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LIMITING CASES OF ASYMPTOTICALLY POSITIVE
LINEAR CONDITIONS AND SOLVABILITY

OF STURM–LIOUVILLE BOUNDARY-VALUE PROBLEMS
FOR DUFFING EQUATIONS

Huang Qi — Dong Yujun

Abstract. In this paper we study the solvability of Sturm–Liouville BVPs
for Duffing equations by means of homotopy continuation methods. We

propose a new kind of solvable conditions on the nonlinear function in the

equation. This kind of conditions can be seen as some limiting cases of
the well-known asymptotically positive linear conditions. The obtained

results generalize and unify some previous results by S. Villegas, T. Ma
and L. Sanchez, and Y. Dong, respectively.

1. Introduction and main results

Consider the Sturm–Liouville boundary value problem

(p(t)x′(t))′ + q0(t)x(t) + h(t, x(t)) + g(t, x(t)) = 0,(1.1)

x(0) cosα− p(0)x′(0) sinα = 0,(1.2)

x(1) cosβ − p(1)x′(1) sinβ = 0.(1.3)
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ptotically positive linear conditions, Fučik spectrum, existence of solutions, homotopy contin-
uation methods.

Partially supported by the National Natural Science Foundation of China (10251001), the

Educational Committee Foundation of Jiangsu, the Natural Science Foundation of Jiangsu
(BK2002023).

c©2005 Juliusz Schauder Center for Nonlinear Studies

367



368 Huang Qi — Dong Yujun

where p: [0, 1] → (0,∞) is positive and absolutely continuous, q0 ∈ H0(p, α, β)
(its meaning will be given in the following Definition 1.1); α, β ∈ R are fixed
with 0 ≤ α < π, 0 < β ≤ π; h: [0, 1] × R → R is a L1-Carathéodory function,
i.e. h (t, · ) is continuous on R for a.e. t ∈ (0, 1), h( · , x) is measurable on (0,1)
for each x ∈ R, and for any constant r > 0 there exits some function ρr ∈
L1(0, 1) such that |h(t, x)| ≤ ρr(t) for a.e. t ∈ (0, 1) and all x ∈ R with |x| ≤ r;
g: (0, 1) × R → R is also a Carathéodory function such that |g(t, x)| ≤ ĝ(t) for
x ∈ R a.e. t ∈ (0, 1), where ĝ ∈ L1(0, 1). In the following we always denote by
f(t, x) := h(t, x) + g(t, x).

For readers’ convenience we list a definition by the second author bellow.

Definition 1.1 (cf. [1, Definition 2.2]). For any q ∈ L1(0, 1) we say q ∈
Hn(p, α, β) for some nonnegative integer n if and only if the linear boundary
value problem (1.2)–(1.3) and

(1.4) (p(t)x′(t))′ + q(t)x(t) = 0

has a nontrivial solution with exactly n zeros on (0, 1).

Because we assumed q0 ∈ H0(p, α, β), by Definition 1.1, (1.2)–(1.4) has
a nontrivial solution x0(t). Without loss of generality we assume x0(t) > 0
for t ∈ (0, 1). For any a, b ∈ L1(0, 1), let a ≤ b denote a(t) ≤ b(t) for a.e.
t ∈ (0, 1); and let a < b denote a ≤ b and a(t) < b(t) for t in a subset of (0, 1)
with positive measure. Let Ci(0, 1) = {x: [0, 1] → R | x(i)(t) is continuous for
t ∈ [0, 1]} with the usual norm and denote by C0(0, 1) = C(0, 1). Let H1(0, 1) =
{x ∈ C(0, 1) | x′ ∈ L2(0, 1)} and W 2,1

0 (0, 1) = {x ∈ C1(0, 1) | x′′ ∈ L1(0, 1)
and x satisfies (1.2)–(1.3)}. The following theorems are the main results of this
paper.

Theorem 1.2. Assume that α 6= 0, β 6= π and

(a) there exists some r > 0 such that for |x| ≥ r, and a.e. t ∈ (0, 1) one has

(1.5) h(t, x)/x ≥ 0;

(b) there exist q ∈ L1(0, 1) and q1,α ∈ H0(p, α, π), q2,β ∈ H0(p, 0, β) with
0 < q ≤ q1,α − q0, q ≤ q2,β − q0 such that for x ≥ r, and a.e. t ∈ (0, 1)
one has

(1.6) h(t, x)/x ≤ q(t);

(c) there exists ρ > 0 such that for any x+, x− ∈ W 2,1
0 (0, 1) with x+(t) ≥

ρx0(t) > 0, x−(t) ≤ −ρx0(t) < 0, we have

(1.7)
∫ 1

0

f(t, x−(t))x0(t) dt ≤ 0 ≤
∫ 1

0

f(t, x+(t))x0(t) dt,

where we recall that f(t, x) = h(t, x) + g(t, x).
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Then (1.1)–(1.3) has at least one solution.

Theorem 1.3. Assume that α = 0 or β = π, assumption (a) of Theorem 1.2
is satisfied and

(a) there exists some function F ∈ L1(0, 1) such that

(1.8) h(t, x) ≤ F (t),

for x ≥ r, a.e. t ∈ (0, 1);
(b) there exists ρ > 0 such that for any x+, x− ∈ W 2,1

0 (0, 1) with x+(t) ≥
ρx0(t) > 0, x−(t) ≤ −ρx0(t) < 0, we have

(1.9)
∫ 1

0

f(t, x−(t))x0(t) dt < 0 <
∫ 1

0

f(t, x+(t))x0(t) dt.

Then (1.1)–(1.3) has at least one solution.

Several special cases of our theorems were discussed in other papers. In 1995,
T. Ma and L. Sanchez in [5] discussed Dirichlet BVP

x′′ + π2x+ h(t, x) + g(t, x) = 0,(1.10)

x(0) = 0 = x(1),(1.11)

and obtained the following

Theorem 1.4. Assume that

(a) h(t, x)/x ≥ 0 for |x| ≥ r;
(b) there exists some function F ∈ L1(0, 1) such that h(t, x) ≤ F (t) for

x ≤ −r;
(c) ∫ 1

0

f(t, x−) sinπt dt < 0 <
∫ 1

0

f(t, x+) sinπt dt

where x+(t) ≥ ρ sinπt, x−(t) ≤ −ρ sinπt, ρ > 0 is a constant.

Then (1.10), (1.11) has at least one solution.

Remark 1.5. This theorem is a special case of Theorem 1.3. In fact, when
α = 0, β = π, (1.2), (1.3) reduces to (1.11). And x = sinπt is a nontrivial
solution of

x′′ + π2x = 0,

x(0) = 0 = x(1).

So π2 ∈ H0(1, 0, π) and the assumptions in Theorem 1.4 are special cases of
Theorem 1.3.

The following two corollaries of Theorem 1.3 are new results.
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Example 1.6. Let t1 ∈ (0, 1) be fixed,

q0(t) :=


π2

4t21
for t ∈ (0, t1),

π2

4(1− t1)2
for t ∈ (t1, 1),

h(t, x) :=

{
xe−x + sin t for x < 0,

arctanx+ sin t for x > 0.

The following problem

(1.12) x′′ + q0(t)x+ h(t, x) = 0, x(0) = 0 = x(1),

has at least one solution. In fact, let

x0(t) = sin
π

2t1
t for t ∈ (0, t1),

x0(t) = sin
π

2(1− t1)
(t− t1) for t ∈ (t1, 1).

Then x = x0(t) is a nontrivial solution of

x′′ + q0(t)x = 0,

x(0) = 0 = x(1).

And by Definition 1.1, we have q0 ∈ H0(1, 0, π). All the assumptions of Theo-
rem 1.3 are satisfied. Hence, (1.11), (1.12) has a solution.

Let α = 0, β = π/2, (1.2), (1.3) reduce to

(1.13) x(0) = 0 = x′(1),

and x = sin(πt/2) is a solution of (1.13) and x′′ + (π2/4)x = 0. We can consider
(1.13) and

(1.14) x′′ +
π2

4
x+ h(t, x) + g(t, x) = 0.

From Theorem 1.3 we have

Corollary 1.7. Assume that

(a) h(t, x)/x ≥ 0 for |x| ≥ r;
(b) there exists some function F ∈ L1(0, 1) such that h(t, x) ≤ F (t) for

x ≥ r;
(c) ∫ 1

0

f(t, x−) sin
π

2
t dt < 0 <

∫ 1

0

f(t, x+) sin
π

2
t dt

where x+(t) ≥ ρ sin(πt/2), x−(t) ≤ −ρ sin(πt/2)t for some ρ > 0.
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Then the problem (1.13), (1.14) has at least one solution.

In 1998 and in 2002, S. Villegas in [4] and Dong in [2] discussed the following
Neumann BVP respectively

x′′ + h(t, x) + g(t, x) = 0,(1.15)

x′(0) = 0 = x′(1).(1.16)

The following result was obtained.

Theorem 1.8. Assume that

(a) h(t, x)/x ≥ 0 for |x| ≥ r;
(b) h(t, x)/x ≤ π2/4 for x ≥ r;
(c) ∫ 1

0

f(t, x−) sin
π

2
t dt ≤ 0 ≤

∫ 1

0

f(t, x+) sin
π

2
t dt

where x+(t) ≥ ρ sin(πt/2) > 0, x−(t) ≤ −ρ sin(πt/2) < 0.

Then (1.15), (1.16) has at least one solution.

Note that when α = β = π/2, (1.2), (1.3) reduce to (1.16), and 0 ∈ H0(1, π/2,
π/2), π2/4 ∈ H0(1, π/2, π) ∩H0(1, 0, π/2). As a result, Theorem 1.8 is a special
case of Theorem 1.2. The following example shows our Theorem 1.2 can be
applied to some new problems.

Example 1.9. Let λ0 > 0 satisfy

coshλ0 − λ0 sinhλ0 = 0, h(t, x) = λ2
0(sinxt)

2 + sin t as x ≥ 0,

and

h(t, x) = xe−x + sin t as x < 0.

Consider the following problem

x′′ − λ2
0x+ h(t, x) = 0,(1.17)

x′(0) = 0, x(1)− x′(1) = 0.(1.18)

As α = π/2, β = π/4, p(t) ≡ 1, (1.2), (1.3) reduce to (1.18). It is easy to
check that x = coshλ0t is a solution of (1.18) and x′′ − λ2

0x = 0, and x = t is
a solution of x′′ = 0, x(0) = 0, x(1) − x′(1) = 0. Thus, −λ2

0 ∈ H0(1, π/2, π/4),
0 ∈ H0(1, 0, π/4). As before we also have π2/4 ∈ H0(1, π/2, π). By Theorem
1.2, (1.17), (1.18) has a solution.

The assumption in (a) of Theorem 1.2 is sharp. The following example will
illustrate its precise meaning. Note that for the special case (b) of Theorem 1.8,
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an example has been given in [3]. Let φ(t, p, q, a, γ) be the unique solution of

φ′ =
1
p(t)

cos2 φ+ q(t) sin2 φ, t ∈ (a, b),

φ(a) = γ.

From [1], φ(t, p, q, a, γ) is monotonously increasing with respect to q and q ∈
H0(p, (a, b), α, β) if and only if φ(b, p, q, a, α) = β, i.e. the following problem

(p(t)x′(t))′ + q(t)x(t) = 0, t ∈ (a, b),

x(a) cosα− p(a)x′(a) sinα = 0,

x(b) cosβ − p(b)x′(b) sinβ = 0,

has a nontrivial solution with no zeros on (a, b). Note that H0(p, α, β) =
H0(p, (0, 1), α, β) from Definition 1.1.

Example 1.10. Let q1,α ∈ H0(p, α, π), q+ = q1,α + ε such that

φ(t1, p, q+, 0, α) = π for some t1 ∈ (0, 1) and φ(1, p, q+, 0, α) < π + β.

Let
q−(t) = q+(t) for a.e. t ∈ (0, t1),

q−(t) = q1,α(t) + µ for a.e. t ∈ (t1, 1)

such that φ(1, p, q−, t1, 0) = β. Let f(t) = 0 for t ∈ (0, t1) and f(t) = 1 for
t ∈ (t1, 1). Then the following problem (1.2), (1.3) and

(p(t)x′)′ + q+(t)x+ − q−(t)x− = f(t)

has no solutions. In fact, as elements in L1(0, t1), q+ = q− ∈ H0(p, (0, t1), α, π),
and hence, the following problem (1.2) and

(p(t)x′)′ + q+(t)x = 0, t ∈ (0, t1),(1.20)

x(t1) = 0,(1.21)

has a nontrivial solution x∗(t). If x(t) is a solution, then x satisfies (1.20),
(1.2). So, x(t) = Cx∗(t), t ∈ (0, t1) for some constant C. From (1.21) we have
x(t1) = 0. In the following we will obtain a contradiction in two cases.

Case 1. x′(t1) ≥ 0. From (1.19), x(t) > 0 for t ∈ (t1, 1), and x(t) satisfies

(p(t)x′)′ + q+(t)x = 1, t ∈ (t1, 1),(1.22)

x(t1) = 0, x(1) cosβ − p(1)x′(1) sinβ = 0.(1.23)

There exists ε1 > 0 such that φ(1, p, q+ + ε1, t1, 0) = β, i.e. the problem (1.23)
and

(1.24) (p(t)x′)′ + (q+(t) + ε1)x = 0, t ∈ (t1, 1)
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has a nontrivial solution u0(t) > 0 for t ∈ (t1, 1). Multiplying (1.22) with u0(t)
and integrating over (t1, 1), we have from (2.24) that∫ 1

t1

u0(t) dt =
∫ 1

t1

((p(t)x′)′ + (q+(t) + ε1)x)u0(t) dt− ε1

∫ 1

t1

u0(t) dt

= −ε1
∫ 1

t1

u0(t) dt,

a contradiction.
Case 2. x′(t1) < 0. From Case 1, x(t) < 0 for t ∈ (t1, 1). And x(t) satisfies

(1.23) and

(1.25) (p(t)x′)′ + q−(t)x = 1, t ∈ (t1, 1).

Because φ(1, p, q−, t1, 0) = β, there exists v0(t) > 0 for t ∈ (t1, 1) such that
x = v0(t) is a nontrivial solution of (1.23) and

(p(t)x′)′ + q−(t)x = 0, t ∈ (t1, 1).

Multiplying (1.25) with v0(t) and integrating over (t1, 1), we have

0 =
∫ 1

t1

((p(t)x′)′ + q−(t)x(t))v0(t) dt =
∫ 1

t1

v0(t) dt,

a contradiction.

The conditions (1.5), (1.6) and (1.5), (1.8) have some relationship with the
well-known asymptotically positive linear conditions. We only explain (a), (b)
of Theorem 1.8 as an example.

As we know (see [8] for references) any (µ, ν) ∈ R2 satisfying

(1.26)
2
π

=
1
√
µ

+
1√
ν
,

is a second resonant point of the Fučik spectrum associated with

x′′ + µx+ − νx− = 0,

x′(0) = 0 = x′(1).

So in order to discuss the solvability of (1.15), (1.16), we can assume

0 ≤ h(t, x)/x ≤ µ, x ≥ r > 0, a.e. t ∈ (0, 1),(1.27)

0 ≤ h(t, x)/x ≤ ν, x ≤ −r, a.e. t ∈ (0, 1).(1.28)

As ν →∞, from (1.26) we have µ→ π2/4. And hence (1.27), (1.28) become

0 ≤ h(t, x)/x ≤ π2/4, x ≥ r > 0, a.e. t ∈ (0, 1),(1.29)

0 ≤ h(t, x)/x, x < −r, a.e. t ∈ (0, 1).(1.30)
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Because (1.27), (1.28) are the well-known asymptotically positive linear condi-
tions, the conditions (1.29), (1.30) can be seen as some limiting cases of the
conditions. One can also refer to [3], [6], [7], [11] and the references therein for
other these two kinds of conditions. See also the closely relate paper [12] by
Mawhin and Ruiz for references.

In the following sections we give the proofs of Theorems 1.2 and 1.3, respec-
tively.

2. Proof of Theorem 1.2

In this section we give

Proof of Theorem 1.2. Let (Lx)(t) := (p(t)x′(t))′ + q0(t)x(t) + q(t)x(t)
for any x ∈ W 2,1

0 (0, 1), (Nx)(t) := q(t)x(t) + f(t.x(t)). By assumption (b), L is
invertible and L−1:L1(0, 1) → W 2,1

0 (0, 1) is continuous. Because N :H1(0, 1) →
L1(0, 1) is continuous and the embedding from W 2,1

0 (0, 1) to H1(0, 1) is com-
pact, we have L−1N :H1(0, 1) → H1(0, 1) is compact. Obviously, (1.1)–(1.3)
is equivalent to x + L−1Nx = 0, x ∈ H1(0, 1). In view of Leray–Schauder
Principle, in order to prove the solvability of (1.1)–(1.3), we only need discuss
x + (1 − λ)L−1Nx = 0, λ ∈ (0, 1), x ∈ H1(0, 1), equivalently we only need to
prove that solutions of the following auxiliary problem are à priori bounded with
respect to the norm || · ||H1 of H1(0, 1):

(p(t)x′(t))′ + q0(t)x(t) + λq(t)x(t) + (1− λ)f(t, x(t)) = 0,

x(0) cosα− p(0)x′(0) sinα = 0,

x(1) cosβ − p(1)x′(1) sinβ = 0.

We argue by contradiction. We assume that {xn} ⊂ H1(0, 1) with ||xn||H1 →∞
and {λn} ⊂ (0, 1) such that

(2.1) (p(t)x′n(t))′ + q0(t)xn(t) + λnq(t)xn(t) + (1− λn)f(t, xn(t)) = 0,

xn(0) cosα− p(0)x′n(0) sinα = 0,(2.2)

xn(1) cosβ − p(1)x′n(1) sinβ = 0.(2.3)

Set yn = xn/||xn||H1 , then ||yn||H1 = 1. So it is possible to extract a subse-
quence (denoted also by {yn}) converging weakly to some function y0 ∈ H1(0, 1)
and strongly in C(0, 1). In the following we will take three steps to reach a con-
tradiction.

Step 1. For every ε > 0 there holds

(2.4) ||xn||−1
H1

∫ 1

0

|fn(t, xn(t))x0(t)| dt ≤ 2
∫

xn(t)≥r

q(t)y+
n (t)x0(t) dt+ ε,

for n large enough, where fn(t, xn(t)) := λnq(t)xn(t) + (1− λn)f(t, xn(t)).
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In fact, using the definition of fn (2.1) can be abbreviated

(2.5) (p(t)x′n(t))′ + q0(t)xn(t) + fn(t, xn(t)) = 0,

and

(2.6)
∫ 1

0

[(p(t)x′n(t))′ + q0(t)xn(t)]x0(t) dt+
∫ 1

0

fn(t, xn(t))x0(t) dt = 0.

By the definitions of q0 and x0 we have

0 = −
∫ 1

0

[(p(t)x′n(t))′ + q0(t)xn(t)]x0(t) dt =
∫ 1

0

fn(t, xn(t))x0(t) dt

=
∫

xn(t)≥r

fn(t, xn(t))x0(t) dt+
∫
|xn(t)|≤r

fn(t, xn(t))x0(t) dt

+
∫

xn(t)≤−r

fn(t, xn(t))x0(t) dt,

and

−
∫

xn(t)≤−r

fn(t, xn(t))x0(t) dt ≤
∫

xn(t)≥r

fn(t, xn(t))x0(t) dt+ C1.

where C1 is a positive constant. From assumptions (a) and (b) we have

−
∫

xn(t)≥r

fn(t, xn(t))x0(t) dt ≤
∫

xn(t)≥r

q(t)x+
n (t)x0(t) dt+

∫ 1

0

ĝ(t)x0(t) dt,

and hence,∫ 1

0

|fn(t,xn(t))x0(t)| dt =
∫

xn(t)≥r

|fn(t, xn(t))x0(t)| dt

+
∫
|xn(t)|≤r

|fn(t, xn(t))x0(t)| dt+
∫

xn(t)≤−r

|fn(t, xn(t))x0(t)| dt

=
∫

xn(t)≥r

fn(t, xn(t))x0(t) dt−
∫

xn(t)≤−r

fn(t, xn(t))x0(t) dt

+
∫
|xn(t)|≤r

|fn(t, xn(t))x0(t)| dt ≤ 2
∫

xn(t)≥r

q(t)x+
n (t)x0(t) dt+ C2

where C2 is a positive constant. This yields (2.4).
Step 2. Denote by y+

0 (t) = max{y0(t), 0} for t ∈ [0, 1]. We have

(2.7) y+
0 6= 0.

In fact, if y+
0 = 0, from (2.4) we have

(2.8) ||xn||−1
H1

∫ 1

0

|fn(t, xn(t))x0(t)| dt→ 0.
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Let y ∈ C2(0, 1) denote an arbitrarily function satisfying the boundary value
conditions (1.2), (1.3). By (2.5),∫ 1

0

[(p(t)x′n(t))′ + q0(t)xn(t)]y(t) dt+
∫ 1

0

fn(t, xn(t))y(t) dt = 0.

And hence,∣∣∣∣ ∫ 1

0

[(p(t)y′n(t))′ + q0(t)yn(t)]y(t) dt
∣∣∣∣(2.9)

= ||xn||−1
H1 |

∫ 1

0

fn(t, xn(t))y(t) dt|

≤ ||xn||−1
H1

∫ 1

0

|fn(t, xn(t))y(t)| dt

= ||xn||−1
H1

∫ 1

0

|fn(t, xn(t))x0(t)||y(t)/x0(t)| dt

≤C3||y||C1 ||xn||−1
H1

∫ 1

0

|fn(t, xn(t))x0(t)| dt.

Here in the last inequality we used an inequality in [13, Lemma 3] as following

(2.10) |y(t)| ≤ C3||y||C1x0(t), t ∈ [0, 1].

From (2.8) and (2.10) we have∫ 1

0

[(p(t)y′n(t))′ + q0(t)yn(t)]y(t) dt→ 0.

Because yn → y0 in C(0, 1), integrating by parts we have

(2.11)
∫ 1

0

[(p(t)y′(t))′ + q0(t)y(t)]y0(t) dt = 0.

Let y(t) satisfy y(0) = y(1) = y′(0) = y′(1). It is obvious that such a y satisfies
(1.2), (1.3). From (2.11), we have

(2.12)
∫ 1

0

y′(t)[p(t)y′0(t) + ϕ(t)] dt = 0

where

(2.13) ϕ(t) =
∫ t

0

q0(τ)y0(τ) dτ.

Let C4 =
∫ 1

0
[p(t)y′0(t) + ϕ(t)] dt and ψ(t) := p(t)y′0(t) + ϕ(t) − C4, from (2.12),

(2.13) we have

(2.14)
∫ 1

0

y′(t)ψ(t) dt = 0.
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In the following we prove

(2.15) ψ(t) = 0 for a.e. t ∈ (0, 1).

In fact, because
∫ 1

0
ψ(t) dt = 0, if (2.15) is not satisfied, then there exist two

subsets E1, E2 ⊂ (0, 1) with non zero measures such that ψ(t) > 0 for t ∈ E1,
ψ(t) < 0 for t ∈ E2. Let

(2.16) e(t) :=


a > 0 for t ∈ E1,

b < 0 for t ∈ E2,

0 for t ∈ (0, 1) \ (E1 ∪ E2).

satisfy
∫ 1

0
e(t) dt = a ·meas(E1)+ b ·meas(E2) = 0. By the knowledge of smooth

approximations, there exists zε ∈ C2(0, 1) with zε(0) = zε(1) = 0 and
∫ 1

0
zε(t) dt

= 0 such that

(2.17) zε → e in L2(0, 1).

Denote by y(t) =
∫ t

0
zε(τ) dτ , then y ∈ W 2,1

0 (0, 1) and y(0) = y(1) = y′(0) =
y′(1) = 0. From (2.14) we have

(2.18)
∫ 1

0

zε(t)ψ(t) dt = 0.

Let ε→ 0+, from (2.17) we have

0 =
∫ 1

0

e(t)ψ(t) dt = a

∫
E1

ψ(t) dt+ b

∫
E2

ψ(t) dt > 0.

This is a contradiction. Now we have proved (2.15). From (2.15) it follows that

(p(t)y′0(t))
′ + ϕ′(t) = 0, a.e. t ∈ (0, 1);

i.e.

(2.19) (p(t)y′0(t))
′ + q0(t)y0(t) = 0, a.e. t ∈ (0, 1).

In the following, we prove y0 satisfies the boundary value conditions (2.2)
and (2.3). From (2.11), (2.19), we get

[p(t)y0(t)y′(t)− p(t)y′0(t)y(t)]
1
0 −

∫ 1

0

[(p(t)y′0(t))
′ + q0(t)y0(t)]y(t) dt = 0

and

(2.20) p(1)y0(1)y′(1)− p(1)y′0(1)y(1) = p(0)y0(0)y′(0)− p(0)y′0(0)y(0).

Because y is arbitrary, by changing y satisfying y(1) = y′(1) = 0 and y(0) 6= 0
from (2.20) and that y satisfies (2.2) we have y0 satisfies (1.2) and in a similar
way y0 satisfies (1.3). Now we have proved that y0 is a nontrivial solution of
(1.2)–(1.4) with q replaced by q0. Because x0 is also a nontrivial solution, so
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y0 = c · x0 for some constant c. Since we assumed y+
0 = 0, then y0(t) < 0 for

t ∈ [0, 1] and c < 0. From (2.6) we also have

λn

∫ 1

0

q(t)xn(t)x0(t) dt+ (1− λn)
∫ 1

0

f(t, xn(t))x0(t) dt = 0.

and

(2.21)
∫ 1

0

f(t, xn(t))x0(t) dt > 0.

Because xn(t) = ||xn||H1yn(t), and xn satisfies (2.1)–(2.3) and (2.8), we can
prove yn → y0 in C1(0, 1). Let yn = y0 + ỹn, then ỹn → 0 in C1(0, 1). Making
use of (2.10) again, we have

ỹn(t) ≤ C3||ỹn||C1 |y0(t)| = −C3||ỹn||C1y0(t).

As a result, xn(t) ≤ −ρx0(t) for n large enough. And hence, (2.21) contradicts
(1.7), and (2.7) is proved.

From the proof of (2.7) we can also find a point t1∈ [0, 1] such that y0(t1)=0.
In fact if it is not the case we have y0(t) > 0 for t ∈ [0, 1]. This will also lead to
a contradiction. Now for y0 we have three cases

(1) y0(a) = 0 = y0(b), y0(t) > 0 for t ∈ (a, b) ⊂ [0, 1];
(2) y0(t1) = 0, y0(t1) > 0 for t ∈ (t1, 1];
(3) y0(t1) = 0, y0(t1) > 0 for t ∈ [0, t1).

Step 3. Case (1) leads to a contradiction. In fact let

qn(t) =

{
hn(t, xn)/xn if xn(t) ≥ r,

q(t) if xn(t) ≤ r,
(2.22)

ξn(t) = q0(t) + λnq(t) + (1− λn)qn(t),(2.23)

gn(t) = (1− λn)(f(t, xn(t))− qn(t)xn(t)),(2.24)

then (2.1) becomes

(2.25) (p(t)y′n(t))′ + ξn(t)yn(t) + ||xn||−1
H1gn(t) = 0.

From (2.22), (2.23), and assumptions (a), (b), we have

q0(t) ≤ ξn(t) ≤ q0(t) + q(t) = min{q1,α(t), q2,β(t)}

for a.e. t ∈ (a, b), and ξn ⇀ ξ0 in L2(a, b) by going to subsequences if necessary
and q0 ≤ ξ0 ≤ q0 + q. Furthermore, by (2.24) there exists some g ∈ L1(a, b) such
that

|h(t, xn(t))− qn(t)xn(t)| ≤ g(t) for a.e. t ∈ (a, b).

From (2.25) and the Arzela–Ascoli theorem, we may assume yn → y0 in C1(0, 1).
Taking limits in (2.25) as n→∞ we have

(p(t)y′0(t))
′ + ξ0(t)y0(t) = 0, a.e. t ∈ (a, b).
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By the Sturm comparison theorem, this is impossible since y0(a) = 0 = y0(b)
and q0 ≤ ξ0 ≤ q0 + q. The proof is complete. �

3. Proof of Theorem 1.3

In this section we prove Theorem 1.3. To this end we need a continuation
theorem, which can be found in [9] and [10].

Let X,Z be Banach spaces, L: domL ∩X → Z be a linear operator. Recall
that if dim KerL = dim(Z/ImL) < ∞ and ImL is closed in Z, then L will be
called a Fredholm mapping of index zero. In this case there exist continuous
projectors P :X → X,Q:Z → Z such that ImP = KerL, ImL = KerQ and
L|domL ∩ KerP : domL ∩ KerP → ImL is invertible. As usual its inverse is
denoted by KP . If Ω is an open bounded subset of X, a map N :X → Z will
be called L-compact on Ω if QN(Ω) is bounded and KP (I − Q)N : Ω → X is
compact.

Lemma 3.1. Suppose that X,Z are Banach spaces, L: domL ∩ X → Z is
a Fredholm operator of index zero and N :X → Z is L-compact on Ω, where Ω
is an open bounded subset of X. If the following conditions are satisfied:

(a) For each λ ∈ (0, 1), every solution x of Lx = λNx satisfies x /∈ ∂Ω.
(b) QNx 6= 0 for x ∈ ∂Ω ∩ KerL and deg(ΛQN,Ω ∩ KerL, 0) 6= 0, where

Q:Z → Z is a continuous projector with ImL = KerQ and Λ: ImQ→
KerL is an isomorphism.

Then the operator equation Lx = Nx has one solution.

Proof of Theorem 1.3. Without loss of generality, we assume α = 0.
Now the boundary conditions (1.2), (1.3) can be rewritten

x(0) = 0,(3.1)

x(1) cosβ − p(1)x′(1) sinβ = 0.(3.2)

Denote by X = C1(0, 1), Y = L1(0, 1), and define

domL := W 2,1
0 (0, 1),

L: domL ⊂ X → Y, x(t) 7→ (p(t)x′(t))′ + q0(t)x(t),

N :X → Y, x(t) 7→ f(t, x(t)).

Then KerL = span {x0}, and we claim

(3.3) ImL =
{
x ∈ L1(0, 1)

∣∣∣∣ ∫ 1

0

x(t)x0(t) dt = 0
}
.
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In fact, let u1 be the unique solution of

(p(t)u′(t))′ + q0(t)u(t) = 0,

u(0) = 1, p(0)u′(0) = 0,

and let u2 be the unique solution of

(p(t)u′(t))′ + q0(t)u(t) = 0,

u(0) = 0, p(0)u′(0) = 1.

Then u2(t)/x0(t) ≡ constant and u1, u2 are linearly independent. For any
f ∈ ImL, assume x(t) is a solution of Lx = f , then x satisfies (3.1), (3.2) and

(3.4) (p(t)x′(t))′ + q0(t)x(t) + e(t) = 0.

The general solution of (3.4) is

(3.5) x(t) =
(
C1 +

∫ t

0

u2(τ)e(τ) dτ
)
u1(t) +

(
C2 −

∫ t

0

u1(τ)e(τ) dτ
)
u2(t).

From (3.1) and (3.2), we have C1 = 0 and f ∈ ImL if and only if
∫ 1

0
e(t)x0(t) dt =

0. And hence (3.3) is proved. Thus dim(KerL) = 1 = dim(Z/ImL), and L is
a Fredholm operator. For any x ∈ L1(0, 1) we have a decomposition x(t) =
ax0(t) + u(t) with

(3.6)
∫ 1

0

u(t)x0(t) dt = 0,

i.e.

a =
∫ 1

0

x(t)x0(t) dt
( ∫ 1

0

x0(t)2 dt
)−1

.

Define Q:x(t) 7→ ax0(t) for any x ∈ L1(0, 1) and P = Q|X , then ImP = KerL
and ImL = KerQ. And for any e ∈ ImL, from (3.5) we have

(3.7) (KP e)(t) =
∫ t

0

u2(τ)e(τ) dτu1(t) +
(
C2 −

∫ t

0

u1(τ)e(τ) dτ
)
u2(t),

and because u = KP e satisfies (3.6), C2 can be determined by

(3.8) C2

∫ 1

0

u2
2(t) dt =

∫ 1

0

∫ t

0

e(τ)(u1(τ)u2(t)− u2(τ)u1(t)) dτ dt.

By definition,

((I −Q)Nx)(t) = f(t, x(t))−
∫ 1

0

f(τ, x(τ))x0(τ) dτ
( ∫ 1

0

x0(t)2 dτ
)−1

x0(t).

Combining (3.7) and (3.8) we know that for any Ω ⊂ X is open and bounded,
KP (I −Q)N(Ω) is bounded and from the Ascoli–Arzela theorem, KP (I −Q)N :
Ω → X is compact. And hence, N is L-compact.
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In order to finish the proof we only need to verify two conditions.
Step 1. Consider the Brouwer degree d(ΛQN |Ker L,Ω, 0). For every x ∈

KerL, we have x(t) = ax0(t) for a real number a.
So we can choose Ω = {ax0(t) | |a| ≤ r}, Λ = I and

(ΛQNx)(t) =
∫ 1

0

f(t, x(t))x0(t) dtx0(t)

=
∫ 1

0

f(t, ax0(t))x0(t) dtx0(t) := ψ(a)x0(t).

Because aψ(a) = a
∫ 1

0
f(t, ax0(t))x0(t) dt > 0 as a ≥ r, it follows that

d(ΛQN |Ker L,Ω, 0) = d(ψ, [−r, r], 0) = d(I, [−r, r], 0) = 1.

Step 2. We are trying to make sure that the solution x of Lx + λNx = 0,
λ ∈ (0, 1) is bounded in the space C1(0, 1). Obviously, Lx+λNx = 0 is equivalent
to (3.1), (3.2) and

(3.9) (p(t)x′(t))′ + q0(t)x(t) + λf(t, x(t)) = 0.

From (3.9) and the definition of x0, we have

(3.10)
∫ 1

0

f(t, x(t))x0(t) dt = 0.

For any x ∈ L1(0, 1), let x(t) = ax0(t)+u(t) with u(t) satisfying (3.6). Then we
have

(p(t)u′(t))′ + q0(t)u(t) + λf(t, x(t)) = 0,(3.11)

u(0) = 0,(3.12)

u(1) cosβ − p(1)u′(1) sinβ = 0.(3.13)

From the former discussion and (3.7), (3.8) we find

(3.14) u(t) =
∫ t

0

λu2(τ)f(τ, x(τ)) dτu1(t)

+
(
C3 −

∫ t

0

λu1(τ)f(τ, x(τ)) dτ
)
u2(t),

and C3 satisfies

(3.15) C3

∫ 1

0

u2
2(t) dt =

∫ 1

0

∫ t

0

λf(τ, x(τ))u2(t)(u1(τ)u2(t)− u2(τ)u1(t)) dτ dt

From (3.14) we have

(3.16) u′(t) =
∫ t

0

λu2(τ)f(τ, x(τ))dτu′1(t)+
(
C3−

∫ t

0

λu1(τ)f(τ, x(τ)) dτ
)
u′2(t).
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And hence, there exists a constant C4 > 0 such that

(3.17) ||u||C1 ≤ C4

∫ 1

0

|f(τ, x(τ))| dτ.

On the other hand, from assumption (a) we have∫ 1

0

|f(t, x(t))x0(t)| dt =
∫

x(t)≥r

|f(t, x(t))x0(t)| dt

+
∫
|x(t)|≤r

|f(t, x(t))x0(t)| dt+
∫

x(t)≤−r

|f(t, x(t))x0(t)| dt

≤
∫

x(t)≥r

F (t)x0(t) dt+
∫
|x(t)|≤r

ρr(t)x0(t) dt+
∫

x(t)≤−r

|f(t, x(t))x0(t)| dt.

From (3.10) we have∫
x(t)≤−r

f(t, x(t))x0(t) dt = −
∫

x(t)≤−r

f(t, x(t))x0(t) dt

=
∫

x(t)≥r

f(t, x(t))x0(t) dt+
∫
|x(t)|≤r

f(t, x(t))x0(t) dt.

So,

(3.18)
∫ 1

0

|f(t, x(t))x0(t)| dt ≤ 2
∫ 1

0

(F (t) + ρr(t))x0(t) dt := C5.

For any given ε > 0, there exists an integrable function D = Dε(t) > 0 such that

|h(t, x(t))| ≤ ε|x · h(t, x(t))|+D(t)

for a.e. t ∈ (0, 1), x ∈ R. In fact, let D(t) = 1 for x ≥ 1/ε; let D(t) = 2ρr(t) for
−1/ε ≤ x ≤ 1/ε; let D(t) = 2F (t) for x ≤ −1/ε. So we obtain

(3.19)
∫ 1

0

|f(t, x(t))| dt ≤ ε

∫ 1

0

|x(t)h(t, x(t))| dt+
∫ 1

0

(D(t) + ĝ(t)) dt

≤ ε

∫ 1

0

|x(t)||h(t, x(t))| dt+ C6

= ε

∫ 1

0

|ax0(t) + u(t)||h(t, x(t))| dt+ C6

≤ ε|a|
∫ 1

0

|h(t, x(t))x0(t)| dt+ ε

∫ 1

0

|h(t, x(t))||u(t)| dt+ C6

≤ ε|a|C4 + ε

∫ 1

0

|h(t, x(t))|x0(t)
|u(t)|
x0(t)

dt+ C6

≤ ε|a|C5 + ε sup
t∈[0,1]

|u(t)|
x0(t)

C7 + C6 ≤ εC5|a|+ εC5C7||u||C1 + C6
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where C6, C7 are all positive constants and supt∈(0,1) |u(t)|/x0(t) ≤ C7||u||C1

from (2.10). From (3.17), (3.19) we have

(3.20) ||u||C1 ≤ δ|a|+ C8

where δ > 0 is sufficient small and C8 > 0.
Now we claim the solutions of (3.1)–(3.3) are bounded with respect to the

norm || · ||C1 . If not, ||xn||C1 → ∞. Writing xn = anx0 + un, from (3.20) we
have |an| → ∞ and un/an → 0 in C1(0, 1). Assume an → ∞, as in the proof
of Theorem 1.2, we have xn(t) ≥ ρx0(t) for n large enough. But from (3.10) we
obtain ∫ 1

0

(f(t, xn(t))x0(t) dt = 0.

This is a contradiction to assumption (b). The whole proof is complete. �
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