POSITIVE SOLUTIONS FOR PARAMETRIC DIRICHLET PROBLEMS
 WITH INDEFINITE POTENTIAL AND SUPERDIFFUSIVE REACTION

Sergiu Aizicovici - Nikolaos S. Papageorgiou - Vasile Staicu

Abstract

We consider a parametric semilinear Dirichlet problem driven by the Laplacian plus an indefinite unbounded potential and with a reaction of superdifissive type. Using variational and truncation techniques, we show that there exists a critical parameter value $\lambda_{*}>0$ such that for all $\lambda>\lambda_{*}$ the problem has at least two positive solutions, for $\lambda=\lambda_{*}$ the problem has at least one positive solution, and no positive solutions exist when $\lambda \in\left(0, \lambda_{*}\right)$. Also, we show that for $\lambda \geq \lambda_{*}$ the problem has a smallest positive solution.

1. Introduction

Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain with a C^{2}-boundary $\partial \Omega$. In this paper we study the following parametric Dirichlet problem:

$$
\left\{\begin{array}{l}
-\triangle u(z)+\beta(z) u(z)=\lambda u(z)^{q-1}-f(z, u(z)) \quad \text { in } \Omega, \\
\left.u\right|_{\partial \Omega}=0, u>0, \lambda>0,2<q<2^{*},
\end{array}\right.
$$

where

$$
2^{*}= \begin{cases}2 N /(N-2) & \text { if } N \geq 3 \tag{1.1}\\ +\infty & \text { if } N \in\{1,2\}\end{cases}
$$

[^0]Here $\beta \in L^{s}(\Omega)$, with $s>N$, and it may change sign. Also, $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory perturbation (i.e. for all $x \in \mathbb{R} z \mapsto f(z, x)$ is measurable and for almost all $z \in \Omega, x \mapsto f(z, x)$ is continuous) which has a ($q-1$)-superlinear growth near $+\infty$. So, the reaction of $\left(\mathrm{P}_{\lambda}\right)$ exhibits a superdiffusive kind of behavior.

Recall that in superdiffusive logistic equations, the reaction has the form $\lambda x^{q-1}-x^{r-1}$ with $2<q<r<2^{*}$. We show that there is a critical value $\lambda_{*}>0$ of the parameter such that for $\lambda>\lambda_{*}$ problem $\left(\mathrm{P}_{\lambda}\right)$ has at least two positive smooth solutions, for $\lambda=\lambda_{*}$ problem $\left(\mathrm{P}_{\lambda}\right)$ has at least one positive smooth solution, and for $\lambda \in\left(0, \lambda_{*}\right)$ no positive smooth solutions exist.

Positive solutions for parametric semilinear Dirichlet problems with $\beta \geq 0$ and more restrictive conditions on the reaction were obtained by Amann [2], Dancer [4], Lin [13], Ouang-Shi [15] and Rabinowitz [17]. To the best of our knowledge, no such results exist for problems with indefinite potential and general superdiffusive reaction. Recently, Gasinski-Papageorgiou [9] and KyritsiPapageorgiou [12] studied nonparametric semilinear problems with indefinite potential, either with double resonance (see [9]), or with superlinear reaction (see [12]). Finally, we mention the recent work of Gasinski and Papageorgiou [10] on bifurcation type results for different types of p-Laplacian equations.

Our approach is variational, based on critical point theory coupled with suitable truncation techniques.

2. Mathematical preliminaries and hypotheses

Throughout this paper, by $\|\cdot\|_{p}, 1 \leq p \leq \infty$, we denote the norm of $L^{p}(\Omega)$, or $L^{p}\left(\Omega, \mathbb{R}^{N}\right)$ and by $\|\cdot\|$ we denote the norm of the Sobolev space $H_{0}^{1}(\Omega)$ defined by

$$
\|u\|=\|D u\|_{2} \quad \text { for all } u \in H_{0}^{1}(\Omega)
$$

Note that if $2<q<2^{*}$ (see (1.1)), then $H_{0}^{1}(\Omega) \hookrightarrow L^{q}(\Omega)$, with compact embedding. Also, if $x \in \mathbb{R}$, then $x^{ \pm}=\max \{ \pm x, 0\}$. For every $u \in H_{0}^{1}(\Omega)$ we set $u^{ \pm}(\cdot)=u(\cdot)^{ \pm}$. We know that

$$
u^{ \pm} \in H_{0}^{1}(\Omega), \quad|u|=u^{+}+u^{-}, \quad u=u^{+}-u^{-}
$$

(see [8]). If $h: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a measurable function, then the corresponding Nemytskiĭ map N_{h} is defined by

$$
N_{h}(u)(\cdot)=h(\cdot, u(\cdot)) \quad \text { for all } u \in H_{0}^{1}(\Omega)
$$

By $|\cdot|_{N}$ we will denote the Lebesgue measure on \mathbb{R}^{N}.
Suppose that $(X,\|\cdot\|)$ is a Banach space and X^{*} is its topological dual. By $\langle\cdot, \cdot\rangle$ we denote the duality brackets for the pair $\left(X^{*}, X\right)$, and we will use the symbol " \xrightarrow{w} " to designate weak convergence.

We say that the Banach space X has the Kadec-Klee property if the following is true:

$$
\left[x_{n} \xrightarrow{w} x \text { and }\left\|x_{n}\right\| \rightarrow\|x\|\right] \Rightarrow\left[x_{n} \rightarrow x\right] .
$$

A Hilbert space (and more generally, a locally uniformly convex Banach space) has the Kadec-Klee property (see Gasinski and Papageorgiou [8, p. 911]).

Given $\varphi \in C^{1}(X)$, we say that φ satisfies the Palais-Smale condition (PScondition, for short), if the following is true:
every sequence $\left\{x_{n}\right\}_{n \geq 1} \subseteq X$ such that $\left\{\varphi\left(x_{n}\right)\right\}_{n \geq 1} \subseteq \mathbb{R}$ is bounded and $\varphi^{\prime}\left(x_{n}\right) \rightarrow 0$ in X^{*} as $n \rightarrow \infty$ admits a strongly convergent subsequence.

Using this compactness-type condition, we have the following minimax theorem, known in the literature as the "mountain pass theorem":

Theorem 2.1. If $\varphi \in C^{1}(X)$ satisfies the PS-condition, $x_{0}, x_{1} \in X$ and $\rho>0$ are such that $\left\|x_{1}-x_{0}\right\|>\rho$,

$$
\max \left\{\varphi\left(x_{0}\right), \varphi\left(x_{1}\right)\right\}<\inf \left\{\varphi(x):\left\|x-x_{0}\right\|=\rho\right\}=: \eta_{\rho}
$$

and $c=\inf _{\gamma \in \Gamma} \inf _{t \in[0,1]}$, where $\Gamma=\left\{\gamma \in C([0,1], X): \gamma(0)=x_{0}, \gamma(1)=x_{1}\right\}$, then $c \geq \eta_{\rho}$ and c is a critical value of φ (i.e. there exists $x^{*} \in X$ such that $\varphi^{\prime}\left(x^{*}\right)=0$ and $\varphi\left(x^{*}\right)=c$).

In the study of problem $\left(\mathrm{P}_{\lambda}\right)$, we will use the Sobolev space $H_{0}^{1}(\Omega)$ and the ordered Banach space $C_{0}^{1}(\bar{\Omega})$. The positive cone of the latter is

$$
C_{+}=\left\{u \in C_{0}^{1}(\bar{\Omega}): u(z) \geq 0 \text { for all } z \in \bar{\Omega}\right\} .
$$

This cone has a nonempty interior, given by

$$
\operatorname{int} C_{+}=\left\{u \in C_{+}: u(z)>0 \text { for all } z \in \Omega, \frac{\partial u}{\partial n}(z)<0 \text { for all } z \in \partial \Omega\right\}
$$

where $n(\cdot)$ denotes the outward unit normal on $\partial \Omega$.
We consider the C^{1}-functional $\sigma: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\sigma(u)=\|D u\|_{2}^{2}+\int_{\Omega} \beta u^{2} d z \quad \text { for all } u \in H_{0}^{1}(\Omega)
$$

We assume that $\beta \in L^{s}(\Omega)$ with $s>N / 2$. Let $s^{\prime}>1$ denote the conjugate exponent of s, i.e. $1 / s+1 / s=1$. We have

$$
\begin{equation*}
2 s^{\prime}=2 \frac{s}{s-1}<2^{*} \tag{2.1}
\end{equation*}
$$

(see (1.1)). Then, by virtue of the Sobolev embedding theorem, we have $H_{0}^{1}(\Omega) \hookrightarrow$ $L^{2 s^{\prime}}(\Omega)$ and the embedding is compact. Using Hölder's inequality, we have

$$
\begin{equation*}
\left|\int_{\Omega} \beta u^{2} d z\right| \leq\|\beta\|_{s}\|u\|_{2 s}^{2} \tag{2.2}
\end{equation*}
$$

Since $2<2 s^{\prime}<2^{*}($ see $(2.1))$, we have $H_{0}^{1}(\Omega) \hookrightarrow L^{2 s^{\prime}}(\Omega) \hookrightarrow L^{2}(\Omega)$, and, as we already mentioned, the first embedding is compact. Invoking Ehrling's inequality (see, for example, Papageorgiou and Kyritsi [16, p. 698]), given $\xi j>0$, we can find $C(\xi j)>0$ such that

$$
\begin{equation*}
\|u\|_{2 s}^{2}, \leq \varepsilon\|u\|^{2}+C(\varepsilon)\|u\|_{2}^{2} \quad \text { for all } u \in H_{0}^{1}(\Omega) . \tag{2.3}
\end{equation*}
$$

From (2.2) and (2.3), we obtain

$$
\|D u\|_{2}^{2}-\int_{\Omega} \beta u^{2} d z \leq\|D u\|_{2}^{2}+\varepsilon\|\beta\|_{s}\|u\|^{2}+C(\xi j)\|\beta\|_{s}\|u\|_{2}^{2},
$$

hence $\left(1-\varepsilon\|\beta\|_{s}\right)\|u\|^{2} \leq \sigma(u)+C(\varepsilon)\|\beta\|_{s}\|u\|_{2}^{2}$. Choosing $\varepsilon \in\left(0,1 /\|\beta\|_{s}\right)$, we have

$$
\begin{equation*}
\|u\|^{2} \leq C_{1}\left(\sigma(u)+\widehat{C}\|u\|_{2}^{2}\right) \quad \text { for some } C_{1}, \widehat{C}>0 \text { and all } u \in H_{0}^{1}(\Omega) . \tag{2.4}
\end{equation*}
$$

Consider the continuous bilinear form $\alpha: H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\alpha(u, y)=C_{1}\left[\langle A(u), y\rangle+\int_{\Omega} \beta u y d z\right] \text { for all } u, y \in H_{0}^{1}(\Omega),
$$

where $A \in \mathcal{L}\left(H_{0}^{1}(\Omega), H^{-1}(\Omega)\right)$ is defined by

$$
\langle A(u), y\rangle=\int_{\Omega}(D u, D y)_{\mathbb{R}^{N}} \quad \text { for all } u, y \in H_{0}^{1}(\Omega)
$$

From (2.4) we have

$$
\begin{equation*}
\alpha(u, u)+C_{1} \widehat{C}\|u\|_{2}^{2} \geq\|u\|^{2} \quad \text { for all } u \in H_{0}^{1}(\Omega) . \tag{2.5}
\end{equation*}
$$

From (2.5) and Corollary $7 D$ of Showalter (see [18, p. 78]), it follows that the linear differential operator $u \mapsto-\triangle u+\beta u, u \in H_{0}^{1}(\Omega)$, has a spectrum, consisting of a sequence of distinct eigenvalues $\left\{\widehat{\lambda}_{k}\right\}_{k \geq 1}$ such that

$$
-C_{1} \widehat{C}<\widehat{\lambda}_{1}<\ldots<\widehat{\lambda}_{k} \rightarrow \infty \quad \text { as } k \rightarrow \infty .
$$

We know that $\widehat{\lambda}_{1}$ is simple and admits the following variational characterization:

$$
\begin{equation*}
\widehat{\lambda}_{1}=\inf \left\{\frac{\sigma(u)}{\|u\|_{2}^{2}}: u \in H_{0}^{1}(\Omega), u \neq 0\right\} \tag{2.6}
\end{equation*}
$$

(see also Mugnai and Papageorgiou [14]). Note that if $\beta \geq 0$, then $\widehat{\lambda}_{1}>0$. More generally, if λ_{1} is the first eigenvalue of $\left(-\triangle, H_{0}^{1}(\Omega)\right)$ and $\beta \in L^{s}(\Omega)$ satisfies

$$
\beta^{-}(z):=\max \{-\beta(z), 0\} \leq \bar{\lambda}_{1} \quad \text { a.e. on } \Omega, \beta^{-} \neq \bar{\lambda}_{1}
$$

then

$$
\sigma(u) \geq\|D u\|_{2}^{2}-\int_{\Omega} \beta^{-} u^{2} d z \geq \xi_{0}\|u\|^{2} \quad \text { for some } \xi_{0}>0, \text { all } u \in H_{0}^{1}(\Omega)
$$

(see Gasinski and Papageorgiou [9, Lemma 2.1]), hence $\widehat{\lambda}_{1}>0$.

The infimum in (2.6) is achieved on the eigenspace of $\widehat{\lambda}_{1}$. Let \widehat{u}_{1} be the L^{2} normalized (i.e. $\left\|\widehat{u}_{1}\right\|_{2}=1$) eigenfunction corresponding to $\widehat{\lambda}_{1}$. It is clear from (2.6) that we may assume that $\widehat{u}_{1} \geq 0$.

If $s>N$, then the regularity theory for Dirichlet problems (see Struwe [19, pp. 218-219]) and the maximum principle of Vazquez [20] imply $\widehat{u}_{1} \in \operatorname{int} C_{+}$.

We will also use a "weighted" version of the previous eigenvalue problem. Namely, let $\xi \in L^{\infty}(\Omega)_{+}, \xi \neq 0$ and consider the following eigenvalue problem:

$$
-\triangle u(z)+\beta(z) u(z)=\lambda \xi(z) u(z) \quad \text { in } \Omega,\left.\quad u\right|_{\partial \Omega}=0
$$

As before, we have an increasing sequence of eigenvalues denoted by $\widehat{\lambda}_{k}(\xi), k \geq 1$, and $\widehat{\lambda}_{k}(\xi) \rightarrow \infty$ as $k \rightarrow \infty$. Moreover, the unique continuation property (see Garofalo and Lin [7]) implies that:

$$
\text { if } \xi(z) \leq \xi^{\prime}(z) \text { a.e. in } \Omega \text { and } \xi \neq \xi^{\prime}, \text { then } \widehat{\lambda}_{k}\left(\xi^{\prime}\right)<\widehat{\lambda}_{k}(\xi) \text { for all } k \geq 1
$$

The hypotheses on the potential function $\beta(\cdot)$ are the following:
$\mathrm{H}(\beta) \beta \in L^{s}(\Omega)$ with $s>N, \beta^{+}=\max \{\beta, 0\} \in L^{\infty}(\Omega)$.
The hypotheses on the perturbation $f(z, x)$ are the following:
$\mathrm{H}(f) f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function with $f(z, 0)=0$ almost everywhere in Ω and
(a) $|f(z, x)| \leq a(z)+C x^{r-1}$ for almost all $z \in \Omega$, all $x \geq 0$, with $a \in L^{\infty}(\Omega)_{+}, C>0,2<r<2^{*} ;$
(b) $\lim _{x \rightarrow \infty} f(z, x) / x^{q-1}=+\infty$ uniformly for almost all $z \in \Omega$;
(c) $f(z, x) \geq-\eta(z) x$ for almost all $z \in \Omega$, all $x \geq 0$ with $\eta \in L^{\infty}(\Omega)$, $\eta(z) \leq \widehat{\lambda}_{1}$ almost everywhere in $\Omega, \eta \neq \widehat{\lambda}_{1}$;
(d) for almost all $z \in \Omega, x \rightarrow f(z, x) / x$ is nondecreasing on $(0, \infty)$;
(e) there exists $\tau>2$ such that for every $\rho>0$, one can find $\gamma_{\rho}>0$ with the property that for almost all $z \in \Omega$, the map

$$
x \mapsto \gamma_{\rho}\left(x^{\tau-1}+x\right)-f(z, x)
$$

is nondecreasing on $[0, \rho]$.
Remark 2.2. Since we are interested in positive solutions and all of the above hypotheses concern only the nonnegative half-axis $[0,+\infty)$, without any loss of generality, we may (and will) assume that $f(z, x)=0$ for almost all $z \in \Omega$, all $x \leq 0$.

As we illustrate in the examples that follow, hypotheses $\mathrm{H}(f)$ dictate a reaction of superdiffusive type.

Examples 2.3. The following functions satisfy hypotheses $\mathrm{H}(f)$ (for the sake of simplicity, we drop the z-dependence):

$$
f_{1}(x)=x^{\tau-1}+\eta x \quad \text { for a.a. } x \geq 0
$$

where $\tau>q, \eta>0$ with $-\eta<\widehat{\lambda}_{1}$, if $\widehat{\lambda}_{1} \leq 0$;

$$
f_{2}(x)= \begin{cases}\eta x & \text { if } x \in[0,1] \\ \eta x+x^{q-1} \ln (x) & \text { if } x>1,\end{cases}
$$

where $\eta>0$ with $-\eta<\widehat{\lambda}_{1}$, if $\widehat{\lambda}_{1} \leq 0$.
By a positive solution of $\left(\mathrm{P}_{\lambda}\right)$, we mean a function $u \in H_{0}^{1}(\Omega) \backslash\{0\}$ such that $u(z) \geq 0$ almost everywhere in Ω, which is a weak solution of $\left(\mathrm{P}_{\lambda}\right)$.

From the regularity theory of Dirichlet problems (see Struwe [19, pp. 218219]), we have $u \in C_{+} \backslash\{0\}$ and

$$
-\triangle u(z)+\beta(z) u(z)=\lambda u(z)^{q-1}-f(z, u(z)) \quad \text { a.e. in } \Omega .
$$

Let $\rho=\|u\|_{\infty}$ and let $\gamma_{\rho}>0$ be as postulated by hypothesis $\mathrm{H}(f)(\mathrm{e})$. Then

$$
\begin{aligned}
-\Delta u(z)+\left(\beta(z)+\gamma_{\rho}\right) & u(z)+\gamma_{\rho} u(z)^{\tau-1} \\
& =\lambda u(z)^{q-1}+\gamma_{\rho} u(z)+\gamma_{\rho} u(z)^{\tau-1}-f(z, u(z)) \geq 0
\end{aligned}
$$

almost everywhere in Ω, hence

$$
\Delta u(z) \leq\left(\left\|\beta^{+}\right\|_{\infty}+\gamma_{\rho}\left(1+\rho^{\tau-2}\right)\right) u(z) \quad \text { a.e. in } \Omega
$$

therefore $u \in \operatorname{int} C_{+}$(see Vazquez [20]). So, we see that every positive solution of $\left(\mathrm{P}_{\lambda}\right)$ belongs to $\operatorname{int} C_{+}$

3. A bifurcation-type theorem

In this section, we study the dependence on the parameter $\lambda>0$ of the positive solutions of $\left(\mathrm{P}_{\lambda}\right)$ and eventually obtain a bifurcation-type theorem, describing this dependence. Let

$$
\mathcal{L}=\left\{\lambda>0: \text { problem }\left(\mathrm{P}_{\lambda}\right) \text { has a positive solution }\right\} .
$$

First we show that this set is nonempty and upward directed.
Proposition 3.1. If hypotheses $\mathrm{H}(\beta)$ and $\mathrm{H}(f)$ hold, then $\mathcal{L} \neq \emptyset$, and if $\lambda \in \mathcal{L}$ with $\eta>\lambda$, then $\eta \in \mathcal{L}$.

Proof. By virtue of hypotheses $\mathrm{H}(f)(\mathrm{a})$, (b), given any $\xi>0$, we can find $C_{2}=C_{2}(\xi)>0$ such that

$$
\begin{equation*}
F(z, x) \geq \frac{\xi}{q}\left(x^{+}\right)^{q}-C_{2} \quad \text { for a.a. } z \in \Omega, \text { all } x \in \mathbb{R} \tag{3.1}
\end{equation*}
$$

where $F(z, x)=\int_{0}^{x} f(z, s) d s$. Let $g_{\lambda}(z, x)=\lambda\left(x^{+}\right)^{q-1}-f(z, x)+\widehat{C} x^{+}$for all $(z, x) \in \Omega \times \mathbb{R}$ (see (2.4)). This is a Carathéodory function. We set $G_{\lambda}(z, x)=$ $\int_{0}^{x} g_{\lambda}(z, s) d s$ and consider the C^{1}-functional $\widehat{\varphi}_{\lambda}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\widehat{\varphi}_{\lambda}(u)=\frac{1}{2} \sigma(u)+\frac{\widehat{C}}{2}\|u\|_{2}^{2}-\int_{\Omega} G_{\lambda}(z, u(z)) d z \quad \text { for all } u \in H_{0}^{1}(\Omega) .
$$

We have

$$
\begin{align*}
\widehat{\varphi}_{\lambda}(u) \geq & \frac{1}{2} \sigma(u)+\frac{\widehat{c}}{2}\|u\|_{2}^{2}-\frac{\lambda}{q}\left\|u^{+}\right\|_{q}^{q} \tag{3.2}\\
& +\frac{\xi}{q}\left\|u^{+}\right\|_{q}^{q}-\frac{\widehat{c}}{2}\left\|u^{+}\right\|_{2}^{2}-C_{2}|\Omega| \quad(\text { see }(3.1)) \\
= & \frac{1}{2} \sigma\left(u^{+}\right)+\frac{\xi-\lambda}{q}\left\|u^{+}\right\|_{q}^{q}+\frac{1}{2}\left(\sigma\left(u^{-}\right)+\widehat{C}\left\|u^{-}\right\|_{2}^{2}\right)-C_{2}|\Omega|_{N} .
\end{align*}
$$

Since $\xi>0$ is arbitrary, we choose $\xi>\lambda$. Then, by (3.2), (2.4) and since $q>2$, we obtain

$$
\begin{align*}
\widehat{\varphi}_{\lambda}(u) & \geq \frac{1}{2} \sigma\left(u^{+}\right)+C_{3}\left\|u^{+}\right\|_{2}^{q}+\frac{1}{2 C_{1}}\left\|u^{-}\right\|^{2}-C_{2}|\Omega|_{N} \quad \text { for some } C_{3}>0 \tag{3.3}\\
& \geq \frac{1}{2 C_{1}}\|u\|^{2}+C_{3}\left\|u^{+}\right\|_{2}^{q}-C_{4}\left\|u^{+}\right\|_{2}^{2}-C_{2}|\Omega|_{N} \quad \text { for some } C_{4}>0
\end{align*}
$$

Because $q>2$, from (3.3) we infer that $\widehat{\varphi}_{\lambda}$ is coercive. Exploiting the compact embedding of $H_{0}^{1}(\Omega)$ into $L^{r}(\Omega)$ and $L^{q}(\Omega)$, we can easily show that $\widehat{\varphi}_{\lambda}$ is sequentially weakly lower semicontinuous. So, by the Weierstrass theorem, we can find $u_{0} \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
\widehat{\varphi}_{\lambda}\left(u_{0}\right)=\inf \left\{\widehat{\varphi}_{\lambda}(u): u \in H_{0}^{1}(\Omega)\right\}=: m_{\lambda} . \tag{3.4}
\end{equation*}
$$

Let $\bar{u} \in \operatorname{int} C_{+}$. Then

$$
\widehat{\varphi}_{\lambda}(\bar{u})=\frac{1}{2} \sigma(\bar{u})-\frac{\lambda}{q}\|\bar{u}\|_{q}^{q}+\int_{\Omega} F(z, \bar{u}(z)) d z
$$

and so, it is clear that for $\lambda>0$ large we have $\widehat{\varphi}_{\lambda}(\bar{u})<0$. Hence

$$
\widehat{\varphi}_{\lambda}\left(u_{0}\right)=m_{\lambda}<0=\widehat{\varphi}_{\lambda}(0) \quad \text { for } \lambda>0 \text { large }
$$

i.e. $u_{0} \neq 0$. From (3.4) we derive $\widehat{\varphi}_{\lambda}^{\prime}\left(u_{0}\right)=0$, hence

$$
\begin{equation*}
A\left(u_{0}\right)+(\beta+\widehat{C}) u_{0}=N_{g_{\lambda}}\left(u_{0}\right) \tag{3.5}
\end{equation*}
$$

On (3.5) we act with $-u_{0}^{-} \in H_{0}^{1}(\Omega)$ and obtain

$$
\left\|D u_{0}^{-}\right\|_{2}^{2}+\int_{\Omega} \beta\left(u_{0}^{-}\right)^{2} d z+\widehat{C}\left\|u_{0}^{-}\right\|_{2}^{2}=0
$$

hence $\left\|u_{0}^{-}\right\|_{2}^{2} / C_{1} \leq 0$ (see (2.4)), i.e. $u_{0} \geq 0, u_{0} \neq 0$. Therefore (3.5) becomes

$$
A\left(u_{0}\right)+\beta u_{0}=\lambda u_{0}^{q-1}-N_{f}\left(u_{0}\right)
$$

hence

$$
-\triangle u_{0}(z)+\beta(z) u_{0}(z)=\lambda u_{0}(z)^{q-1}-f(z, u(z)) \quad \text { a.e. in } \Omega,\left.u_{0}\right|_{\partial \Omega}=0
$$

therefore $u_{0} \in \operatorname{int} C_{+}$is a positive solution of $\left(\mathrm{P}_{\lambda}\right)$ for $\lambda>0$ large. This proves that $\mathcal{L} \neq \emptyset$. Now, let $\lambda \in \mathcal{L}$ and $\eta>\lambda$. Since $\lambda \in \mathcal{L}$ we can find $u_{\lambda} \in \operatorname{int} C_{+}$, a solution of problem $\left(\mathrm{P}_{\lambda}\right)$. Let $\theta \in(0,1)$ be such that

$$
\begin{equation*}
\lambda=\theta^{q-2} \eta \tag{3.6}
\end{equation*}
$$

(recall that $q>2$). One has

$$
\begin{align*}
-\triangle\left(\theta u_{\lambda}\right)(z)+\beta(z)\left(\theta u_{\lambda}\right)(z) & =\theta \lambda u_{\lambda}(z)^{q-1}-\theta f\left(z, u_{\lambda}(z)\right) \tag{3.7}\\
& \leq \eta\left(\theta u_{\lambda}\right)^{q-1}(z)-f\left(z, \theta u_{\lambda}(z)\right)
\end{align*}
$$

almost everywhere in $\Omega($ see $\mathrm{H}(f)(\mathrm{d})$).
We set $\underline{u}=\theta u_{\lambda} \in \operatorname{int} C_{+}$and consider the following truncation-perturbation of the reaction of problem $\left(P_{\eta}\right)$:

$$
h_{\eta}(z, x)= \begin{cases}\eta \underline{u}(z)^{q-1}-f(z, \underline{u}(z))+\widehat{C} u(z) & \text { if } x \leq \underline{u}(z) \tag{3.8}\\ \eta x^{q-1}-f(z, x)+\widehat{C} x & \text { if } \underline{u}(z)<x\end{cases}
$$

This is a Carathéodory function. We set $H_{\eta}(z, x)=\int_{0}^{x} h_{\eta}(z, s) d s$ and consider the C^{1}-functional $\psi_{\eta}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\psi_{\eta}(u)=\frac{1}{2} \sigma(u)+\frac{\widehat{C}}{2}\|u\|_{2}^{2}-\int_{\Omega} H_{\eta}(z, u(z)) d z \quad \text { for all } u \in H_{0}^{1}(\Omega)
$$

Using (3.8), we have

$$
\begin{aligned}
& \psi_{\eta}(u) \geq \frac{1}{2} \sigma(u)+\frac{\widehat{c}}{2}\|u\|_{2}^{2}-\int_{\{\underline{u}<u\}}\left(\frac{\eta}{q} u^{q}-F(z, u)+\frac{\widehat{c}}{2} u^{2}\right) d z-C_{5} \\
& \text { for some } C_{5}>0 \\
& \geq \frac{1}{2} \sigma(u)+\frac{\widehat{c}}{2}\left\|u^{-}\right\|_{2}^{2}-\frac{\eta}{q}\left\|u^{+}\right\|_{q}^{q}+\int_{\Omega} F(z, u) d z-C_{6} \\
& \text { for some } C_{6}>0 \\
& \geq \frac{1}{2} \sigma(u)+\frac{\widehat{c}}{2}\left\|u^{-}\right\|_{2}^{2}-\frac{\eta}{q}\left\|u^{+}\right\|_{q}^{q}+\frac{\xi}{q}\left\|u^{+}\right\|_{q}^{q}-C_{7} \\
& \text { for some } C_{7}>0(\operatorname{see}(3.1)) \\
& =\frac{1}{2} \sigma\left(u^{+}\right)+\frac{\xi-\eta}{q}\left\|u^{+}\right\|_{q}^{q}+\frac{1}{2} \sigma\left(u^{-}\right)+\frac{\widehat{c}}{2}\left\|u^{-}\right\|_{2}^{2}-C_{7} \\
& \geq \frac{1}{2 C_{1}}\|u\|^{2}+\frac{\xi-\eta}{q}\left\|u^{+}\right\|_{q}^{q}-\frac{\widehat{c}}{2}\left\|u^{+}\right\|_{2}^{2}-C_{7} \quad \text { (see (2.4)). }
\end{aligned}
$$

Since $\xi>0$ is arbitrary, we choose $\xi>\eta$ and infer

$$
\psi_{\eta}(u) \geq \frac{1}{2 C_{1}}\|u\|^{2}+C_{8}\left\|u^{+}\right\|_{2}^{q}-\frac{\widehat{C}}{2}\left\|u^{+}\right\|_{2}^{2}-C_{7} \quad \text { for some } C_{8}>0
$$

Because $q>2$, it follows that ψ_{η} is coercive. Also, it is sequentially weakly lower semicontinuous. So, we can find $u_{\eta} \in H_{0}^{1}(\Omega)$ such that

$$
\psi_{\eta}\left(u_{\eta}\right)=\inf \left\{\psi_{\eta}(u): u \in H_{0}^{1}(\Omega)\right\} .
$$

Then $\psi_{\eta}^{\prime}\left(u_{\eta}\right)=0$, hence

$$
\begin{equation*}
A\left(u_{\eta}\right)+(\beta+\widehat{C}) u_{\eta}=N_{h_{\eta}}\left(u_{\eta}\right) \tag{3.9}
\end{equation*}
$$

On (3.9) we act with $\left(\underline{u}-u_{\eta}\right)^{+} \in H_{0}^{1}(\Omega)$ and use (3.8) to obtain

$$
\begin{aligned}
\left\langle A\left(u_{\eta}\right),\left(\underline{u}-u_{\eta}\right)^{+}\right\rangle & +\int_{\Omega}(\beta+\widehat{C}) u_{\eta}\left(\underline{u}-u_{\eta}\right)^{+} d z \\
& =\int_{\Omega}\left(\eta \underline{u}^{q-1}-f(z, \underline{u})+\widehat{C} \underline{u}\right)\left(\underline{u}-u_{\eta}\right)^{+} d z \\
& \geq\left\langle A(\underline{u}),\left(\underline{u}-u_{\eta}\right)^{+}\right\rangle+\int_{\Omega}(\beta+\widehat{C}) \underline{u}\left(\underline{u}-u_{\eta}\right)^{+} d z
\end{aligned}
$$

(see (3.7)), hence

$$
\left\langle A(\underline{u})-A\left(u_{\eta}\right),\left(\underline{u}-u_{\eta}\right)^{+}\right\rangle+\int_{\Omega}(\beta+\widehat{C})\left[\left(\underline{u}-u_{\eta}\right)^{+}\right]^{2} d z \leq 0,
$$

therefore

$$
\left\|D\left(\underline{u}-u_{\eta}\right)^{+}\right\|_{2}^{2}+\int_{\Omega} \beta\left[\left(\underline{u}-u_{\eta}\right)^{+}\right]^{2} d z+\widehat{C}\left\|\left(\underline{u}-u_{\eta}\right)^{+}\right\|_{2}^{2} \leq 0 .
$$

This implies $\left\|\left(\underline{u}-u_{\eta}\right)^{+}\right\|^{2} / C_{1} \leq 0$ (see (2.4)), hence $\underline{u} \leq u_{\eta}$. So, (3.9) becomes

$$
A\left(u_{\eta}\right)+\beta u_{\eta}=\eta u_{\eta}^{q-1}-N_{f}\left(u_{\eta}\right)
$$

(see (3.8)) and we conclude that $u_{\eta} \in \operatorname{int} C_{+}$solves $\left(\mathrm{P}_{\eta}\right)$, i.e. $\eta \in \mathcal{L}$.
Now let

$$
\begin{equation*}
\lambda_{*}=\inf \mathcal{L} . \tag{3.10}
\end{equation*}
$$

Proposition 3.2. If hypotheses $\mathrm{H}(\beta)$ and $\mathrm{H}(f)$ hold, then $\lambda_{*}>0$.
Proof. First assume that $\widehat{\lambda}_{1}>0$. By virtue of hypotheses $\mathrm{H}(f)(\mathrm{a})-(\mathrm{c})$, we can find $\lambda_{0}>0$ small such that

$$
\lambda x^{q-1}<\widehat{\lambda}_{1} x+f(z, x) \quad \text { for a.a. } z \in \Omega, \text { all } x \geq 0 \text { and all } \lambda \in\left(0, \lambda_{0}\right) .
$$

Suppose that for $\lambda \in\left(0, \lambda_{0}\right)$, we have $\lambda \in \mathcal{L}$. Then, there exists $u_{\lambda} \in \operatorname{int} C_{+}$, a positive solution of problem $\left(\mathrm{P}_{\lambda}\right)$, such that

$$
-\triangle u_{\lambda}(z)+\beta(z) u_{\lambda}(z)=\lambda u_{\lambda}(z)^{q-1}-f\left(z, u_{\lambda}(z)\right)<\widehat{\lambda}_{1} u_{\lambda}(z) \quad \text { a.e. in } \Omega .
$$

Then $\sigma\left(u_{\lambda}\right)<\widehat{\lambda}_{1}\left\|u_{\lambda}\right\|_{2}^{2}$ which contradicts (2.6), hence $\lambda_{*} \geq \lambda_{0}>0$.
Next assume that $\widehat{\lambda}_{1} \leq 0$. Suppose that $\lambda_{*}=0$. We can find $\left\{\lambda_{n}\right\}_{n>1} \subset \mathcal{L}$ such that $\lambda_{n}>\lambda_{n+1}, \lambda_{n} \downarrow 0$ as $n \rightarrow \infty$. For $n \geq 1$, let $u_{n}=u_{\lambda_{n}} \in \operatorname{int} C_{+}$be a positive solution of problem $\left(\mathrm{P}_{\lambda_{n}}\right)$. We have

$$
\begin{equation*}
A\left(u_{n}\right)+\beta u_{n}=\lambda_{n} u_{n}^{q-1}-N_{f}\left(u_{n}\right) \quad \text { for all } n \geq 1 \tag{3.11}
\end{equation*}
$$

hence

$$
\begin{equation*}
\sigma\left(u_{n}\right)=\lambda_{n}\left\|u_{n}\right\|_{q}^{q}-\int_{\Omega} f\left(z, u_{n}\right) u_{n} d z \tag{3.12}
\end{equation*}
$$

By hypothesis $\mathrm{H}(f)(\mathrm{b})$, given any $\xi>0$, we can find $M=M(\xi) \geq 1$, such that

$$
\begin{equation*}
f(z, x) x \geq \xi x^{q} \quad \text { for a.a. } z \in \Omega, \text { all } x \geq M . \tag{3.13}
\end{equation*}
$$

On the other hand, hypothesis $\mathrm{H}(f)(\mathrm{c})$ implies that

$$
\begin{equation*}
f(z, x) x \geq-\eta(z) x^{2} \quad \text { for a.a. } z \in \Omega, \text { all } x \in[0, M] . \tag{3.14}
\end{equation*}
$$

Returning to (3.12), we have

$$
\begin{aligned}
\sigma\left(u_{n}\right) & =\lambda_{n}\left\|u_{n}\right\|_{q}^{q}-\int_{\left\{u_{n} \geq M\right\}} f\left(z, u_{n}\right) u_{n} d z-\int_{\left\{0<u_{n}<M\right\}} f\left(z, u_{n}\right) u_{n} d z \\
& \leq \lambda_{n}\left\|u_{n}\right\|_{q}^{q}-\xi \int_{\left\{u_{n} \geq M\right\}} u_{n}^{q} d z+\int_{\left\{0<u_{n}<M\right\}} \eta u_{n}^{2} d z \quad(\text { see (3.13), (3.14)) } \\
& \leq\left(\lambda_{n}+\|\eta\|_{\infty}-\xi\right) \int_{\left\{u_{n} \geq M\right\}} u_{n}^{q} d z+\lambda_{n} \int_{\left\{0<u_{n}<M\right\}} u_{n}^{q} d z+\int_{\Omega} \eta u_{n}^{2} d z
\end{aligned}
$$

(recall that $q>2, M \geq 1$), hence

$$
\begin{equation*}
\sigma\left(u_{n}\right)-\int_{\Omega} \eta u_{n}^{2} d z \leq\left(\lambda_{n}+\|\eta\|_{\infty}-\xi\right) \int_{\left\{u_{n} \geq M\right\}} u_{n}^{q} d z+\lambda_{n} \int_{\left\{0<u_{n}<M\right\}} u_{n}^{q} d z \tag{3.15}
\end{equation*}
$$

Recall that $\xi>0$ is arbitrary. So, choosing $\xi>\lambda_{1}+\|\eta\|_{\infty} \geq \lambda_{n}+\|\eta\|_{\infty}$ for all $n \geq 1$, from (3.15) and Lemma 2.1 of [9] it follows that there exists $C_{9}=C_{9}(\xi)>0$ such that $\left\|u_{n}\right\|^{2} \leq \lambda_{n} C_{9}$ for all $n \geq 1$, hence

$$
\begin{equation*}
u_{n} \rightarrow 0 \quad \text { in } H_{0}^{1}(\Omega) \tag{3.16}
\end{equation*}
$$

Let $y_{n}=u_{n} /\left\|u_{n}\right\|, n \geq 1$. Then $\left\|y_{n}\right\|=1$ for all $n \geq 1$, and so we may assume that

$$
\begin{equation*}
y_{n} \xrightarrow{w} y \quad \text { in } H_{0}^{1}(\Omega) \quad \text { and } \quad y_{n} \rightarrow y \quad \text { in } L^{2 s^{\prime}}(\Omega) \text { as } n \rightarrow \infty . \tag{3.17}
\end{equation*}
$$

From (3.11), we have

$$
\begin{equation*}
A\left(y_{n}\right)+\beta y_{n}=\lambda_{n} u_{n}^{q-2} y_{n}-\frac{N_{f}\left(u_{n}\right)}{\left\|u_{n}\right\|} \quad \text { for all } n \geq 1 \tag{3.18}
\end{equation*}
$$

Note that $\left\{N_{f}\left(u_{n}\right) /\left\|u_{n}\right\|\right\}_{n \geq 1} \subset L^{r^{\prime}}(\Omega)$ is bounded (see hypotheses $\mathrm{H}(f)$ (a) and (d)). Hence acting in (3.18) with $y_{n}-y \in H_{0}^{1}(\Omega)$, passing to the limit as $n \rightarrow \infty$ and using (3.17), we obtain

$$
\lim _{n \rightarrow \infty}\left\langle A\left(y_{n}\right), y_{n}-y\right\rangle=0,
$$

hence $\left\|D y_{n}\right\|_{2} \rightarrow\|D y\|_{2}$ and by the Kadec-Klee property of the Hilbert space $H_{0}^{1}(\Omega)$, we infer that

$$
\begin{equation*}
y_{n} \rightarrow y \quad \text { in } H_{0}^{1}(\Omega), \quad \text { hence } \quad\|y\|=1 . \tag{3.19}
\end{equation*}
$$

We may assume that

$$
\begin{equation*}
\frac{N_{f}\left(u_{n}\right)}{\left\|u_{n}\right\|} \xrightarrow{w} \beta \quad \text { in } L^{r^{\prime}}(\Omega) \quad \text { and } \quad \beta=-\widehat{\eta} y \quad \text { with } \widehat{\eta} \leq \eta \tag{3.20}
\end{equation*}
$$

(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 31). So, if in (3.18) we pass to the limit as $n \rightarrow \infty$ and use (3.16), (3.19) and (3.20), we obtain

$$
A(y)+\beta y=\widehat{\eta} y, \quad y \neq 0
$$

hence

$$
\sigma(y)-\int_{\Omega} \widehat{\eta} y^{2} d z=0
$$

therefore $C_{10}\|y\|^{2} \leq 0$ for some $C_{10}>0$ (see Lemma 2.1 of [9]). It follows that $y=0$, a contradiction (see (3.19)).

Proposition 3.3. If hypotheses $\mathrm{H}(\beta)$ and $\mathrm{H}(f)$ hold and $\lambda>\lambda_{*}$, then problem $\left(\mathrm{P}_{\lambda}\right)$ has at least two positive smooth solutions $u_{0}, \widehat{u} \in \operatorname{int} C_{+}$.

Proof. Let $\lambda^{\prime} \in\left(\lambda_{*}, \lambda\right) \cap \mathcal{L}$ and let $u_{\lambda^{\prime}} \in \operatorname{int} C_{+}$be a positive solution of problem $\left(\mathrm{P}_{\lambda^{\prime}}\right)$. As in the proof of Proposition 3.1, let $\theta \in(0,1)$ be such that $\lambda^{\prime}=\theta^{q-2} \lambda$ and set $\underline{u}=\theta u_{\lambda^{\prime}} \in \operatorname{int} C_{+}$. We introduce the following truncationperturbation of the reaction in problem $\left(\mathrm{P}_{\lambda}\right)$:

$$
h_{\lambda}(z, x)= \begin{cases}\lambda \underline{u}(z)^{q-1}-f(z, \underline{u}(z))+\widehat{C} u(z) & \text { if } x \leq \underline{u}(z), \tag{3.21}\\ \lambda x^{q-1}-f(z, x)+\widehat{C} x & \text { if } \underline{u}(z)<x\end{cases}
$$

This is a Carathéodory function. We set $H_{\lambda}(z, x)=\int_{0}^{x} h_{\lambda}(z, s) d s$ and consider the C^{1}-functional $\psi_{\lambda}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\psi_{\lambda}(u)=\frac{1}{2} \sigma(u)+\frac{\widehat{C}}{2}\|u\|^{2}-\int_{\Omega} H_{\lambda}(z, u(z)) d z, \quad \text { for all } u \in H_{0}^{1}(\Omega) .
$$

Reasoning as in the proof of Proposition 3.1, we can find $u_{0} \in \operatorname{int} C_{+}$, with $\underline{u} \leq u_{0}$, such that

$$
\begin{equation*}
\psi_{\lambda}\left(u_{0}\right)=\inf \left\{\psi_{\lambda}(u): u \in H_{0}^{1}(\Omega)\right\} \tag{3.22}
\end{equation*}
$$

and u_{0} is a solution of problem $\left(\mathrm{P}_{\lambda}\right)$. As in the proof of Proposition 3.1, $\widehat{\varphi}_{\lambda}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ is the C^{1}-functional defined by

$$
\widehat{\varphi}_{\lambda}(u)=\frac{1}{2} \sigma(u)+\frac{\widehat{C}}{2}\|u\|_{2}^{2}-\int_{\Omega} G_{\lambda}(z, u(z)) d z \quad \text { for all } u \in H_{0}^{1}(\Omega)
$$

where $G_{\lambda}(z, x)=\int_{0}^{x} g_{\lambda}(z, s) d s$ and

$$
g_{\lambda}(z, x)=\lambda\left(x^{+}\right)^{q-1}-f(z, x)+\widehat{C} x^{+} \quad \text { for all }(z, x) \in \Omega \times \mathbb{R} .
$$

Let $[\underline{u}):=\left\{u \in H_{0}^{1}(\Omega): \underline{u}(z) \leq u(z)\right.$ a.e. in $\left.\Omega\right\}$. From (3.21) it follows that

$$
\begin{equation*}
\left.\psi_{\lambda}\right|_{[u)}=\left.\widehat{\varphi}_{\lambda}\right|_{[u)}-C_{11} \quad \text { with } C_{11} \in \mathbb{R} . \tag{3.23}
\end{equation*}
$$

Let $\rho=\left\|u_{0}\right\|_{\infty}$ and let $\gamma_{\rho}>0$ and $\tau>2$ be as postulated by hypothesis $\mathrm{H}(f)(\mathrm{e})$. Then

$$
\begin{aligned}
- & \triangle u_{0}(z)+\beta(z) u_{0}(z)+\gamma_{\rho}\left(u_{0}(z)^{\tau-1}+u_{0}(z)\right) \\
& =\lambda u_{0}(z)^{q-1}-f\left(z, u_{0}(z)\right)+\gamma_{\rho}\left(u_{0}(z)^{\tau-1}+u_{0}(z)\right) \\
& \geq \lambda \underline{u}(z)^{q-1}-f(z, \underline{u}(z))+\gamma_{\rho}\left(\underline{u}(z)^{\tau-1}+\underline{u}(z)\right) \quad\left(\text { since } \underline{u} \leq u_{0}, \text { see } \mathrm{H}(f)(\mathrm{e})\right) \\
& \geq-\triangle \underline{u}(z)+\beta(z) \underline{u}(z)+\gamma_{\rho}\left(\underline{u}(z)^{\tau-1}+\underline{u}(z)\right) \quad \text { a.e. in } \Omega,
\end{aligned}
$$

(see (3.7) with η replaced by λ, and λ by λ^{\prime}). Hence

$$
\begin{aligned}
\triangle\left(u_{0}-\underline{u}\right)(z) & \leq\left(\beta(z)+\gamma_{\rho}\right)\left(u_{0}(z)-\underline{u}(z)\right)+\gamma_{\rho}\left(u_{0}(z)^{\tau-1}-\underline{u}(z)^{\tau-1}\right) \\
& \leq\left(\left\|\beta^{+}\right\|_{\infty}+\gamma_{\rho}+C_{12}\right)\left(u_{0}(z)-\underline{u}(z)\right)
\end{aligned}
$$

almost everywhere in Ω, for some $C_{12}>0$, therefore

$$
\begin{equation*}
u_{0}-\underline{u} \in \operatorname{int} C_{+} \tag{3.24}
\end{equation*}
$$

(see Vazquez [20]). From (3.22)-(3.24) it follows that u_{0} is a local $C_{0}^{1}(\bar{\Omega})$ minimizer of $\widehat{\varphi}_{\lambda}$. From Brezis and Nirenberg [3], we infer that u_{0} is a local $H_{0}^{1}(\Omega)$-minimizer of $\widehat{\varphi}_{\lambda}$. Next, for all $u \in H_{0}^{1}(\Omega)$, we have

$$
\begin{array}{rlr}
\widehat{\varphi}_{\lambda}(u) \geq \frac{1}{2} \sigma(u)+\frac{\widehat{c}}{2}\left\|u^{-}\right\|_{2}^{2}-\frac{\lambda}{q}\left\|u^{+}\right\|_{q}^{q}-\int_{\Omega} \eta\left(u^{+}\right)^{2} d z \tag{3.25}\\
& \quad(\text { see } \mathrm{H}(f)(\mathrm{c})) \\
& \geq \frac{1}{2} \sigma\left(u^{+}\right)-\frac{1}{2} \int_{\Omega} \eta\left(u^{+}\right)^{2} d z+\frac{1}{2} \sigma\left(u^{-}\right)+\frac{\widehat{c}}{2}\left\|u^{-}\right\|_{2}^{2}-C_{13}\|u\|^{q} \\
& \text { for some } C_{13}>0 \\
& \geq \frac{C_{14}}{2}\left\|u^{+}\right\|^{2}+\frac{1}{2 C_{1}}\left\|u^{-}\right\|^{2}-C_{13}\|u\|^{q} & \text { for some } C_{14}>0
\end{array} \quad \begin{array}{ll}
& \text { (see }[9, \text { Lemma 2.1]) } \\
& \text { and }(2.4) \text {) } \\
\geq C_{15}\|u\|^{2}-C_{13}\|u\|^{q} & \text { for some } C_{15}>0 .
\end{array}
$$

Since $q>2$, from (3.25) it follows that $u=0$ is a local minimizer of $\widehat{\varphi}_{\lambda}$. Without any loss of generality, we may assume that $0=\widehat{\varphi}_{\lambda}(0) \leq \widehat{\varphi}_{\lambda}\left(u_{0}\right)$ (the reasoning is similar if the opposite inequality is true). Since u_{0} is a local minimizer of $\widehat{\varphi}_{\lambda}$, reasoning as in [1] (see the proof of Proposition 29), we can find $\rho \in(0,1)$ small such that

$$
\begin{equation*}
0=\widehat{\varphi}_{\lambda}(0) \leq \widehat{\varphi}_{\lambda}\left(u_{0}\right)<\inf \left\{\widehat{\varphi}_{\lambda}(u):\left\|u-u_{0}\right\|=\rho\right\}=\widehat{\eta}_{\lambda} . \tag{3.26}
\end{equation*}
$$

Recall that $\widehat{\varphi}_{\lambda}$ is coercive (see the proof of Proposition 3.1). Hence it satisfies the PS-condition. This fact and (3.26) enable us to use Theorem 2.1 (the mountain pass theorem) and obtain $\widehat{u} \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
0=\widehat{\varphi}_{\lambda}(0) \leq \widehat{\varphi}_{\lambda}\left(u_{0}\right)<\widehat{\eta}_{\lambda} \leq \widehat{\varphi}_{\lambda}(\widehat{u}) \tag{3.27}
\end{equation*}
$$

(see (3.26)) and

$$
\begin{equation*}
\widehat{\varphi}_{\lambda}^{\prime}(\widehat{u})=0 . \tag{3.28}
\end{equation*}
$$

From (3.27) we see that $\widehat{u} \notin\left\{0, u_{0}\right\}$. From (3.28) it follows that $\widehat{u} \in \operatorname{int} C_{+}$ solves problem $\left(\mathrm{P}_{\lambda}\right)$.

Next we see what happens for $\lambda=\lambda^{*}$ (the "critical case").
Proposition 3.4. If hypotheses $\mathrm{H}(\beta)$ and $\mathrm{H}(f)$ hold, then $\lambda_{*} \in \mathcal{L}$ and so, $\mathcal{L}=\left[\lambda_{*},+\infty\right)$.

Proof. Let $\left\{\lambda_{n}\right\}_{n \geq 1} \subset \mathcal{L}$ be such that $\lambda_{n} \downarrow \lambda_{*}$ as $n \rightarrow \infty$ (cf. (3.10)). For $n \geq$ let $u_{n}=u_{\lambda_{n}} \in \operatorname{int} C_{+}$be a positive solution of problem $\left(\mathrm{P}_{\lambda_{n}}\right)$. We have

$$
\begin{equation*}
A\left(u_{n}\right)+\beta u_{n}=\lambda_{n} u_{n}^{q-1}-N_{f}\left(u_{n}\right) \quad \text { for all } n \geq 1 \tag{3.29}
\end{equation*}
$$

By virtue of hypotheses $\mathrm{H}(f)(\mathrm{a})$, (b), given any $\xi>0$, we can find $C_{16}=C_{16}(\xi)>0$ such that

$$
\begin{equation*}
f(z, x) x \geq \xi x^{q-1}-C_{16} \quad \text { for a.a. } z \in \Omega, \text { all } x \geq 0 . \tag{3.30}
\end{equation*}
$$

On (3.29) we act with $u_{n} \in \operatorname{int} C_{+}$and obtain

$$
\sigma\left(u_{n}\right)=\lambda_{n}\left\|u_{n}\right\|_{q}^{q}-\int_{\Omega} f\left(z, u_{n}\right) u_{n} d z \leq \lambda_{n}\left\|u_{n}\right\|_{q}^{q}-\xi\left\|u_{n}\right\|_{q}^{q}+C_{16}|\Omega|_{N},
$$

hence

$$
\begin{equation*}
\sigma\left(u_{n}\right)+\left(\xi-\lambda_{n}\right)\left\|u_{n}\right\|_{q}^{q} \leq C_{16}|\Omega|_{N} . \tag{3.31}
\end{equation*}
$$

Choosing $\xi>\sup _{n>1} \lambda_{n}$ big, and recalling that $q>2$, from (2.4) and (3.31) we infer that $\left\{u_{n}\right\}_{n \geq 1} \subset H_{0}^{1}(\Omega)$ is bounded. Therefore we may assume that

$$
u_{n} \xrightarrow{w} u_{*} \quad \text { in } H_{0}^{1}(\Omega) \quad \text { and } \quad u_{n} \rightarrow u_{*} \quad \text { in } L^{2 s^{\prime}}(\Omega) \text { and in } L^{r}(\Omega) \text { as } n \rightarrow \infty .
$$

So, passing to the limit as $n \rightarrow \infty$ in (3.29), we obtain

$$
A\left(u_{*}\right)+\beta u_{*}=\lambda_{*} u_{*}^{q-1}-N_{f}\left(u_{*}\right),
$$

hence $u_{*} \in C_{+}$is a solution of $\left(\mathrm{P}_{\lambda_{*}}\right)$. We need to show that $u_{*} \neq 0$ (then we will have $\left.u_{*} \in \operatorname{int} C_{+}\right)$. We argue by contradiction. So, suppose that $u_{*}=0$. We set $y_{n}=u_{n} /\left\|u_{n}\right\|, n \geq 1$. Then $\left\|y_{n}\right\|=1$ for all $n \geq 1$, So, passing to a suitable subsequence, if necessary, we may assume that

$$
\begin{equation*}
y_{n} \xrightarrow{w} y \text { in } H_{0}^{1}(\Omega) \text { and } y_{n} \rightarrow y \text { in } L^{2 s^{\prime}}(\Omega) \text { and in } L^{r}(\Omega) \text { as } n \rightarrow \infty . \tag{3.32}
\end{equation*}
$$

From (3.29) we have

$$
\begin{equation*}
A\left(y_{n}\right)+\beta y_{n}=\lambda_{n} u_{n}^{q-2} y_{n}-\frac{N_{f}\left(u_{n}\right)}{\left\|u_{n}\right\|} \quad \text { for all } n \geq 1 \tag{3.33}
\end{equation*}
$$

By virtue of hypothesis $\mathrm{H}(f)(\mathrm{a})$, we can find $C_{17}>0$ such that

$$
0 \leq f(z, x) \leq C_{17}\left(1+x^{r-1}\right) \quad \text { for a.a. } z \in \Omega, \text { all } x \geq 0
$$

and we conclude that $\left\{N_{f}\left(u_{n}\right) /\left\|u_{n}\right\|\right\}_{n \geq 1} \subset L^{r^{\prime}}(\Omega)$ is bounded. We may assume that

$$
\begin{equation*}
\frac{N_{f}\left(u_{n}\right)}{\left\|u_{n}\right\|} \xrightarrow{w}-y \xi \quad \text { in } L^{r^{\prime}}(\Omega) \text { with } \xi \in L^{\infty}(\Omega)_{+}, \xi \leq \eta \tag{3.34}
\end{equation*}
$$

(see [1]). On (3.33) we act with $y_{n}-y \in H_{0}^{1}(\Omega)$, pass to the limit as $n \rightarrow \infty$ and use (3.32) and (3.34), as before (see the proof of Proposition 3.1). By the Kadec-Klee property of Hilbert spaces we infer that

$$
\begin{equation*}
y_{n} \rightarrow y \quad \text { in } H_{0}^{1}(\Omega), \quad \text { hence } \quad\|y\|=1 \tag{3.35}
\end{equation*}
$$

So, if we pass to the limit as $n \rightarrow \infty$ in (3.33) and use (3.35), then

$$
\begin{equation*}
A(y)+\beta y=\xi y \quad \text { with } y \geq 0,\|y\|=1 \tag{3.36}
\end{equation*}
$$

But since $\xi \leq \eta \leq \widehat{\lambda}_{1}, \eta \neq \widehat{\lambda}_{1}$, we have $\widehat{\lambda}_{1}(\xi)>\widehat{\lambda}_{1}\left(\widehat{\lambda}_{1}\right)=1$, and so it follows that y may not be an eigenfunction of (3.36); consequently, $y \equiv 0$, a contradiction. This proves that $u_{*} \neq 0$, and so $u_{*} \in \operatorname{int} C_{+}$is a positive solution of $\left(\mathrm{P}_{\lambda_{*}}\right)$, and we conclude that $\lambda_{*} \in \mathcal{L}$.

Proposition 3.5. If hypotheses $\mathrm{H}(\beta)$ and $\mathrm{H}(f)$ hold and $\lambda \geq \lambda_{*}$, then problem $\left(\mathrm{P}_{\lambda}\right)$ has a smallest positive solution $\bar{u}_{\lambda} \in \operatorname{int} C_{+}$.

Proof. Let $\lambda \geq \lambda_{*}$ and let $S(\lambda)$ be the set of positive solutions of $\left(\mathrm{P}_{\lambda}\right)$. From Propositions 3.2 and 3.3 we know that $S(\lambda) \neq \emptyset$ and $S(\lambda) \subset \operatorname{int} C_{+}$. Let C be a chain (i.e. a totally ordered subset) of $S(\lambda)$. Invoking Dunford and Schwartz [5, p. 336], we can find $\left\{u_{n}\right\}_{n \geq 1} \subset C$ such that

$$
\inf _{c}=\inf _{n \geq 1} u_{n}
$$

Moreover, by virtue of Lemma 1.1 .5 of [11, p. 15], we can choose $\left\{u_{n}\right\}_{n \geq 1}$ to be decreasing. Then

$$
A\left(u_{n}\right)+\beta u_{n}=\lambda u_{n}^{q-1}-N_{f}\left(u_{n}\right) \quad \text { and } \quad 0 \leq u_{n} \leq u_{1} \quad \text { for all } n \geq 1
$$

hence $\left\{u_{n}\right\}_{n \geq 1} \subset H_{0}^{1}(\Omega)$ is bounded. So, we may assume that

$$
u_{n} \xrightarrow{w} \bar{u}_{\lambda} \quad \text { in } H_{0}^{1}(\Omega), \quad \text { and } \quad u_{n} \rightarrow \bar{u}_{\lambda} \quad \text { in } L^{2 s^{\prime}}(\Omega) \text { and in } L^{r}(\Omega) \text { as } n \rightarrow \infty .
$$

Assuming that $\bar{u}_{\lambda}=0$ and using $y_{n}=u_{n} /\left\|u_{n}\right\|, n \geq 1$, as in the proof of Proposition 3.3, we reach a contradiction. So, $\bar{u}_{\lambda} \neq 0$ and $\bar{u}_{\lambda} \in S(\lambda)$. Then $\bar{u}_{\lambda}=\inf C \in S(\lambda)$ and since C is an arbitrary chain, we can apply the Kuratowski-Zorn lemma and find $\bar{u}_{\lambda} \in S(\lambda)$, a minimal element. From Lemma 4.3 of Filippakis, Kristaly and Papageorgiou [6] it follows that $S(\lambda)$ is downward directed (i.e. if $u, u^{\prime} \in S(\lambda)$, one can find $y \in S(\lambda)$ such that $\left.y \leq \min \left\{u, u^{\prime}\right\}\right)$. Therefore, we conclude that $\bar{u}_{\lambda} \in \operatorname{int} C_{+}$is the smallest positive solution of $\left(\mathrm{P}_{\lambda}\right)$.

Summarizing the above results for problem $\left(\mathrm{P}_{\lambda}\right)$, we conclude that the following bifurcation-type theorem holds true:

Theorem 3.6. If hypotheses $\mathrm{H}(\beta)$ and $\mathrm{H}(f)$ hold, then there exists $\lambda_{*}>0$ such that:
(a) for $\lambda>\lambda_{*}$, problem $\left(\mathrm{P}_{\lambda}\right)$ has at least two positive smooth solutions $u_{0}, \widehat{u} \in \operatorname{int} C_{+} ;$
(b) for $\lambda=\lambda_{*}$, problem $\left(\mathrm{P}_{\lambda}\right)$ has at least one positive solution $u_{*} \in \operatorname{int} C_{+}$;
(c) for $\lambda \in\left(0, \lambda_{*}\right)$, problem $\left(\mathrm{P}_{\lambda}\right)$ has no positive solution.

Moreover, problem $\left(\mathrm{P}_{\lambda}\right)$ has a smallest positive solution $\bar{u}_{\lambda} \in \operatorname{int} C_{+}$, for every $\lambda \geq \lambda_{*}$.

Acknowledgements. This work was supported in part by the Portuguese Foundation for Science and Technology (FCT-Fundação para a Ciência e a Tecnologia), through CIDMA - Center for Research and Development in Mathematics and Applications, within project UID/MAT/04106/2013 and, for the third author, through the Sabbatical Fellowship SFRH/BSAB/113647/2015 during his sabbatical leave, while he was a Visiting Professor at the Department of Information Engineering, Computer Science and Mathematics (DISIM) of the University of L'Aquila (Italy). The hospitality and partial support of DISIM are gratefully acknowledged.

References

[1] S. Aizicovici, N.S. Papageorgiou and V. Staicu, Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints, Mem. Amer. Math. Soc. 196 (915), 2008.
[2] H. Amann, On the number of solutions of nonlinear equations in ordered Banach spaces, J. Funct. Anal. 11 (1972), 346-384.
[3] H. Brézis and L. Nirenberg, H^{1} versus C^{1} local minimizers, C.R. Math. Acad. Sci. Paris 317 (1993), 465-472.
[4] E.N. Dancer, On the number of positive solutions of weakly nonlinear elliptic equations when a parameter is large, Proc. London Math. Soc. 53 (1986), 429-452.
[5] N. Dunford and J.T. Schwartz, Linear Operators, Part. I, Interscience, New York, 1958.
[6] M. Filippakis, A. Kristaly and N.S. Papageorgiou, Existence of five nonzero solutions with exact sign for a p-Laplacian equation, Discrete Contin. Dyn. Systems, Ser. A 24 (2009), 405-440.
[7] N. Garofalo and F.H. Lin, Unique continuation for elliptic operators: A geometricvariational approach, Comm. Pure Appl. Math. 40 (1987), 347-366.
[8] L. Gasinski and N.S. Papageorgiou, Nonlinear Analysis, Chapman \& Hall/CRC Press, Boca Raton, 2006.
[9] , Dirichlet problems with double resonance and an indef- inite potential, Nonlinear Anal. 75 92012), 4560-4595.
[10] , Bifurcation-type results for nonlinear parametric elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A. 142 (2012), 595-623.
[11] S. Heikkila and V. Lakshmikantham, Monotone Iterative Techniques for Discontinuous Non-linear Differential Equations, Marcel Dekker, New York, 1994.
[12] S. Kyritsi and N.S. Papageorgiou, Multiple solutions for superlinear Dirichlet problems with an indefinite potential, Ann. Mat. Pura Appl. 192 (2013), 297-315.
[13] S. Lin, On the number of positive solutions for nonlinear elliptic equations when a parameter is large, Nonlinear Anal. 16 (1991), 263-297.
[14] D. Mugnai and N.S. Papageorgiou, Resonant nonlinear Neumann problems with indefinite weight, Ann. Sc. Norm. Super Pisa Cl. Sci. Vol. XI, Fasc. 4 (2012), 729-788.
[15] T. Ouang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problems, J. Differential Equations 146 (1998), 121-156.
[16] N.S. Papageorgiou and S. Kyritsi Yiallourou, Handbook of Applied Analysis, Springer, New York, 2009.
[17] P. Rabinowitz, Pairs of positive solutions of nonlinear elliptic partial differential equations, Indiana Univ. Math. J. 23 (1973), 172-185.
[18] R. Showalter, Hilbert Space Methods for Partial Differential Equations, Pitman, London, 1977.
[19] M. Struwe, Variational Methods, Springer Verlag, Berlin, 1990.
[20] J. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202.

Sergiu Aizicovici
Department of Mathematics
Ohio University
Athens, OH 45701, USA
E-mail address: aizicovs@ohio.edu

Nikolatos S. Papageorgiou
Department of Mathematics
National Technical University
Zografou Campus
Athens 15780, GREECE
E-mail address: npapg@math.ntua.gr

Vasile Staicu
CIDMA - Center for Research and Development
in Mathematics and Applications
Department of Mathematics
University of Aveiro
Aveiro, PORTUGAL
E-mail address: vasile@ua.pt

[^0]: 2010 Mathematics Subject Classification. 35J20, 35J605
 Key words and phrases. Reaction of superdifussive type; maximum principle; local minimizer; mountain pass theorem; bifurcation type theorem; indefinite and unbounded potential.

