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ADDENDUM

Andrzej Nowakowski — Andrzej Rogowski

“Dependence on parameters for the Dirichlet problem
with superlinear nonlinearities”

(Topol. Methods Nonlinear Anal. 16 (2000), 145–160)

6. Example

Consider the problem

(6.1)
x′′(t) +Wx(t, x(t)) = 0, a.e. in [0, 1],

x′(0) = 0 = x′(1)

where W ( · , x), x ∈ Rn, is a measurable function in [0, 1], W (t, · ), t ∈ [0, 1],
is a convex, continuously Frechet differentiable function, such that its Fenchel
conjugate has the derivative dW ∗q (t, q)/dt at (t, 0), t ∈ [0, 1] and W satisfies the
following growth condition:

• there exist 0 < β1 < β2, q1 > 1, q > 2, k1 ≥ 0, k2 > 0 such that for
x ∈ Rn

k1 +
β1
q1
‖x‖q1 ≤W (t, x) ≤ β2

q
‖x‖q + k2.

In the notation of the paper we have L(t, x′) = |x′|2/2 and V (t, x) =W (t, x).
It is easily seen that assumptions (H) and (H1) are satisfied. Therefore what we
have to do is to construct a nonempty set X defined in Section 1. To this effect
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let us take any k > 0 and let X denote the same as in Section 1 with the new L
and V . We assume the following hypotheses:

(H1′) k3 >
(
β2
q

)
kq + k2,

k3 > k

(
qβ
1/(q−1)
2

q − 1

)
(k + k2 − k1) + 1)q−1 +

∫ 1
0
W (t, 0) dt,(

qβ
1/(q−1)
2

q − 1

)
(k + k2 − k1) + 1)q−1 ≤

1
3
πk,(

q1
q

)1/q1(k
3

)q/q1
+ ((k2 − k1)q1)1/q1 ≤

k

3
,

(H2)
d

dt
W ∗q (0, 0) 6= 0 or

d

dt
W ∗q (1, 0) 6= 0.

We shall show that the set X = {v ∈ X̃ : 0 < ‖v‖L∞ ≤ k} where

X̃ =
{
x+ cx ∈ X : x ∈ A0, cx ∈ Rn is such that∫ 1
0
Wx(t, x(t) + cx) dt = 0,

and p(t) = x′(t), t ∈ [0, 1] belongs to A0,0
}

is the set X which we are looking for. That means: we must prove that for each
function v ∈ X the appropriate primitive of the function

(6.2) t→
∫ t
0
Wx(τ, v(τ)) dτ = w′(t),

belongs toX i.e. w(t) = cw+
∫ t
0 w
′(s) ds with cw such that

∫ 1
0 Wx(τ, w(τ)) dτ = 0.

It is obvious that w′ ∈ A0,0. Therefore we have to show that ‖w‖L∞ ≤ k
— by the first two of assumptions (H1′) we shall get then also the inequality∫ 1
0 W (t, w(t)) dt ≤ (1/2)

∫ 1
0 |w

′(t)|2dt+ k3. Moreover, we have also to check that
w is not identically equal to 0. If we take p(t) = w′(t) (w′(t) defined by (6.2))
then by estimation theorem for subgradients of convex functions (taking into
account the estimations on W (t, x)) we observe that

‖p′‖L∞ ≤
(
qβ
1/(q−1)
2

q − 1

)
(k + k2 − k1) + 1)q−1

and next applying the estimation for the function by its derivative (for functions
with zero at ends) we have

‖w′‖L2 ≤
1
π
‖p′‖L∞ .

Using the last two assumptions of (H1′) we obtain

‖w‖L∞ ≤ k.
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Moreover, w 6= 0. Actually, if w(t) ≡ 0 for some v ∈ X then Wx(t, v(t)) = 0 for
all t ∈ [0, 1]. This, by convexity of W (t, · ) means that v(t) = W ∗q (t, 0) for all
t ∈ [0, 1]. By (H2), the von Neumann’s boundary conditions of v could not be
satisfied. Therefore w 6= 0 and it belongs to X. It is also clear that the set X
is nonempty and, again by (H2) the zero function is not a solution to (6.1).
Thus all assumptions of Theorem 4.2 are satisfied, so we come to the following
theorem.

Theorem 6.1. There exists a pair (x, p) being a solution to (6.1) and such
that

J(x) = min
x∈X
J(x) = min

p∈Xd
JD(p) = JD(p).

“Periodic Solutions of Lagrange Equations”
(Topol. Methods Nonlinear Anal. 22 (2003), 167–180)

5. Example

Let us denote by P the positive cone in Rn i.e. P = {x ∈ Rn : xi > 0, i =
1, . . . , n} and by P = {x ∈ Rn : xi ≥ 0, i = 1, . . . , n}. We say that x ≥ y for
x, y ∈ Rn if x− y ∈ P .
Consider the problem

(k(t)x′(t))′ + Vx(t, x(t)) = 0, a.e. in R,(5.1)

x(0) = x(1), x′(0) = x′(1)(5.1’)

where V ( · , x) is a 1-periodic, measurable function in R, V (t, · ) is a continuously
Frechet differentiable function. In the notation of the paper we have L(t, x′) =
(1/2)k(t)|x′|2. If b, c ∈ Rn by bc we always mean a vector [bici]i=1,... ,n. We set
the basic hypotheses we need:

(H1’) The function k(t) is absolutely continuous, periodic and positive for
t ∈ [0, 1], k(1) = 1,

∫ 1
0 Vx(t, 0) dt 6= 0, and let c0 ∈ Rn be such that∫ 1

0 Vx(t, c0) dt = 0,
(H2’) For a given θ ∈ P , there exists v ∈ P and w ∈ −P such that Vx(t, c0 +

βv) is positive, Vx(t, c0 + βw) is negative, for t ∈ [0, 1], and

(5.2)
∫ 1
0
Vx(t, c0 + β(v − w)) dt ≤ θv,

∫ 1
0
Vx(t, c0 + β(v − w)) dt ≤ −θw

and

−
∫ 1
0
Vx(t, c0 + β(w − v)) dt ≤

∫ 1
0
Vx(t, c0 + β(v − w)) dt.

where θv = [θivi]i=1,... ,n, βv = [βivi]i=1,... ,n, and β = 2θ
∫ 1
0 (1/k(r)) dr

and the growth condition is satisfied i.e. there exist 0 < β1, q1 > 1,
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k1 ∈ R such that for each y ∈ X = {x ∈ A : x′ ∈ A, x(t) ∈ I, t ∈
[0, 1], x(0) = x(1) = 0, x′(0) = x′(1)}, where I = {x ∈ Rn : βw ≤ x ≤
βv} and for all c ∈ Rn

(5.3) k1 + β1|c|q1 ≤
∫ 1
0
V (t, c0 + y(t) + c) dt.

(H3’) We assume that if cv is a minimizer of the functional c→
∫ 1
0 V (t, v+c) dt

and cw is a minimizer of the functional c →
∫ 1
0 V (t, w + c) dt then

w < v+cv, w+cw < v and V (t, · ) is convex in the set co(D) for t ∈ [0, 1],
whereD = {x ∈ Rn : c0+w−v ≤ x ≤ c0+v−w}. Moreover, assume that
there exist l, l1 ∈ L2([0, 1],R) such that sup{V (t, x) : x ∈ co(D)} ≤ l(t)
and sup{Vxi(t, x) : x ∈ co(D)} ≤ l1(t) for t ∈ [0, 1], i = 1, . . . , n (here
co(D) denotes the convex hull of D).

We would like to stress that because of (H3’) each function xj→Vxj (t, (x1, . . .,
xj , . . . , xn)), j = 1, . . . , n, t ∈ [0, 1], is increasing for (x1, . . . , xj , . . . , xn) ∈ D
and in consequence for each x ∈ X the following inequalities hold: Vx(t, c0 +
β(w− v)) ≤ Vx(s, x(s) + cx) ≤ Vx(t, c0 + β(v−w)) (we use the observation that
c0 − βv ≤ cx ≤ c0 − βw).
It is easily seen that assumptions (H) and (H1) are satisfied. Therefore, what

we have to do is to construct a nonempty set X. We prove that X is our set X.
To this effect let us define in X the operator A by the formula

(5.4) Ax(t) =
∫ t
0

1
k(r)

(∫ 1
r

Vx(s, x(s) + cx) ds
)
dr

−
∫ t
0 (1/k(r)) dr∫ 1
0 (1/k(r)) dr

∫ 1
0

1
k(r)

(∫ 1
r

Vx(s, x(s) + cx) ds
)
dr.

Then by (H2’)

Ax(t) ≤
∫ t
0

1
k(r)

∫ 1
r

Vx(s, c0 + β(v − w)) ds dr

−
∫ t
0 (1/k(r)) dr∫ 1
0 (1/k(r)) dr

∫ 1
0

1
k(r)

(∫ 1
r

Vx(s, c0 + β(w − v)) ds
)
dr

≤ 2
∫ 1
0

1
k(r)

∫ 1
0
Vx(s, c0 + β(v − w)) ds dr ≤ 2θ

∫ 1
0

1
k(r)
dr · v = βv.

Similarily, again using (H2’), we prove the second needed inequality. Hence Ax ∈
X. Observe that if we take p̃(t) = k(t)(Ax(t))′ then by (5.4)−p̃′(t) = Vx(t, x(t)+
cx). It is clear that X contains at least one element w such that w(0) = w(1) = 0.
What we still have to check is the relation (1.5). By (H3’) V (t, · ) is convex and
by (H1’) it is continuously differentiable. However subdifferential is a global
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notion thus we need to extend convexity of V (t, · ) to the whole space. To this
effect let us define

V̆ (t, x) =

{
V (t, x) if x ∈ co(D), t ∈ [0, 1],
∞ if x /∈ co(D), t ∈ [0, 1].

As our all investigation reduce to the set D, therefore V̆ = V in it. We need this
notation only for the purpose of duality in Section 2. Of course (1.5) is satisfied
for V̆ in X. Therefore X is our set X and problem (5.1) has at least one nonzero
(because of (H1’)) periodic solution.
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