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A CLASS OF REAL COCYCLES
OVER AN IRRATIONAL ROTATION

FOR WHICH ROKHLIN COCYCLE EXTENSIONS
HAVE LEBESGUE COMPONENT IN THE SPECTRUM

Magdalena Wysokińska

Abstract. We describe a class of functions f : R/Z → R such that for each
irrational rotation Tx = x+α, where α has the property that the sequence

of aritmethical means of its partial quotients is bounded, the corresponding

weighted unitary operators L2(R/Z) 3 g 7→ e2πicf · g ◦ T have a Lebesgue
spectrum for each c ∈ R\{0}. We show that for such f and T and for an ar-

bitrary ergodic R-action S = (St)t∈R on (Y, C, ν) the corresponding Rokhlin

cocycle extension Tf,S(x, y) = (Tx, Sf(x)y) acting on (R/Z× Y, µ⊗ ν) has

also a Lebesgue spectrum in the orthogonal complement of L2(R/Z, µ) and

moreover the weak closure of powers of Tf,S in the space of self-joinings

consists of ergodic elements.

1. Introduction

We will study spectral properties of Anzai skew products on R/Z×T of the
form

(x, z) 7→ (Tx, e2πif(x)z),
where Tx = x + α is an irrational rotation and f :R/Z 7→ R is a measurable
function which will satisfy certain additional assumptions. The problem can be
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reduced to the spectral analysis of weighted operators V e
2πif,T

on L2(R/Z) given
by

g 7→ e2πif · g ◦ T.
It is known from Helson’s analysis (see [10], [14]) that the spectrum of V e

2πif,T

satisfies the so called “purity low”, that is it is pure i.e. either discrete or contin-
uous and purely singular, or equivalent to Lebesgue. Now we recall the classic
results concerning the spectrum of V e

2πif,T
first in case it is Lebesgue and at the

end when it is singular.
In the results cited below concerning Lebesgue spectrum the function f has

non-zero topological degree (i.e. the lift f̃ :R → R of f satisfies f̃(1) − f̃(0) ∈
Z \ {0}). Namely, it has been proved by Anzai (see [1]) that if f(x) = nx, n ∈
Z\{0} then V e2πif ,T has a Lebesgue spectrum, therefore V e2πicf ,T has a Lebesgue
spectrum for each c ∈ Z \ {0}. On the other hand if f(x) = nx + g(x), where
n ∈ Z\{0}, g ∈ C2(R/Z) and g′+1 > 0, then V e2πif,T has a Lebesgue spectrum,
which was proved by Kushnirenko (see [3, Chapter 13, Theorem 2]). Choe in [2]
proved the same assuming only g ∈ C2(R/Z). Moreover, it has been shown in
[14] that for g:R/Z→ R absolutely continuous with g′ of bounded variation, we
obtain also a Lebesgue spectrum of V e

2πif,T
. One more sufficient condition for

a Lebesgue spectrum, given in terms of the Fourier coefficients of g, is presented
in [12]. More precisely the function g ∈ C1 need to satisfy

∑
|n|3|ĝ(n)|2 < ∞.

The following result was shown in [11] (see also [8]): If f :R/Z→ R is absolutely
continuous then V e

2πif,T
has a singular spectrum. It follows that also for each

c ∈ R \ {0} the operator V e2πicf,T has a singular spectrum. It has been proved
in [13] that if f :R/Z→ R is piecewise absolutely continuous with a single non-
integer jump discontinuity, then V e

2πif,T
has a continuous singular spectrum over

any irrational rotation.
M. Guenais in [9] obtained some interesting results concerning the multiplic-

ity of the spectrum of V e
2πif,T
, namely it is bounded by max(2, 2πVar(f)/3) if

f is of bounded variation, by |β| + 1 if f(x) = βx, 0 6= β ∈ R and is equal to 1
in case f is absolutely continuous and homotopically trivial.
Consider now the Rokhlin cocycle extension given by

(x, y)
Tf,S7−→ (Tx, Sf(x)y),

where S = (St)t∈R is an ergodic R-action. There is strict relationship between
the maximal spectral type of Tf,S and the maximal spectral type of V e

2πicf,T
,

c 6= 0 (see Lemma 2.4 below). Hence a natural question arises whether it is
possible to find f :R/Z → R such that for each c ∈ R \ {0}, V e2πicf ,T has
a Lebesgue spectrum. Then we could conclude that the spectrum of Tf,S is
also Lebesgue, what would enlarge the list of properties of the Rokhlin cocycle
extensions recently published in [15].
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In this paper we will consider measurable functions f :R/Z→ R, with piece-
wise continuous second derivative such that f ′ has finitely many discontinuity
points for which the one-sided limits exist with at least one equal to infinity and
f ′(x) > 0 for all x ∈ R/Z. With these assumptions V e2πif,T has a Lebesgue
spectrum whenever α has the property that the sequence of aritmethical means
of its partial quotients is bounded (see Theorem 3.1 below). Moreover, we will
show that for such a function f we have that V e

2πicf,T
has a Lebesgue spectrum

for all c ∈ R\{0}. The methods we use are widely inspired by [14]. We will carry
out one more observation. For f :R/Z → R satisfying the above assumptions,
the Rokhlin cocycle extensions given by Tf,S have also a Lebesgue spectrum in
orthogonal complement of L2(R/Z, µ).
As an application we will show that if the flow S is additionaly weakly mixing,

then the weak closure of powers of Tf,S in the space of self-joinings consists of
ergodic elements that is the Rokhlin cocycle extension lies in the class of ELF
automorphisms recently introduced in [6].

Throughout the paper we will identify R/Z with [0, 1) (with addition mod 1).
Each function defined on [0, 1) we will treat as a 1-periodic function on R. By
T we will denote the set T = {z ∈ C : |z| = 1}. Considering the space (X,µ),
if X = [0, 1) then µ will be understood as Lebesgue measure, while on T the
Lebesgue measure will be denoted by λ.

I would like to thank my supervisor Professor M. Lemańczyk for paying my
attention to the problems treated in this paper. I am deeply indebted for all his
continuous help and support as well as for numerous fruitful discussions.

I appreciate the unknown Referee’s remarks which have contributed to the
clarification of the number of issues raised in the paper.

2. Preliminaries

In this section we shall establish notation and recall some definitions and
some results needed in the rest of the paper.

2.1. Spectral theory. Let (X,B, µ) be a standard probability Borel space.
Let V :L2(X,B, µ)→ L2(X,B, µ) be a unitary operator. By σf,V we denote the
spectral measure of f , it means the only finite positive Borel measure on T such
that

σ̂f,V (n) =
∫

T
zn dσf,V (z) =

∫
X

V n(f) · f dµ, n ∈ Z.

Given f, g ∈ L2(X,B, µ) by σf,g,V we will denote the complex measure deter-
mined by

σ̂f,g,V (n) =
∫

T
zn dσf,g,V (z) =

∫
X

V n(f) · g dµ, n ∈ Z.
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Recall that σf,g,V � σf,V and σf,g,V � σg,V (see e.g. [19, p. 18]). By σV we
will denote the maximal spectral type of V .
Denote by L20(X,B, µ) the subspace of L2(X,B, µ) of the zero mean functions.

Given an automorphism T : (X,B, µ)→ (X,B, µ) by UT we will denote a unitary
operator on L2(X,B, µ) acting by the formula UT f = f ◦ T . Writing about
spectrum (or the maximal spectral type) of an automorphism T we will always
understand the spectrum (or the maximal spectral type) of UT . The maximal
spectral type of UT on L20(X,B, µ) will be denoted by σT .
Let us now consider a measurable flow S = {St}t∈R, that is for each t ∈ R,

St is an automorphism on a probability standard Borel space (Y, C, ν) and the
corresponding unitary representation of R on L2(Y, C, ν) given by the formula
US(t)(f) = f ◦ St is measurable.
For f ∈ L2(Y, C, ν), by σf,S we will denote the spectral measure of f , that is

the measure on R (equal to the character group R̂) such that

σ̂f,S(t) =
∫

R
e2πitc dσf,S(c) =

∫
Y

f ◦ St · f dν, t ∈ R.

Similarly as before σf,g,S will mean the measure on R determined by

σ̂f,g,S(t) =
∫

R
e2πitc dσf,g,S(c) =

∫
Y

US(t)f g dν, t ∈ R.

We easily verify that whenever S is ergodic we have

(2.1) σf,g,S({0}) =
∫
Y

f dν ·
∫
Y

g dν

for each f, g ∈ L2(Y, C, ν).
Let σS denote the maximal spectral type of S (meaning US) on L20(Y, C, ν).

2.2. Weighted operators. Let T : (X,B, µ) → (X,B, µ) be an ergodic
automorphism and ϕ:X → T be measurable. Define a unitary operator on
L2(X,B, µ) by the formula

(V ϕ,Th)(x) = ϕ(x)h(Tx).

Then we have

(V ϕ,T )nh(x) = ϕ(n)(x)h(Tnx),

where ϕ( · )( · ):Z×X → T is given by

(2.2) ϕ(n)(x) =


ϕ(x)ϕ(Tx) . . . ϕ(Tn−1x) for n > 0,

1 for n = 0,

(ϕ(Tnx) . . . ϕ(T−1x))−1 for n < 0,

that is ϕ( · )( · ) is the cocycle.
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Consider now the operator V ϕ,T . We have

〈(V ϕ,T )nh, h〉 = 〈(V ϕ,T )nh, h〉 = 〈(V ϕ,T )−nh, h〉.

Notice that

(2.3)

{
if the operator V ϕ,T has a Lebesgue spectrum,

then the operator V ϕ,T has also a Lebesgue spectrum.

Indeed, by putting s:T→ T, s(z) = z−1 = z, for each n 6= 0 and h ∈ L2(X,B, µ)
we obtain ∫

T
z−n dσh,V ϕ,T = 〈(V

ϕ,T )−nh, h〉 = 〈(V ϕ,T )nh, h〉

=
∫

T
zn dσh,V ϕ,T =

∫
T
z−n ds∗(σh,V ϕ,T ),

where by s∗(σh,V ϕ,T ) we denote the image of σh,V ϕ,T via s. Thus

σh,V ϕ,T = s∗(σh,V ϕ,T ).

Therefore if σh,V ϕ,T is equivalent to Lebesgue measure (or absolutely continuous),
then σh,V ϕ,T so is. We obtain that V

ϕ,T has a Lebesgue spectrum.

2.3. Anzai skew products and weighted operators. Let T be an au-
tomorphism on a standard probability Borel space (X,B, µ). Given a cocycle
ϕ:X → T we can define a map

Tϕ: (X × T,B ⊗ B(T), µ⊗ λ)→ (X × T,B ⊗ B(T), µ⊗ λ)

(λ stands for Lebesgue measure) acting by a formula

Tϕ(x, z) = (Tx, ϕ(x)z).

Notice that Tϕ preserves measure µ⊗ λ. Recall that Tϕ is called an Anzai skew
product.
Put Hn = L2(X,µ) ⊗ zn, n ∈ Z. Notice, that Hn is a closed subspace of

L2(X × T, µ⊗ λ) and from Fubini’s Theorem we get

L2(X × T, µ⊗ λ) =
∞⊕

n=−∞
Hn.

Moreover, Hn are UTϕ -invariant (i.e. UTϕHn = Hn) since

UTϕ(h( · )⊗ · n)(x, z) = (ϕ(x))nh(Tx)zn.

Observe that UTϕ |H0 = UT and UTϕ |H1 is isomorphic to V ϕ,T (the isomor-
phism is given by h(x)z 7→ h(x)). Similarly the map h(x)zn 7→ h(x) defines an
isomorphism between UTϕ |Hn and V ϕ

n,T (here ϕn(x) = (ϕ(x))n).
Let us fix an irrational rotation Tx = x + α acting on (X,B, µ), where

X = [0, 1) and µ denotes Lebesgue measure. Take a cocycle ϕ: [0, 1)→ T.
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Recall now Helson’s analysis of spectral properties of V ϕ,T (see [10], also [14]).
Put M :L2(X,µ) → L2(X,µ), (Mh)(x) = e2πixh(x). We have (V s ◦M)(h) =
e2πisα(M ◦ V s)(h) for all s ∈ Z. Thus 〈V s(Mh),Mh〉 = e2πisα〈V sh, h〉 and
therefore σMh,V = σh,V ∗ δe2πiα . By a Wiener’s Lemma (see [18], Appendix)
combined with the ergodicity of translation T on ([0, 1),B, µ) it follows that if
H ⊂ L2(X,µ) is a closed subspace V ϕ,T - and M -invariant, then either H = {0}
or H = L2(X,µ).

Since the subspaces

Hac = {h ∈ L2(X,µ):σh,V ϕ,T � λ},
Hs = {h ∈ L2(X,µ):σh,V ϕ,T ⊥ λ},
Hd = {h ∈ L2(X,µ):σh,V ϕ,T is discrete}.

are closed M - and V ϕ,T -invariant and L2(X,µ) = Hac ⊕ Hs ⊕ Hd, only one
of these subspaces is equal to L2(X,µ). Moreover, if Hac = L2(X,µ) then the
maximal spectral type σV ϕ,T of V ϕ,T on L2(X,µ) is the Lebesgue type (see [10]).

Recall that if σ is a positive finite measure on T and (σ̂(n))n∈Z ∈ l2(Z), then
σ � λ. Notice, that

σ̂1,V ϕ,T (n) = 〈(V ϕ,T )n1, 1〉 =
∫
X

ϕ(n)(x) dµ(x).

Since

(2.4)
∫
X

ϕ(−n) dµ =
∫
X

ϕ(n) ◦ T−n dµ =
∫
X

ϕ(n) dµ,

therefore

(2.5) if
(∫
X

ϕ(n)(x)dµ(x)
)
n

∈ l2 = l2(N), then σ1,V ϕ,T � λ

and we obtain that the operator V ϕ,T has a Lebesgue spectrum (therefore UTϕ
has a Lebesgue spectrum on H1). Analogously, if (

∫
X
((ϕ(x))k)(n)dµ(x))n ∈ l2

then V ϕ
k,T has a Lebesgue spectrum (therefore UTϕ has this property on Hk).

2.4. Continued fraction expansion. In this section we will recall some
facts about continued fraction expansion of an irrational number needed in the
sequel.

Every point α ∈ (0, 1) can be represented as a continued fraction

α =
1

a1 + 1/(a2 + . . .)
:= [a1, a2, . . . ] = lim

n→∞
[a1, . . . , an] where ai ∈ N+.

The above expansion is finite if and only if α is rational. For each i ∈ N+
the number ai is called a partial quotient of α and the rational number rn =
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[a1, . . . , an] is called the nth convergent to α. Then α = limn→∞ rn = [a1, a2, . . . ].
Put

Λmb =
{
α ∈ [0, 1) : α is irrational and

(
1
n

n∑
i=1

ai

)
n

is bounded
}
.

Notice that the Lebesgue measure of the set Λmb is zero (see [3, Chapter 7, § 4,
Theorem 4]).
Let x1, . . . , xN be a finite sequence of real numbers. The discrepancy of this

sequence is defined as

DN = DN (x1, . . . , xN ) = sup
0≤a<b≤1

∣∣∣∣A([a, b), N)N
− (b− a)

∣∣∣∣
where A([a, b), N) = card{1 ≤ i ≤ N : a ≤ xi ≤ b}. In case ω is an infinite
sequence, the DN (ω) mean the discrepancy of the first N its elements.
Consider now the sequence (nα), where α is an irrational number. We have

the following

Theorem 2.1 ([4, p. 53]). Let α be irrational. Then NDN (nα) = O(logN)
if and only if the sequence ((1/n)

∑n
i=1 ai)n is bounded (i.e. α ∈ Λmb).

The following corollary is hence an immediate consequence of the definition
of DN .

Corollary 2.2. If ((1/n)
∑n
i=1 ai)n is bounded, then there exists a positive

constant M such, that for all n ≥ 2 and for each interval [a, b) ⊂ [0, 1), for which

b− a ≥M log n
n

there exists 0 ≤ j ≤ n− 1 such that jα ∈ [a, b).

Let v ∈ [0, 1). We will denote ‖v‖ = dist(v,Z). Notice that the function
‖ · ‖: [0, 1)→ R+ is an F -norm, that is it satisfies the following conditions

• ‖v‖ = 0 iff v = 0,
• ‖ − v‖ = ‖v‖,
• ‖v + w‖ ≤ ‖v‖+ ‖w‖.

2.5. Rokhlin cocycle extensions. Let T be an ergodic automorphism on
a standard probability Borel space (X,B, µ) and S = {St}t∈R be a measurable
flow on (Y, C, ν). Given a cocycle f :X → R we can define an automorphism Tf,S
on (X × Y,B ⊗ C, µ⊗ ν) by putting

Tf,S(x, y) = (Tx, Sf(x)y).

Recall that so defined automorphism Tf,S is called a Rokhlin cocycle extension
of T (see e.g. [15], [16]).
We will now recall some results from [16] needed in what follows.
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Remark 2.3. Although in the lemmas below we are talking about types
of measures, a precise meaning of the integrals is done by a special choise of
measure belonging to the relevant spectral type (see [16] for details).

Lemma 2.4 ([16]). The maximal spectral type of UTf,S on L
2(X×Y, µ⊗ν)	

(L2(X,µ)⊗ 1Y ) is equal to

σTf,S =
∫

R
σ
V e
2πicf ,T dσS(c).

Proof (see [16]). Let {fn}n≥0, {gn}n≥0 (f0 = g0 = 1) be orthogonal, lin-
early dense families of functions in L2(X,B, µ), L2(Y, C, ν) respectively. Then
the following equalities are true (understood as the equivalence of measures)

σTf,S =
∑

(m,n) 6=(0,0)

2−(m+n)σfn⊗gm,Tf,S ,

σ
V e
2πicf ,T =

∑
n≥0

2−nσ
fn,V e

2πicf,T ,

σS =
∑
m≥1

2−mσgm,S , σT =
∑
n≥1

2−nσfn,T .

For each k ∈ Z we get

σ̂fn⊗gm,Tf,S (k) =
∫
X×Y
(fn ⊗ gm) ◦ (Tf,S)k · fn ⊗ gm d(µ⊗ ν)

=
∫
X

fn(T kx)fn(x)
∫

R
e2πicf

(k)(x) dσgm,S(c) dµ(x)

=
∫

R
σ̂
fn,V e

2πicf ,T (k) dσgm,S(c).

Hence

σ̂Tf,S (k) =
∑

(m,n) 6=(0,0)

2−(m+n)σ̂fn⊗gm,Tf,S (k)

=
∑
m≥1

2−m
∫

R

(∑
n≥0

2−nσ̂
fn,V e

2πicf,T (k)
)
dσgm,S(c)

+
∑
n≥1

2−n
∫

R
σ̂
fn,V e

2πicf,T (k) dσg0,S(c)

=
∫

R
σ̂
fn,V e

2πicf,T (k) dσS(c) + σ̂T (k)

and the result follows. �

Assume now that g ∈ L20(Y, ν) and let Z(g) denote the cyclic space generated
by g, i.e. Z(g) = span{g ◦ St : t ∈ R}. In the similar way as above we prove
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Lemma 2.5 ([16]). The maximal spectral type of UTf,S on L
2(X,µ) ⊗ Z(g)

is equal to

σTf,S =
∫

R
σ
V e
2πicf ,T dσg,S(c).

2.6. Automorphisms whose weak limits of powers consists of er-
godic joinings. Let Ti: (Xi,Bi, µi)→ (Xi,Bi, µi), i = 1, 2 be an automorphism.
The probability measure % on (X1 ×X2,B1 ⊗ B2) will be called a joining of T1
and T2 if % is T1 × T2-invariant and

(a) %(A1 ×X2) = µ1(A1) for each A1 ∈ B1,
(b) %(X1 ×A2) = µ2(A2) for each A2 ∈ B2.

The set of all joinings between T1 and T2 will be denoted by J(T1, T2). In
case T1 = T2 = T we write J(T ) instead of J(T, T ) and call elements of J(T )
self-joinings.
Having a joining % ∈ J(T1, T2) we can define a map Φ%:L2(X1,B1, µ1) →

L2(X2,B2, µ2) such that∫
X2

Φ%(f)g dµ2 =
∫
X1×X2

f ⊗ g d%.

Notice that

(2.6) 1⊗ Φ%(f) = E(f ⊗ 1|{∅, X1} ⊗ B2).

Thus we get aMarkov operator Φ%:L2(X1,B1, µ1)→ L2(X2,B2, µ2), i.e. a linear,
bounded operator satisfying:

• Φ%1 = Φ∗%1 = 1,
• Φ%f ≥ 0 whenever f ≥ 0.

Conversely having a Markov operator Φ:L2(X1,B1, µ1)→ L2(X2,B2, µ2) we can
define a measure on (X1 ×X2,B1 ⊗ B2) by putting

%(A1 ×A2) =
∫
A2

Φ(χA1) dµ2

for all Ai ∈ Bi, i = 1, 2.
We have that projections of % on B1 ⊗ {∅, X2} and {∅, X1} ⊗ B2 are equal

to µ1 and µ2, respectively. Moreover, the fact that % is T1 × T2-invariant is read
as Φ ◦ UT1 = UT2 ◦ Φ (see e.g. [17], [20]). Thus we can identify the set J(T1, T2)
with the set of all Markov operators satisfying Φ ◦UT1 = UT2 ◦Φ (which will be
denoted by J (T1, T2)). The set J (T1, T2) is a closed subset (in weak operator
topology) of the unit ball in the Banach space of all linear, bounded operators
from L2(X1,B1, µ1) to L2(X2,B2, µ2), therefore J (T1, T2) is compact in the weak
operator topology. Having identified sets J(T1, T2) and J (T1, T2) we can define
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the weak topology on the set of joinings transfering the weak operator topology
from J (T1, T2) and hence obtaining:

%n → % if and only if %n(A1 ×A2)→ %(A1 ×A2) for all Ai ∈ Bi (i = 1, 2).

For each % ∈ J(T1, T2) we have an automorphism T1×T2: (X1×X2,B1⊗B2, %)→
(X1 ×X2,B1 ⊗ B2, %).
Assume that T1 and T2 are ergodic and let % ∈ J(T1, T2). In case T1 × T2

acting on (X1 × X2, %) is ergodic we say that % is ergodic. The subset of such
joinings will be denoted by Je(T1, T2) and the set of corresponding operators by
J e(T1, T2). The above considerations are in particular true for self-joinings and
we obtain sets J (T ), Je(T ), J e(T ), respectively.
Recall, that if Ti is an automorphism on (Xi,Bi, µi), i = 1, 2 and S establishes

an isomorphism between T1 and T2 then we can define a joining of T1 and T2 by
putting

∆S(A1 ×A2) = µ1(A1 ∩ S−1A2) for all Ai ∈ Bi, i = 1, 2.

Notice that Φ∆S = US . Such a joining is called a graph-joining.
Given a factor A ⊂ B of an automorphism T , i.e. the T -invariant sub-σ-

algebra, by J(T,A) we will denote the set of self-joinings of the quotient map T̃
on (X/A,A, µ). Having % ∈ J(T,A) by putting

%̂(A1 ×A2) =
∫
X/A×X/A

E(χA1 |A)(x)E(χA2 |A)(y) d%(x, y),

for Ai ∈ Bi, i = 1, 2, we obtain an element %̂ ∈ J(T ). Such a self-joining of T is
called the relatively independent extension of %.
Assume that T is ergodic. Having its factor A we can define the relative

product over A as the self-joining µ⊗A µ in J(T ) determined by

µ⊗A µ =
∫
X/A

µx ⊗ µx dµ(x),

where µ =
∫
X/A µx dµ(x) is the disintegration of µ over a factor A. Then µ⊗A

µ(A×B) =
∫
X/AE(χA|A)E(χB |A) dµ (see [7]).

Following [7] we say that T is relatively weakly mixing over A if µ ⊗A µ ∈
Je(T ).

Proposition 2.6 ([16]). Tf,S is relatively weakly mixing over T if and only
if Tf,S is ergodic and S is weakly mixing.

Following [6] an automorphism T : (X,B, µ) → (X,B, µ) is called ELF if
{UTn} ⊂ J e(T ).
For example the ergodic rotation on the circle is ELF.
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3. A class of weighted operators
with a Lebesgue spectrum over irrational rotations

Throughout this section only irrational rotations Tx = x+α on ([0, 1),B, µ),
where α ∈ Λmb are considered.
We will consider the set Γ of functions f : [0, 1)→ R satisfying the following

properties:

(a) f ′ has only finitely many discontinuity points:
• s ≥ 0 of them, say p0, . . . , ps−1 being jumps,
• m ≥ 1 of them, say y0, . . . , ym−1 being such that the one-side limits
of f at yi exists and limx→y+i f

′(x) =∞ or limx→y−i f
′(x) =∞,

(b) f ′(x) > 0 for all x ∈ [0, 1),
(c) let δ > 0 be such that the intervals of length 2δ centered at all discon-
tinuity points are pairwise disjoint and f ′ is decreasing in (yi, yi + δ)
in case limx→y+i f

′(x) = ∞ or f ′ is increasing in (yi − δ, yi) in case
limx→y−i f

′(x) =∞,
(d) if we denote by z0, . . . , zm+s−1 all discontinuity points of f ′ in increasing
ordering, then f ∈ C2(zi, zi+1) for each i = 0, . . . ,m+ s− 1.

Theorem 3.1. Let f ∈ Γ. Assume that there exists a sequence (εn)n≥1 of
positive reals such that

(a) (nεn)n ∈ l2,
(b) for all M > 0(
n

/
min
{

min
0≤i≤m−1

lim
x→y+

i

f ′(x)=∞

f ′
(
yi +M

log n
n

)
,

min
0≤i≤m−1

lim
x→y−

i

f ′(x)=∞

f ′
(
yi −M

log n
n

)})
n

∈ l2

(c) for all M > 0(
n

(m+s−1∑
i=0

Varzi+1−εnzi+εn f ′
)/[

min
{

min
0≤i≤m−1

lim
x→y+

i

f ′(x)=∞

f ′
(
yi +M

log n
n

)
,

min
0≤i≤m−1

lim
x→y−

i

f ′(x)=∞

f ′
(
yi −M

log n
n

)}]2)
n

∈ l2.

Then for each α ∈ Λmb, the automorphism Te2πif has a Lebesgue spectrum on
L2([0, 1)× T, µ⊗ λ)	 (L2([0, 1), µ)⊗ 1T).

Proof. In view of (2.5) it is enough to show that (
∫
[0,1) e

2πif(n)(x)dx)n ∈ l2,
where f (n)(x) = f(x) + f(Tx) + . . . + f(Tn−1x). Indeed, for each k ∈ N+,
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f̃ = kf also satisfies (b), (c). Using (2.3), f̃ = kf satisfies (b), (c) also for each
k ∈ Z \ {0}.
Fix n ≥ 1. Consider the sequence {zi − jα}n−1j=0 , i = 0, . . . ,m + s − 1. Put

its terms in an increasing sequence x0 ≤ . . . ≤ xn(m+s)−1.
Let Aj = (xj − εn, xj + εn), j = 0, . . . , (m + s)n − 1. Notice that each

discontinuity point of f (n) must belong to {x0, x1, . . . , xn(m+s)−1}.
Consider the set [0, 1) \

⋃n(m+s)−1
j=0 Aj = B0 ∪ . . . ∪ B(m+s)n−1 = B (notice

that some of Bi may be empty).
Notice that if x ∈ B, then no point of the form x, x + α, . . . , x + (n − 1)α

belongs to
⋃m+s−1
i=0 (zi − εn, zi + εn). Indeed, if x + rα ∈ (zi − εn, zi + εn) for

some r and i, then ‖x − (zi − rα)‖ = ‖(x + rα) − zi‖ < εn, which means that
x ∈ (zi − rα− εn, zi − rα+ εn) = Aj for some j and we get a contradiction. We
have

µ

( n(m+s)−1⋃
j=0

Aj

)
≤
n(m+s)−1∑
j=0

µ(Aj) = 2(m+ s)nεn.

Further∣∣∣∣ ∫
[0,1)

e2πif
(n)(x) dx

∣∣∣∣ = ∣∣∣∣ ∫
B

e2πif
(n)(x) dx+

∫
[0,1)\B

e2πif
(n)(x) dx

∣∣∣∣
≤
∣∣∣∣ ∫
B

e2πif
(n)(x)dx|+ µ

( n(m+s)−1⋃
j=0

Aj

)
≤
∣∣∣∣ ∫
B

e2πif
(n)(x) dx

∣∣∣∣+ 2(m+ s)nεn.
Notice that in [xj + εn, xj+1 − εn] the function x 7→ e2πif

(n)(x) is continuous
and function x 7→ 1/2πi(f (n))′(x) is of bounded variation, thus there exists the
Stieltjes integral ∫ xj+1−εn

xj+εn
e2πif

(n)(x) d
1

2πi(f (n))′(x)
.

Moreover,∣∣∣∣ ∫
B

e2πif
(n)(x) dx

∣∣∣∣ = ∣∣∣∣ n(m+s)−1∑
j=0

∫ xj+1−εn
xj+εn

e2πif
(n)(x) dx

∣∣∣∣
=
∣∣∣∣ n(m+s)−1∑

j=0

∫ xj+1−εn
xj+εn

1
2πi(f (n))′(x)

de2πif
(n)(x)

∣∣∣∣
=
∣∣∣∣ n(m+s)−1∑

j=0

e2πif
(n)(x)

2πif ′(n)(x)

∣∣∣∣xj+1−εn
xj+εn

−
∫ xj+1−εn
xj+εn

e2πif
(n)(x) d

1
2πif ′(n)(x)

∣∣∣∣
≤
∣∣∣∣ n(m+s)−1∑

j=0

e2πif
(n)(xj+1−εn)

2πif ′(n)(xj+1 − εn)
− e2πif

(n)(xj+εn)

2πif ′(n)(xj + εn)

∣∣∣∣
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+
n(m+s)−1∑
j=0

∣∣∣∣ ∫ xj+1−εn
xj+εn

e2πif
(n)(x) d

1
2πif ′(n)(x)

∣∣∣∣
≤ 1
2π

n(m+s)−1∑
j=0

(
1

|f ′(n)(xj+1 − εn)|
+

1
|f ′(n)(xj + εn)|

)

+
1
2π

n(m+s)−1∑
j=0

Varxj+1−εnxj+εn
1

f ′(n)
.

Since Dn(x, x+ α, . . . , x+ (n− 1)α) = O((log n)/n), there exist M > 0, N such
that for all n > N , for each interval I of length M(log n)/n and for an arbitrary
x there exists r ∈ {0, . . . , n − 1} such that x + rα ∈ I. In particular for each
i = 0, . . . ,m− 1 such that limx→y+i f

′(x) =∞ there exists r+i ∈ {0, . . . , n− 1}
such, that x + r+i α ∈ (yi, yi +M(log n)/n] (analogously if limx→y−i f

′(x) = ∞
we can find r−i such that x+ r

−
i α ∈ [yi −M(log n)/n, yi)). We consider only n

so that M(log n)/n < δ. Then for all x ∈ B

f ′(n)(x) = f ′(x) + f ′(x+ α) + · · ·+ f ′(x+ (n− 1)α)
≥ sup

r
f ′(x+ rα) ≥ min{f ′(x+ r+i α), f

′(x+ r−i α)}

≥ min
{

min
0≤i≤m−1

lim
x→y+

i

f′(x)=∞

f ′
(
yi +M

log n
n

)
,

min
0≤i≤m−1

lim
x→y−

i

f′(x)=∞

f ′
(
yi −M

log n
n

)}
=: η(n,M).

Let us continue our estimation∣∣∣∣ ∫
B

e2πif
(n)(x) dx

∣∣∣∣ ≤ 12πn(m+ s) 2
η(n,M)

+
1
2π

n(m+s)−1∑
j=0

Varxj+1−εnxj+εn
1

f ′(n)

≤ m+ s
π

n

η(n,M)

+
1
2π

n(m+s)−1∑
j=0

Varxj+1−εnxj+εn f
′(n)

(minxj+εn≤x≤xj+1−εn f
′(n)(x))2

≤ m+ s
π

n

η(n,M)
+
1
2π

1
(η(n,M))2

n(m+s)−1∑
j=0

Varxj+1−εnxj+εn f
′(n)

=
m+ s
π

n

η(n,M)
+
1
2π

1
(η(n,M))2

·
n(m+s)−1∑
j=0

VarBj (f
′ + f ′ ◦ T + . . .+ f ′ ◦ Tn−1).
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But for a fixed r ∈ {0, . . . , n− 1}

n(m+s)−1∑
j=0

VarBj (f
′ ◦ T r) =

n(m+s)−1∑
j=0

VarT rBjf
′ ≤

m+s−1∑
i=0

Varzi+1−εnzi+εn f ′.

The last inequality results from following reasoning: given Bj = (xj+εn, xj+1−
εn) we have Bj∩Bi = ∅, i 6= j what implies T rBj∩T rBi = ∅, i 6= j. Moreover, if
x ∈ T rBj then x−rα ∈ Bj ⊂ B, hence for all i = 0, . . . ,m+s−1, j = 0, . . . , n−1
x − rα + jα 6∈ (zi − εn, zi + εn), therefore for all i = 0, . . . ,m + s − 1 we have
that x 6∈ (zi − εn, zi + εn). Hence

T rBj ⊂
m+s−1⋃
i=0

(zi + εn, zi+1 − εn).

Continuing

∣∣∣∣ ∫
B

e2πif
(n)(x) dx

∣∣∣∣ ≤ m+ s
π

n

η(n,M)
+
1
2π

n
∑m+s−1
i=0 Varzi+1−εnzi+εn f ′

(η(n,M))2
.

Finally we obtain∣∣∣∣ ∫
[0,1)

e2πif
(n)(x) dx

∣∣∣∣ ≤ m+ s
π

n

η(n,M)

+
1
2π

n
∑m+s−1
i=0 Varzi+1−εnzi+εn f ′

(η(n,M))2
+ 2(m+ s)nεn.

The result follows from this estimation and from (a)–(c). �

Immediately from the above proof we obtain the following

Corollary 3.2. Let f ∈ Γ. We assume that there exists a sequence (εn) of
positive reals such that

(a) nεn → 0, n→∞,
(b) for all M > 0

n

/
min
{

min
0≤i≤m−1

lim
x→y+

i

f ′(x)=∞

f ′
(
yi +M

log n
n

)
,

min
0≤i≤m−1

lim
x→y−

i

f ′(x)=∞

f ′
(
yi −M

log n
n

)}
→ 0, as n→∞,
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(c) for all M > 0

n

(m+s−1∑
i=0

Varzi+1−εnzi+εn f ′
)/[

min
{

min
0≤i≤m−1

lim
x→y+

i

f ′(x)=∞

f ′
(
yi +M

log n
n

)
,

min
0≤i≤m−1

lim
x→y−

i

f ′(x)=∞

f ′
(
yi −M

log n
n

)}]2
→ 0, as n→∞.

Then for each α ∈ Λmb the automorphism Te2πif is mixing on

L2([0, 1)× T, µ⊗ λ)	 (L2([0, 1), µ)⊗ 1T).

Let us see some examples of functions satisfying the assumptions of Theo-
rem 3.1.

Example 3.3. Let f(x) = −1/x2+δ, δ > 0 and εn = 1/n3/2+ε, where
ε < δ/(2(3 + δ)).
One can see that the condition (a) holds. In this case (b) is reduced to∑

n≥1

(
n

f ′(M(log n)/n)

)2
= (2 + δ)−2M6+2δ

∑
n≥1

(log n)6+2δ

n4+2δ
<∞,

while for (c) let us see that(
nVar1εnf

′

(f ′(M(log n)/n))2

)2
≤
(

nf ′(εn)
(f ′(M(log n)/n))2

)2
= (2 + δ)−2M12+4δ

(log n)12+4δ

n1+δ−2ε(3+δ)

and whenever ε < δ/(2(3 + δ)) we have∑
n≥1

(log n)12+4δ

n1+δ−2ε(3+δ)
<∞.

Similarly we show that f(x) = −(1/x2+δ − 1/(1− x)2+δ) also satisfies the as-
sumptions (a)–(c) with the same sequence (εn).

Remark 3.4. Notice that in general if f has only one discontinuity point at
0 (such that limx→0+ f ′(x) =∞) and it satisfies the assumptions of Theorem 3.1
then f̃(x) = f(x) − f(1 − x) also satisfies these assumptions (indeed, take the
same sequence (εn)).

Example 3.5. Let f(x) = −1/xδ, δ > 0 then the assumptions of Corol-
lary 3.2 are satisfied (εn = 1/nµ, for some 1 < µ < (1 + 2δ)/(1 + δ)).

Remark 3.6. Let us observe that if a cocycle f satisfies the assumptions of
Theorem 3.1 then for each c > 0, cf also satisfies the same assumptions and it
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follows from (2.3) that for all c 6= 0 the operator V e2πicf ,T has also a Lebesgue
spectrum.

Assume now that S = (St)t∈R : (Y, C, ν) → (Y, C, ν) is an ergodic flow.
Denote by σS the maximal spectral type of US on L20(Y, C, ν). Since S is ergodic,
σS has no atom at 0.
Consider Tf,S(x, y) = (Tx, Sf(x)y) (acting on (X × Y, µ ⊗ ν), X = [0, 1)).

Take f satisfying the assumptions of Theorem 3.1. Since for all c 6= 0, V e2πicf ,T

has a Lebesgue spectrum, we have σTf,S ≡ λ. Indeed, we have σV e2πicf ,T ≡ λ for
all c 6= 0. Now we use Lemma 2.4. If λ(A) = 0, then σ

V e
2πicf ,T (A) = 0 and we

obtain

σTf,S (A) =
∫

R
σ
V e
2πicf ,T (A) dσS(c) = 0.

Thus we have σTf,S � λ.
Conversely, if σTf,S (A) = 0 then for some c 6= 0, σV e2πicf ,T (A) = 0 (since σS

has no atom at 0), what implies that λ(A) = 0 and we get λ� σTf,S .

Corollary 3.7. If S = (St)t∈R is ergodic and f : [0, 1) → R satisfies the
assumptions of Theorem 3.1 then UTf,S has a Lebesgue spectrum on

L2(X × Y, µ⊗ ν)	 (L2(X,µ)⊗ 1Y ).

Since on each subspace L2(X,µ) ⊗ Z(g) the spectrum is also Lebesgue (see
Lemma 2.5), UTf,S has a Lebesgue spectrum of infinite multiplicity whenever
dimL2(Y, ν) =∞.
Using the same argument as before we obtain

Corollary 3.8. If S = (St)t∈R is ergodic and f : [0, 1) → R satisfies the
assumptions of Corollary 3.2 then Tf,S is mixing on

L2(X × Y, µ⊗ ν)	 (L2(X,µ)⊗ 1Y ).

We will now show that if S is weakly mixing and if f satisfies the assumptions
of Corollary 3.2 then the automorphism Tf,S is ELF.
We have a weakly mixing flow

S = (St)t∈R: (Y, C, ν)→ (Y, C, ν).

Take an irrational rotation on X = [0, 1), Tx = x+α and a cocycle f : [0, 1)→ R
satisfying the assumptions of Corollary 3.2. We will describe all elements of the
weak closure of {UTnf,S}n. Consider a weakly convergent sequence (UTnif,S )i. Then
the sequence of integrals ∫

[0,1)

∫
Y

(UTnif,SF )Gdµdν
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converges for each F,G ∈ L2(X × Y, µ ⊗ ν). Since functions of the form j ⊗ k,
j ∈ L2(X,µ), k ∈ L2(Y, ν) span L2(X × Y, µ⊗ ν), we may suppose that

F = f1 ⊗ f2, G = g1 ⊗ g2, f1, g1 ∈ L2(X,µ), f2, g2 ∈ L2(Y, ν).

We have∫
[0,1)

∫
Y

F ◦ Tnif,SGdµdν

=
∫
[0,1)

∫
Y

f1(Tnix)f2(Sf(ni)(x)y)g1(x)g2(y) dµ(x) dν(y)

=
∫
[0,1)

f1(Tnix)g1(x)
(∫
Y

f2(Sf(ni)(x)y)g2(y) dν(y)
)
dµ(x)

=
∫
[0,1)

f1(Tnix)g1(x)
(∫

R
e2πicf

(ni)(x) dσf2,g2,S(c)
)
dµ(x)

=
∫

R

(∫
[0,1)

f1(Tnix)g1(x)e2πicf
(ni)(x) dµ(x)

)
dσf2,g2,S(c)

=
∫

R
〈(V e

2πicf ,T )nif1, g1〉 dσf2,g2,S(c)

=
∫

R
σ̂
f1,g1,V e

2πicf ,T (ni) dσf2,g2,S(c)

=
∫

R\{0}
σ̂
f1,g1,V e

2πicf ,T (ni) dσf2,g2,S(c)

+ σf2,g2,S({0})
∫
[0,1)

f1 ◦ Tnig1 dµ.

Since for all c 6= 0 the maximal spectral type of V e2πicf ,T is a Rajchman mea-
sure (the measure σ on the circle is Rajchman measure if σ̂(n) → 0, n → ∞),
σ̂
f1,g1,V e

2πicf ,T (ni) → 0, i → ∞. Thus from the Lebesgue Dominated Conver-
gence Theorem we obtain that∫

R
σ̂
f1,g1,V e

2πicf ,T (ni)dσf2,g2,S(c)→ 0, i→∞.

Now take functions of form

F (x, y) = f1 ⊗ 1Y , G(x, y) = g1 ⊗ 1Y .

Then ∫
[0,1)

∫
Y

F ◦ Tnif,SGdµdν =
∫
[0,1)

f1 ◦ Tnig1 dµ.

Hence UTni converges weakly. Since T is a rotation, we get immediately that
limi→∞ niα = β and Tni → S weakly (i→∞), where Sx = x+ β. Hence∫

[0,1)

∫
Y

F ◦ Tnif,SGdµdν → σf2,g2,S({0})
∫
[0,1)

f1 ◦ S · g1 dµ.
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On the other hand∫
([0,1)×Y )×([0,1)×Y )

F ⊗Gd∆̂S−1

=
∫
([0,1)×Y )/B1×{Y,∅})2

E(f1 ⊗ f2|X)⊗ E(g1 ⊗ g2|X) d∆S−1

=
∫
[0,1)

(∫
Y

f2 dν · f1 ◦ S
)(∫

Y

g2 dν · g1
)
dµ

=
(∫
Y

f2 dν

)(∫
Y

g2 dν

)∫
[0,1)

f1 ◦ S · g1 dµ

and by (2.1) we obtain that UTnif,S → Φb∆S−1 weakly (i→∞).

Proposition 3.9. Under the above assumptions {UnTf,S} ⊂ J
e(Tf,S).

Proof. From the calculations above it remains to show that the automor-
phism Tf,S × Tf,S : (X × Y × X × Y, ∆̂S−1) → (X × Y × X × Y, ∆̂S−1) is er-
godic. Observe first, that this automorphism is isomorphic to Tf×f◦S−1,S′ , where
(f × f ◦ S−1)(x) = (f(x), f(S−1x)) and S ′ = (St × St′)(t,t′)∈R2 . The latter au-
tomorphism acts on (X × Y × Y, µ ⊗ ν ⊗ ν). Indeed, since the measure ∆̂S−1
is concentrated on the set {(x1, y1, S−1x1, y2) : x1 ∈ X, y1, y2 ∈ Y }, the map
(x1, y1, S−1x1, y2) 7→ (x1, y1, y2) establishes the required isomorphism.
Since S is weakly mixing (in particular ergodic), Tf,S is mixing on L2(X ×

Y, µ ⊗ ν) 	 (L2(X,µ) ⊗ 1Y ) (see Corollary 3.8) (so it is ergodic there) and on
(X,µ) it is an irrational rotation, so Tf,S is ergodic. Hence from Proposition 2.6
we obtain that Tf,S is relatively weakly mixing over T . Similarly we get, that
Tf◦S−1,S is also relatively weakly mixing over T .

Let us observe, that relative product Tf,S and Tf◦S−1,S over T is isomorphic
to Tf×f◦S−1,S′ . Since Tf,S and Tf◦S−1,S are relatively weakly mixing over T , so
is their relative product and thereby Tf×f◦S−1,S′ has also the same property (see
[7, Proposition 6.4]). It follows that Tf×f◦S−1,S′ is ergodic. Therefore Tf,S×Tf,S
(acting on (X × Y ×X × Y, ∆̂S−1)) is also ergodic. �

4. Final remarks

We have been unable to decide whether it is possible to find an integrable
function f for which a sequence (εn) exists so that Theorem 3.1 holds (com-
pare Example 3.5 with Example 3.3). It should be noted, however, that in
[5] appeared an example of skew product on (R4/Z4) × T having a countable
Lebesgue spectrum in the orthogonal complement of L2(R4/Z4). More precisely,
this example is derived from a skew product T̃e2πiφ which is constructed from
the minimal translation on R2/Z2 (defined by T̃ (x, y) = (x+α, y+α′)) and the
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real analytic function on R2 (Z2-periodic) given by

(4.1) φ(x, y) = 1 + Re
( ∞∑
j=0

e2πiqjx

eqj

)
+Re
( ∞∑
j=0

e2πiq
′
jy

eq
′
j

)
,

where α and α′ are rationally independent such that the denominators of their
convergents, qn and q′n, satisfy for n sufficiently large

(4.2) qn ≥ e3nq
′
n−1 , q′n ≥ e3nqn .

Then the following holds

Proposition 4.1 ([5]). For l ∈ Z \ {0} and for any ε > 0 we have for
ψ(x, y, z) = zl:∫

(R2/Z2)×T
(ψ ◦ T̃ne2πiφ)(x, y, z)ψ(x, y, z) dx dy dz = O

(
1

n1/3−ε

)
,

when n goes to infinity.

Now, constructing from T̃e2πiφ a skew product on (R4/Z4)× T by putting

S̃(x1, x′1, x2, x
′
2, z) = (x1+α1, x

′
1+α

′
1, x2+α2, x

′
2+α

′
2, ze

2πi(φ1(x1,x′1)+φ2(x2,x
′
2))),

where the couples (αi, α′i), i = 1, 2 satisfy (4.2) and φ1, φ2 are as in (4.1), we get
for ψ(x1, x′1, x2, x

′
2, z) = z

l (l ∈ Z)

〈Un
eS
ψ,ψ〉 =

∫
R2/Z2

e2πilφ
(n)
1 (x1,x

′
1) dx1 dx

′
1

∫
R2/Z2

e2πilφ
(n)
2 (x2,x

′
2) dx2 dx

′
2

and using Proposition 4.1 the following has been proved

Theorem 4.2 ([5]). U
eS has a Lebesgue spectrum on L

2((R4/Z4) × T) 	
(L2(R4/Z4)⊗ 1T).

Remark 4.3. We remark that for all c ∈ R\{0} the function cφ has the same
required properties as φ, so we get the same result for S̃ constructed from the
minimal translation on R4/Z4 and φ̂(x1, x′1, x2, x′2) = c(φ1(x1, x′1) + φ2(x2, x′2))
for all c 6= 0.
We will now use a similar argument as above to obtain a Lebesgue com-

ponent in the spectrum of a skew product over higher dimensional torus with
F (x1, . . . , xτ ) = f(x1) + . . . + f(xτ ) for some τ , where f (and εn) are from
Example 3.5.
For f(x) = −1/xδ, δ > 0 (εn = 1/nµ, µ > 1) we have the following estimate

in Corollary 3.2∣∣∣∣ ∫
[0,1)

e2πif
(n)(x) dx

∣∣∣∣
≤ 2(m+ s) 1

nµ−1
+
m+ s
π

M1+δ
(log n)1+δ

nδ
+
1
2π
M2+2δ

(log n)2+2δ

n1−µ(1+δ)+2δ
,
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hence σ̂1,V e2πif,T (n) = O(1/n
κ), 0 < κ < min{µ−1, δ, 1−µ(1+δ)+2δ}. Consider

now the skew product on X × T, where X = Rτ/Zτ (τ = [1/(2κ)] + 1) given by

T̃e2πiF (x1, . . . , xτ , z) = (x1 + α1, . . . , xτ + ατ , ze
2πiF (x1,...,xτ )),

where F (x1, . . . , xτ ) = f(x1) + . . . + f(xτ ) and α1, . . . , ατ ∈ Λmb are rationally
independent. Then∣∣∣∣ ∫

[0,1)τ
e2πiF

(n)(x1,...,xτ ) dx1 . . . dxτ

∣∣∣∣
=
∣∣∣∣ ∫
[0,1)τ

e2πif
(n)(x1) . . . e2πif

(n)(xτ ) dx1 . . . dxτ

∣∣∣∣
=
∣∣∣∣ ∫
[0,1)

e2πif
(n)(x1) dx1 . . .

∫
[0,1)

e2πif
(n)(xτ ) dxτ

∣∣∣∣ = O( 1nκτ
)
.

Since κτ > 1/2, we have that σ̂
1,V e2πiF,eT

(n) ∈ l2 (where V e
2πiF,eT

is the corre-

sponding weighted operator acting on L2(Rτ/Zτ )) and we obtain a Lebesgue
spectrum of T̃e2πiF in the orthogonal complement of L2(Rτ/Zτ ).

Remark 4.4. We state as an open question whether given an irrational
rotation T we can find f : [0, 1)→ R so that the conclusion of Remark 3.6 holds
and at the same time the skew product Tf on ([0, 1) × R, µ ⊗ λ) (λ stands for
Lebesgue measure on R) given by Tf (x, y) = (x+ α, f(x) + y) is ergodic?
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