraction for S, i.e. there are an open neighbourhood

U of S and a retraction r : U → S which is locally Lipschitz. Hence, for each

x ∈ U , there exists ε(x) > 0 such that the restriction of r to the open ball

B(x, 2ε(x)) is Lipschitz with constant L(x) > 0. By the compactness of S, there

are x1, . . . , xk ∈ S such that S ⊆
k⋃
i=1

B(xi, ε(xi)).

Now set L := max{L(xi) : i = 1, . . . , k}, and V :=
k⋃
i=1

B(xi, ε(xi)). For

each x ∈ V , the Hopf–Rinow theorem implies that there exists y ∈ S such

that dS(x) = d(y, x). Moreover, there exists xi ∈ S such that x ∈ B(xi, ε(xi))

and d(x, y) ≤ d(x, xi) < ε(xi). Hence x, y ∈ B(xi, 2ε(xi)) and d(r(x), r(y)) ≤
L(xi)d(x, y). Therefore

d(r(x), x) ≤ d(x, y) + d(r(x), r(y)) ≤ (L+ 1)d(x, y).

Now we present a notion of topological degree for set-valued upper semi-

continuous maps defined on open subsets of L-retracts. Suppose that Ω is

a nonempty open set in a compact L-retact S ⊂M and Φ: Ω ⇒ TM is an upper

semicontinuous map such that Φ(x) ⊂ TxM , for all x ∈ Ω. The natural idea is to

approximate Φ by a continuous tangent vector field, i.e. f : Ω → TM such that

f(x) ∈ TS(x), for all x ∈ Ω. In the cases where S 3 x 7→ TS(x) is lower semi-

continuous, for instance, in epi-Lipschitz subsets of Riemannian manifolds, by

using the Michael selection one can approximate Φ by a continuous vector field.
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However, in many other cases the lack of lower semicontinuity of S 3 x 7→ TS(x)

makes it difficult to approximate Φ. Following [10], we overcome this difficulty

by means of the next theorem.

Theorem 3.3. Let M be a complete Riemannian manifold and ψ : M ⇒ TM

be a lower semicontinuous map with convex values such that for every x ∈ M ,

ψ(x) ⊂ TxM , and Φ: M ⇒ TM be an upper semicontinuous map with closed

convex values such that for every x ∈ M , Φ(x) ⊂ TxM and Φ(x) ∩ ψ(x) 6= ∅.
Then for every small δ > 0, there is a smooth vector field f : M → TM such

that for every x ∈M :

(a) There exists zx ∈ ψ(x) such that ‖zx − f(x)‖ < δ.

(b) There exist x ∈ B(x, δ) and yx ∈ Φ(x) such that ‖Lxx(yx)− f(x)‖ < δ.

Proof. By Remark 2.1, the map y 7→ Lyx(Φ(y)) is upper semicontinuous in

a neighbourhood of x. Hence, the following set is open:

U(x) :=

{
y ∈ B

(
x,
rx
n

)
: Lyx(Φ(y)) ⊆ Φ(x) +

δ

2
BTxM

}
,

where rx is the radius of a geodesic ball around x and rx/n ≤ δ. Assume

that V := {V } is an open star-refinement of the open cover U = {U(x)}x∈M .

For any x ∈ M , choose zx ∈ Φ(x) ∩ ψ(x), and consider the open cover τ :=

{TV (x)}V ∈V, x∈V of M , where TV (x) := {y ∈ V : Lyx(ψ(y)) ∩ B(zx, δ/2) 6= ∅}.
Note that TV (x) is open because of the lower semicontinuity of ψ. Let {λs}s∈S
be a locally finite partition of unity subordinated to τ . Then for each s ∈ S

there exist Vs ∈ V and xs ∈ Vs such that λs(x
′) = 0, for x′ /∈ TVs

(xs). We define

the smooth vector field f : M → TM as follows,

f(x) =
∑
s∈S

λs(x)Lxsx(zs), x ∈M,

where zs = zxs
. Moreover, for each x ∈ M and each s in the finite set S(x) :=

{s ∈ S : λs(x) 6= 0} there exists z′s ∈ ψ(x) such that ‖Lxxs
(z′s)− zs‖ < δ. Thus

due to the convexity of ψ(x), ∑
s∈S(x)

λs(x)z′s ∈ ψ(x).

Hence ∥∥∥∥ ∑
s∈S(x)

λs(x)z′s − f(x)

∥∥∥∥ ≤ ∑
s∈S(x)

λs(x)‖Lxxs(z′s)− zs‖ < δ,

and the proof of part (a) is complete.

In order to prove part (b), for each x ∈ M and each s ∈ S(x) we have x ∈
TVs

(xs) ⊂ Vs, where xs ∈ Vs. Since V is a star-refinement of U, there is x ∈M
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such that x, xs ∈ U(x). Therefore Lxsx(zs) ∈ Lxsx(Φ(xs)) ⊆ Φ(x) + δBTxM/2

and x ∈ B(x, δ). Set Mx := max
s∈S(x)

{‖zs‖}. Then Remark 2.1 implies that

‖LxxLxsx(zs)− Lxsx(zs)‖ <
δ

2Mx
Mx =

δ

2
.

The set Φ(x) + δBTxM/2 is convex and∑
s∈S(x)

λs(x)Lxsx(zs) ∈ Φ(x) +
δ

2
BTxM .

Hence there is yx ∈ Φ(x) such that∥∥∥∥ ∑
s∈S(x)

λs(x)Lxsx(zs)− yx
∥∥∥∥ < δ

2
.

Therefore ‖Lxx(yx)− f(x)‖ < δ, as required. �

Recall that the exponential map is defined on an open subset W of TM . De-

fine a new map F : W →M ×M by F (q, v) = (q, expq(v)). Along the same lines

as [19, Lemma 5.12] since the topology on TM is generated by product open sets

in local trivializations, one can deduce that for every p ∈M , there exists a com-

pact subset U(p,0) := {(q, v) : q ∈ Up, ‖v‖ ≤ δp} of TM containing (p, 0), where

Up is a compact neighbourhood containing p, such that F is a diffeomorphism

on U(p,0). Hence there is Cp > 0 such that for every (q, v), (q, w) ∈ U(p,0),

d(expq(v), expq(w)) ≤ Cp‖v − w‖.

Now let S be a compact subset of M . Then we may write S ⊆
n⋃
i=1

Upi , pi ∈ S

and set δ := min{δpi , i = 1, . . . , n}, C := max{Cpi : i = 1, . . . , n}. Hence for

every q ∈ S, there is pi ∈ S such that q ∈ Upi . Thus

d(expq(v), expq(w)) ≤ C‖v − w‖ for every v, w ∈ B(0q, δ) ⊆ TqM.

Remark 3.4. Suppose that Ω is a nonempty open set in a compact L-retact

S ⊂ M and Φ: Ω ⇒ TM is an upper semicontinuous map such that Φ(x) ⊂
TxM , for all x ∈ Ω. Since Φ is upper semicontinuous Z(Φ) = {x ∈ Ω : 0 ∈ Φ(x)}
is closed in Ω. Assume that Z(Φ) is compact, therefore there exists an open

relatively compact set V in S such that Z(Φ) ⊂ V ⊂ clV ⊂ Ω. Hence there is δ >

0 such that B(Z(Φ), δ) ⊂ V . Therefore, along the same lines as [10, Lemma 2.4],

there is ε0 > 0 such that for any x ∈ clV , if y ∈ B(x, ε0) and zy ∈ Φ(y) with

‖zy‖ < ε0, then x ∈ B(Z(Φ), δ) ⊂ V . In what follows r : U → S is a retraction for

S with the constant L and ε1 := ε0/max{(C + 1)(3L+ 4L2) + 1, (C + 1)L+ 1}.

In order to be able to define the degree of Φ: Ω ⇒ TM , we need the following

assumptions:

• Z(Φ) is compact.
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• Φ: Ω → TM is upper semicontinuous with compact convex values and

Φ(x) ∩ TS(x) 6= ∅ for all x ∈ Ω.

Note that by Theorem 2.2, it follows that the map ψ : S ⇒ TM defined by

ψ(x) := {v ∈ TxM : d◦S(x, v) < ε},

has convex values with an open graph, and hence it is lower semicontinuous.

Theorem 2.4 implies that TS(x) ⊆ ψ(x), so if Φ(x) ∩ TS(x) 6= ∅, then ψ(x) ∩
Φ(x) 6= ∅, for every x ∈ S. It follows from Theorem 3.3 that there is a vector

field f such that the following hold:

(a) There exists zx ∈ ψ(x) such that ‖zx − f(x)‖ < ε.

(b) There exist x ∈ B(x, ε) and yx ∈ Φ(x) such that ‖Lxx(yx)− f(x)‖ < ε.

We are now ready to prove our next lemma.

Lemma 3.5. Suppose that S is a compact L-retract in a complete Riemannian

manifold M and Ω is a nonempty open set in S. Let Φ: Ω ⇒ TM be an upper

semicontinuous map with convex compact values such that Φ(x) ⊂ TxM , for all

x ∈ Ω. Then there exists ε2 ∈ (0, ε1] such that for any ε ∈ (0, ε2] and any

two ε-approximations f0, f1 of Φ and λ ∈ [0, 1], fλ : clV → TM defined by

fλ(x) = (1− λ)f0(x) + λf1(x) is an ε1-approximation of Φ.

Proof. Let x ∈ clV be arbitrary. Since y 7→ Lyx(Φ(y)) is upper semi-

continuous on a neighbourhood of x, there exists ε′ > 0 such that for every

y ∈ B(x, ε′), Lyx(Φ(y)) ⊆ Φ(x) + ε1BTxM/4. Now set ε2 ≤ min{ε′/2, ε1/2} and

ε ∈ (0, ε2]. Let f0, f1 be ε-approximations of Φ, i.e. there exist x′, x′′ ∈ B(x, ε)

and yx′ ∈ Φ(x′), yx′′ ∈ Φ(x′′) such that

‖f0(x)− Lx′x(yx′)‖ < ε, ‖f1(x)− Lx′′x(yx′′)‖ < ε.

The upper semicontinuity of y 7→ Lyx(Φ(y)) implies that

Lx′x(Φ(x′)) ⊆ Φ(x) +
ε1

4
BTxM and Lx′′x(Φ(x′′)) ⊆ Φ(x) +

ε1

4
BTxM .

Hence, there exist zx, wx ∈ Φ(x) such that

‖zx − Lx′x(yx′)‖ < ε1

4
, ‖wx − Lx′′x(yx′′)‖ < ε1

4
.

Since Φ has convex values, it follows that (1− λ)wx + λzx ∈ Φ(x) and

‖(1− λ)f0(x) + λf1(x)− ((1− λ)zx + λwx)‖

≤ (1− λ)‖f0(x)− Lx′x(yx′)‖+ λ‖f1(x)− Lx′′x(yx′′)‖

+ (1− λ)‖zx − Lx′x(yx′)‖+ λ‖wx − Lx′′x(yx′′)‖ ≤ ε+
ε1

2
≤ ε1,

as required. �
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Theorem 3.6. Let 0 < ε ≤ ε1, and f : clV × [0, 1] → TM be a continuous

function such that for any λ ∈ [0, 1], fλ( · ) = f( · , λ) is an ε-approximation of Φ.

Then there is η > 0 such that for all t ∈ (0, η), x ∈ clV and λ ∈ [0, 1]:

(a) There is yx ∈ B(fλ(x), ε) such that dS(expx(tyx)) < tε.

(b) expx(tfλ(x)) ∈ U .

(c) If x = r(expx(tfλ(x))), then x ∈ B(Z(Φ), δ) ⊂ V , where δ > 0 is defined

in Remark 3.4.

Proof. (a) Arguing by contradiction, suppose that for any n ∈ N, there exist

tn ∈ (0, 1/n) and xn ∈ clV and λn ∈ [0, 1] such that if yxn
∈ B(fλn

(xn), ε), then

dS(expxn
(tnyxn

)) ≥ tnε. Since clV and [0, 1] are compact, there are x ∈ clV ,

λ ∈ [0, 1] such that xn → x and λn → λ. Note that fλ is an ε-approximation

of Φ. Hence there exists yx ∈ B(fλ(x), ε) such that d◦S(x, yx) < ε. We choose

wn from the definition of generalized directional derivative such that

d(exp−1
x ◦ expxn

)(0xn
)(wn) = yx.

For large n, wn ∈ B(fλn
(xn), ε), hence tnε > dS(expxn

(tnwn)) ≥ tnε, a contra-

diction.

(b) For every x ∈ clV , let B(x, rx) be a geodesic ball around x. By the

compactness of clV , clV ⊆
n⋃
i=1

B(xi, ri).

Now define the continuous map g : B(xi, ri) ∩ clV → Txi
M by g(x) =

Lxxi
(fλ(x)). Hence there exists Mi such that ‖Lxxi

(fλ(x))‖
x∈B(xi,ri)∩clV

≤Mi.

Set M0 := max{Mi : i = 1, . . . , n}. For every x ∈ clV , there exists xi such that

x ∈ B(xi, ri) and ‖fλ(x)‖ = ‖Lxxi
(fλ(x))‖ ≤ M0. Note that t‖fλ(x)‖ → 0 as

t→ 0. Therefore

expx(tfλ(x))→ x ∈ U.

(c) If x ∈ clV and r(expx(tfλ(x))) = x, then (i) implies that there exists

yx ∈ B(fλ(x), ε) such that

‖fλ(x)‖ = t−1d(expx(tfλ(x)), x)

= t−1d(expx(tfλ(x)), r(expx(tfλ(x)))) ≤ t−1LdS(expx(tfλ(x)))

≤ t−1LdS(expx(tyx)) + t−1Ld(expx(tyx), expx(tfλ(x)))

≤ t−1LdS(expx(tyx)) + LC‖yx − fλ(x)‖ ≤ (C + 1)Lε.

Note that η can be chosen as tfλ(x), tyx ∈ B(0, δ), where δ is such that expx is C-

Lipschitz on B(0, δ). On the other hand, there exist x′ ∈ B(x, ε) and yx′ ∈ Φ(x′)

such that ‖fλ(x)− Lx′x(yx′)‖ < ε. Hence x ∈ B(Z(Φ), δ). �

Take ε ∈ (0, ε1) and let f : clV → TM be an arbitrary ε-approximation of Φ.

By Theorem 3.6, for t ∈ (0, η), the single valued map gεt : clV → S defined by

gεt (x) := r(expx(tf(x)) is well defined.
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Now we define

(3.1) deg(Φ,Ω) := lim
ε, t→0+

i(gεt , V ).

Along the same lines as [10, Lemmas 2.7 and 2.8], for 0 < t1 < t2 < η,

one has i(gεt1 , V ) = i(gεt2 , V ). Moreover, if f0 and f1 are ε-approximations of

Φ, then for all 0 < t < η, i(g0, V ) = i(g1, V ), where gi : clV → S are defined

by gi(x) := r(expx(tfi(x))), for i = 0, 1. This definition does not depend on

the choice of ε-approximation and stabilizes when 0 < t < η. Moreover, it does

not depend on the choice of r. Indeed, suppose that f is an ε-approximation

of Φ, g(x) := r(expx(tf(x))) and g(x)′ := r′(expx(tf(x))), where t ∈ (0, η),

x ∈ clV . For x ∈ clV , assume that γx : [0, 1] → S is a geodesic connecting

r(expx(tf(x))) and r′(expx(tf(x))). Since M is complete, for λ ∈ [0, 1], there

exists v ∈ Tg(x)M such that γx(λ) := expg(x)(λv) connects g(x) and g′(x).

Without loss of generality we can suppose that γx(λ) ∈ U , λ ∈ [0, 1], because

dS(γx(λ)) ≤ dS(expx(tf(x))) + d(expg(x)(λv), expx(tf(x)))

≤ dS(expx(tf(x))) + d(expg(x)(λv), g(x)) + d(expx(tf(x)), g(x))

≤ dS(expx(tf(x))) + λd(g(x), g′(x)) + LdS(expx(tf(x)))

≤ dS(expx(tf(x))) + λd(g(x), expx(tf(x)))

+ λd(g′(x), expx(tf(x))) + LdS(expx(tf(x)))

≤ (1 + 3L)dS(expx(tf(x)))≤ (1 + 3L)d(x, expx(tf(x)))

= (1 + 3L)t‖f(x)‖ → 0, as t→ 0.

Now let h(x, λ) := r(γx(λ)), x ∈ clV , λ ∈ [0, 1]. If x = h(x, λ), for x ∈ clV ,

λ ∈ [0, 1], then

‖f(x)‖ = t−1d(h(x, λ), expx(tf(x)))

≤ t−1d(expx(tf(x)), γx(λ)) + t−1d(h(x, λ)γx(λ))

≤ t−1d(expx(tf(x)), r(expx(tf(x))))

+ t−1d(r(expx(tf(x))), γx(λ)) + t−1d(h(x, λ), γx(λ))

≤ t−1d(expx(tf(x)), r(expx(tf(x))))

+ λt−1d(g′(x), g(x)) + t−1d(h(x, λ), γx(λ))

≤ t−1d(expx(tf(x)), r(expx(tf(x)))) + t−1λd(expx(tf(x)), g(x))

+ t−1λd(expx(tf(x)), g′(x)) + t−1d(h(x, λ), γx(λ))

≤ t−13LdS(expx(tf(x))) + t−1LdS(γx(λ))

≤ t−1(4L+ 3L2)dS(expx(tf(x))).
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By Theorem 3.6, there is yx ∈ B(f(x), ε) such that

t−1(3L2 + 4L)dS(expx(tf(x)))

≤ t−1(3L2 + 4L)(dS(expx(tyx) + d(expx(tf(x)), expx(tyx))))

≤ t−1(3L2 + 4L)dS(expx(tyx)) + (3L2 + 4L)C‖f(x)− yx‖

≤ (3L2 + 4L)(C + 1)ε.

Thus one can deduce that x ∈ B(Z(Φ), δ) and h provides a homotopy between

g and g′.

Theorem 3.7. The degree defined by (3.1) has the following properties:

(a) (Existence) If deg(Φ,Ω) 6= 0, then Z(Φ) 6= ∅.
(b) (Additivity) If Ω1,Ω2 ⊂ Ω are open in S and Z(Φ) ⊂ (Ω1∪Ω2)\(Ω1∩Ω2),

then

deg(Φ,Ω) = deg(Φ|Ω1
,Ω1) + deg(Φ|Ω1

,Ω1).

(c) (Normalization) deg(Φ, S) = χ(S).

(d) (Homotopy invariance) Assume that Φ0,Φ1 : Ω ⇒ TM are homotopic

in the sense that there is an upper semicontinuous map Φ: Ω ⇒ TM

with compact convex values such that Φ( · , i) = Φi, i = 0, 1, for all

x ∈ Ω and λ ∈ [0, 1], Φ(x, λ) ∈ TxM and Φ(x, λ) ∩ TS(x) 6= ∅ and

{x ∈ Ω : x ∈ Φ(x, λ) for some λ ∈ [0, 1]} is compact.

Proof. We only need to prove the first property, because other statements

can be proved along the same lines as Proposition 2.10 in [10]. To prove the first

property; assume that deg(Φ,Ω) 6= 0, then for t, ε small enough, i(gεt , V ) 6= 0.

Therefore, there is x ∈ clV such that x = r(expx(tf(x))). Assume that yx ∈
B(f(x), ε) such that dS(expx(tyx)) < tε, then

‖f(x)‖ = t−1d(expx(tf(x)), x)

= t−1d(expx(tfλ(x)), r(expx(tf(x))))

≤ t−1LdS(expx(tf(x)))

≤ t−1LdS(expx(tyx)) + t−1Ld(expx(tyx), expx(tf(x)))

≤ t−1LdS(expx(tyx)) + LC‖yx − f(x)‖ ≤ (C + 1)Lε.

Using the compactness of clV and the upper semicontinuity of Φ, we have

Z(Φ) 6= ∅. �

It is now obvious by the existence and normalization properties of the degree

that if S is a compact L-retract and χ(S) is nontrivial, then Φ has an equilibrium.

Theorem 3.8. Let S be a compact L-retract subset of a complete Riemannian

manifold M with nontrivial Euler characteristic. Suppose that Φ: S ⇒ TM is
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an upper semicontinuous map with compact convex values such that

Φ(x) ⊂ TxM, Φ(x) ∩ TS(x) 6= ∅ for all x ∈ S.

Then Φ has an equilibrium.

Acknowledgments. We would like to thank the referee for his/her useful

comments which helped us improve the exposition.

References
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