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ARONSZAJN TYPE RESULTS
FOR VOLTERRA EQUATIONS AND INCLUSIONS

Ravi P. Agarwal — Lech Górniewicz — Donal O’Regan

Abstract. This paper discusses the topological structure of the set of
solutions for a variety of Volterra equations and inclusions. Our results

rely on the existence of a maximal solution for an appropriate ordinary
differential equation.

1. Introduction

This paper looks at the structure of the set of solutions for various Volterra
equations and inclusions. The results are new and extend previously known
results in the literature (see [3], [6], [7], [9], [11] and the references therein). In
Section 2 we discuss the abstract Volterra equation{

y′(t) = V (y)(t) a.e. t ∈ [0, T ],
y(0) = x0 ∈ Rn

(here T > 0 and V is an abstract Volterra operator), and in Section 3 we discuss
the differential inclusion

(1.2)

{
y′(t) ∈ F (t, y(t)) a.e. t ∈ [0, T ],
y(0) = x0 ∈ Rn
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and the integral inclusion

(1.3) y(t) ∈ h(t) +
∫ t
0
k(t, s)F (s, y(s)) ds for t ∈ [0, T ].

For (1.2) and (1.3) we have F : [0, T ] × Rn → CK(Rn) where CK(Rn) denotes
the family of nonempty, convex, compact subsets of Rn. In addition for (1.3)
we have h: [0, T ] → Rn and the matrix valued function k: {(s, t) : 0 ≤ s ≤
t ≤ T} → Ln×n[0, T ]. For (1.1)–(1.3) we will show that the solution set is a
continuum (in the appropriate space) if our nonlinearity (V in (1.1) and F in
(1.2) and (1.3)) is bounded by a L1-Carathéodory function g and if the ordinary
differential equation {

v′(t) = ag(t, v(t)) a.e. t ∈ [0, T ],
v(0) = a0

has a maximal solution (here a = 1 and a0 = |x0| for (1.1) and (1.2) whereas
a = supt∈[0,T ] k(t) and a0 = |h|0 for (1.3)). Recall a function g: [0, T ] × R → R
is a L1-Carathéodory function if

(a) the map t 7→ g(t, y) is measurable for all y ∈ R,
(b) the map y 7→ g(t, y) is continuous for a.e. t ∈ [0, T ], and
(c) for any r > 0 there exists µr ∈ L1[0, T ] such that |y| ≤ r implies
|g(t, y)| ≤ µr(t) for a.e. t ∈ [0, T ].

The analysis in Section 2 makes use of the following well known results from
the literature.

Theorem 1.1 (Banach, Alaoglu [2], [10]). The unit ball in the dual of a
normed space is compact in the weak∗ topology.

Theorem 1.2 ([10]). The unit ball in the dual of a normed space X is metriz-
able in the weak∗ topology if and only if X is separable.

Theorem 1.3 (Eberlein, S̆mulian [5]). Suppose K is weakly closed in a Ba-
nach space E. Then the following are equivalent:

(a) K is weakly compact,
(b) K is weakly sequentially compact.

Theorem 1.4 ([4]). For every g ∈ L1[0, T ] the set

{f ∈ L1([0, T ],Rn) : |f(t)| ≤ g(t) for a.e. t ∈ [0, T ]}

is compact in the weak topology of L1([0, T ],Rn).

If we supply L∞([0, T ],Rn) with the weak∗ topology then we will let

A([0, T ],Rn) = {f ∈ C([0, T ],Rn) : f ′ ∈ L∞([0, T ],Rn)}.
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If we supply L1([0, T ],Rn) with the weak topology then we let

A1([0, T ],Rn) = {f ∈ C([0, T ],Rn) : f ′ ∈ L1([0, T ],Rn)}.

2. Solution sets for abstract Volterra operators

Let SV (x0;Rn) denote the solution set of (1.1) (of course solutions to (1.1)
are sought in AC([0, T ],Rn)). In [9] we established the following result using a
well known result from the literature (see [6], [11]).

Theorem 2.1. Suppose the following conditions hold:

(2.1) V is an abstract Volterra operator i.e. if x(t) = y(t) for t ∈ [0, ε], ε ≤ T ,
then V (x)(t) = V (y)(t) for a.e. t ∈ [0, ε],

(2.2) V :C([0, T ],Rn)→ L1([0, T ],Rn) is a continuous operator, and

(2.3) there exists µ ∈ L1[0, T ] such that for any y ∈ C([0, T ],Rn) we have
|V (y)(t)| ≤ µ(t) for a.e. t ∈ [0, T ].

Then SV (x0;Rn) is a nonempty compact connected set in C([0, T ],Rn) (in fact
SV (x0;Rn) is a Rδ set).

It is possible to discuss the solution set in A([0, T ],Rn) if we replace (2.3)
with a stronger condition.

Theorem 2.2. Suppose (2.1) and (2.2) hold and in addition assume the
following condition is satisfied:

(2.4) there exists a constant M > 0 such that for any y ∈ C([0, T ],Rn) we have
|V (y)(t)| ≤ µ(t) for a.e. t ∈ [0, T ].

Then SV (x0;Rn) is a nonempty compact connected set in A([0, T ],Rn).

Proof. We first show SV (x0;Rn) is a compact set in A([0, T ],Rn). Let
{yα}α∈Λ be a Moore–Smith sequence in A([0, T ],Rn) with yα ∈ SV (x0;Rn)
for each α ∈ Λ. From (2.4) we know that wα(t) = y′α(t)/M belongs to the
unit ball of L∞([0, T ],Rn). Now Theorems 1.1 and 1.2 guarantee that there
is a subsequence N of Λ with y′m/M (respectively y

′
m) converging weak

∗ to a
w ∈ L∞([0, T ],Rn) (respectively Mw) as m→∞ in N . Lets look at {ym}m∈N .
Note ym ∈ SV (x0;Rn) and SV (x0;Rn) is a compact subset of C([0, T ],Rn) by
Theorem 2.1.Thus there exists y ∈ C([0, T ],Rn)∩SV (x0;Rn) and a subsequence
N0 of N with ym → y in C([0, T ],Rn) as m → ∞ in N0. Also from above we
have y′m converging weak

∗ to Mw as m → ∞ in N0. Now [1, p. 14] guarantees
that y′m converges weakly in L

1([0, T ],Rn) to Mw as m→∞ in N0. Also since

ym(t) = ym(0) +
∫ t
0
y′m(s) ds
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we have immeditaely that

y(t) = y(0) +
∫ t
0
Mw(s) ds,

so y′ =Mw a.e. As a result ym → y in C([0, T ],Rn) and y′m converging weak∗ to
y′ as m→∞ in N0. As a result SV (x0;Rn) is a compact subset of A([0, T ],Rn).
Next we show SV (x0;Rn) is a connected set in A([0, T ],Rn). We argue by

contradiction. Suppose

SV (x0;Rn) = A ∪B

where A and B are nonempty closed disjoint subsets of A([0, T ],Rn). In particu-
lar A and B are nonempty disjoint subsets of C([0, T ],Rn), so if we show A and B
are closed subsets of C([0, T ],Rn) then we have a contradiction since SV (x0;Rn)
is a connected subset of C([0, T ],Rn) by Theorem 2.1. Let {ym}∞1 ⊆ A with
ym → y in C([0, T ],Rn). As above there exists a subsequence N of {1, 2, . . . }
with wm = y′m/M converging weak

∗ to a w ∈ L∞([0, T ],Rn) as m → ∞ in N
and so [1, p. 14] guarantees that y′m converges weakly in L

1([0, T ],Rn) toMw as
m→∞ in N . Also as above y′ = Mw a.e. As a result ym → y in C([0, T ],Rn)
and y′m converging weak

∗ to y′ as m → ∞ in N . Thus since A is a closed sub-
set of A([0, T ],Rn) we have that y ∈ A. Thus A (and similarly B) is closed in
C([0, T ],Rn). As a result SV (x0;Rn) is a connected subset of A([0, T ],Rn). �

Essentially the same reasoning as in Theorem 2.2 establishes the next result.

Theorem 2.3. Suppose (2.1)–(2.3) hold. Then SV (x0;Rn) is a nonempty
compact connected set in A1([0, T ],Rn).

Proof. The result follows as in Theorem 2.2 (except here we use Theo-
rems 1.3 and 1.4) with wα(t) = y′α(t). �

We next remove the “global” boundedness assumption (2.3) and (2.4). First
we establish general existence principles. Assume (2.1) and (2.2) hold. In addi-
tion suppose one of the following conditions hold:

(2.5) for each r > 0 there exists Mr > 0 such that for any y ∈ C([0, T ],Rn) with
|y|0 = supt∈[0,T ] |y(t)| ≤ r we have |V (y)(t)| ≤Mr for a.e. t ∈ [0, T ]

or

(2.6) for each r > 0 there exists µr ∈ L1[0, T ] such that for any y ∈ C([0, T ],Rn)
with |y|0 ≤ r we have |V (y)(t)| ≤ µr(t) for a.e. t ∈ [0, T ].

For our general existence principles we also assume the following condition
is satsified:

(2.7) there exists M0 > |x0| with |y|0 < M0 for any possible solution y to (1.1).
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Let ε > 0 be given and let τε:Rn → [0, 1] be the Urysohn function for

(B(0,M0),Rn \B(0,M0 + ε))

such that τε(x) = 1 if |x| ≤ M0 and τε(x) = 0 if |x| ≥ M0 + ε. Let Vε(x) =
τε(x)V (x) and consider the problem

(2.8)

{
y′(t) = Vε(y(t)) a.e. t ∈ [0, T ],
y(0) = x0.

Let SVε(x0;Rn) denote the solution set of (2.8).

Theorem 2.4. Suppose (2.1), (2.2), (2.5) and (2.7) hold. Let ε > 0 be given
and assume

(2.9) |w|0 < M0 for any possible solution w to (2.8).

Then SV (x0;Rn) is a nonempty compact connected subset of A([0, T ],Rn).

Proof. Notice (2.7) and (2.9) imply SV (x0;Rn) = SVε(x0;Rn). It is easy
to see that Vε satisfies (2.1), (2.2) and (2.4) (with V replaced by Vε). Now
Theorem 2.2 implies SVε(x0;Rn) is a nonempty compact connected subset of
A([0, T ],Rn). �

Combining Theorem 2.3 with the argument in Theorem 2.4 immediately
yields our next result.

Theorem 2.5. Suppose (2.1), (2.2), (2.6) and (2.7) hold. Let ε > 0 be given
and assume (2.9) is satisfied. Then SV (x0;Rn) is a nonempty compact connected
subset of A1([0, T ],Rn).

Remark 2.6. In Theorems 2.4 and 2.5 notice that SV (x0;Rn) is a Rδ subset
of C([0, T ],Rn).

These existence principles now enable us to discuss the structure of the so-
lution set to (1.1) in a very general setting.

Theorem 2.7. Suppose (2.1) and (2.2) hold. In addition assume the follow-
ing conditions are satisfied:

(2.10) there exists a L1-Carathéodory function g: [0, T ] × [0,∞) → [0,∞) such
that for any y ∈ C([0, T ],Rn) we have |V (y)(t)| ≤ g(t, |y(t)|) for almost
every t ∈ [0, T ],

and

(2.11) the problem {
v′(t) = g(t, v(t)) a.e. t ∈ [0, T ],
v(0) = |x0|,
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has a maximal solution r(t) on [0, T ].

Then SV (x0;Rn) is a nonempty compact connected subset of A1([0, T ],Rn).

Proof. Let ε > 0 be given and M0 = supt∈[0,T ] r(t) + 1 = r(T ) + 1. We
will show any possible solution u of (1.1) satisfies |u|0 < M0 and any possible
solution y of (2.8) satisfies |y|0 < M0. If this is true then Theorem 2.5 guarantees
the result. Suppose u is a possible solution of (1.1). Let t ∈ [0, T ] and we will
show |u(t)| < M0. If |u(t)| ≤ |x0| we are finished so it remains to discuss the
case when |u(t)| > |x0|. In this case there exists a ∈ [0, t) with

|u(s)| > |x0| for s ∈ (a, t] and |u(a)| = |x0|.

Also

|u(s)|′ ≤ |u′(s)| = |V u(s)| ≤ g(s, |u(s)|) a.e. on (a, t)
so {

|u(s)|′ ≤ g(s, |u(s)|) a.e. on (a, t),
|u(a)| = |x0|.

Now a standard comparison theorem for ordinary differential equations in the
real case [8, Theorem 1.10.2] guarantees that |u(s)| ≤ r(s) for s ∈ [a, t]. In
particular |u(t)| ≤ r(t). As a result |u|0 < M0. Next suppose y is a possible
solution of (2.8). Let t ∈ [0, T ] and assume |y(t)| > |x0|. Then there exists
a ∈ [0, t) with

|y(s)| > |x0| for s ∈ (a, t] and |y(a)| = |x0|.

Also since

|y(s)|′ ≤ |y′(s)| = |τε(y(s))V (y)(s)| ≤ |V (y)(s)| ≤ g(s, |y(s)|) a.e. on (a, t)

we have as above |y(s)| ≤ r(s) for s ∈ [a, t]. In particular |y(t)| ≤ r(t). As
a result |y|0 < M0. �

Remark 2.8. In Theorem 2.7 notice that SV (x0;Rn) is a Rδ subset of
C([0, T ],Rn).

Corollary 2.9. Suppose (2.1) and (2.2) hold. In addition assume the fol-
lowing conditions are satisfied:

(2.12) there exists α ∈ L1[0, T ] and a continuous function g: [0,∞) → (0,∞)
such that |V (y)(t)| ≤ α(t)g(|y(t)|) for almost every t ∈ [0, T ] and all

y ∈ C([0, T ],Rn),

and

(2.13)
∫ T
0
α(s)ds <

∫ ∞
|x0|

dx

g(x)
.
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Then SV (x0;Rn) is a nonempty compact connected subset of A1([0, T ],Rn).

Proof. Let

r(t) = I−1
(∫ t
0
α(s) ds

)
for t ∈ [0, 1] with I(z) =

∫ z
0

ds

g(s)
.

Now (2.14) guarantees that r is well defined. The result is immediate from
Theorem 2.7 once we show

(2.14)

{
v′(t) = α(t)g(v(t)) a.e. t ∈ [0, T ],
v(0) = |x0|

has a maximal solution given by r(t). Let y be a solution of (2.14), so

y′(t)
g(y(t))

= α(t)

and so integration from 0 to t gives y(t) = r(t). �

Remark 2.10. One could obtain an analogue of Theorem 2.7 (with the
solution set in A([0, T ],Rn)) if we use Theorem 2.4 instead of Theorem 2.5 in
the proof of Theorem 2.7. We leave the obvious details to the reader.

3. Solution sets for differential and integral inclusions

In this section we first discuss the differential inclusion (1.2). We let S(x0;Rn)
denote the solution set of (1.2). The following result can be found in [3] and [6].

Theorem 3.1. Suppose the following conditions hold:

(3.1) x 7→ F (t, x) is upper semicontinuous for a.e. t ∈ [0, T ],
(3.2) t 7→ F (t, x) is measurable for every x ∈ Rn,

and

(3.3) there exists µ ∈ L1[0, T ] with |F (t, x)| ≤ µ(t) for a.e. t ∈ [0, T ] and every
x ∈ Rn.

Then S(x0;Rn) is a nonempty compact connected set in C([0, T ],Rn) (in fact
S(x0;Rn) is a Rδ set).

Essentially the same reasoning as in Section 2 immediately yield the following
results.

Theorem 3.2. Suppose (3.1) and (3.2) hold and in addition assume the
following condition is satisfied:

(3.4) there exists M > 0 with |F (t, x)| ≤M for a.e. t ∈ [0, T ] and every x ∈ Rn.

Then S(x0;Rn) is a nonempty compact connected set in A([0, T ],Rn).
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Theorem 3.3. Suppose (3.1)–(3.3) hold. Then S(x0;Rn) is a nonempty
compact connected set in A1([0, T ],Rn).

Next suppose (3.1) and (3.2) hold. In addition assume one of the following
conditions hold:

(3.5) for each r > 0 there exists Mr > 0 with |F (t, x)| ≤ Mr for a.e. t ∈ [0, T ]
and every x ∈ Rn with |x| ≤ r

or

(3.6) for each r > 0 there exists µr ∈ L1[0, T ] with |F (t, x)| ≤ µr(t) for a.e.
t ∈ [0, T ] and every x ∈ Rn with |x| ≤ r.

For our general existence principles we also assume the following condition is
satisfied:

(3.7) there exists M0 > |x0| with |y|0 < M for any possible solution y to (1.2).

Let ε > 0 be given and let τε be as in Section 2. Let F̃ (t, x) = τε(x)F (t, x) and
consider the problem

(3.8)

{
y′(t) ∈ F̃ (t, y(t)) a.e. t ∈ [0, T ],
y(0) = x0.

Let Sε(x0;Rn) denote the solution set of (3.8).

Theorem 3.4. Suppose (3.1), (3.2), (3.5) and (3.7) hold. Let ε > 0 be given
and assume

(3.9) |w|0 < M0 for any possible solution w to (3.8).

Then S(x0;Rn) is a nonempty compact connected subset of A([0, T ],Rn).

Theorem 3.5. Suppose (3.1), (3.2), (3.6) and (3.7) hold. Let ε > 0 be given
and assume (3.9) holds. Then S(x0;Rn) is a nonempty compact connected subset
of A1([0, T ],Rn).

Theorem 3.6. Suppose (3.1) and (3.2) hold. In addition assume the follow-
ing conditions are satisfied:

(3.10) there exists a L1-Carathéodory function g: [0, T ] × [0,∞) → [0,∞) such
that |F (t, x)| ≤ g(t, |x|) for a.e. t ∈ [0, T ] and all x ∈ Rn,

and

(3.11) the problem {
v′(t) = g(t, v(t)) a.e. t ∈ [0, T ],
v(0) = |x0|

has a maximal solution r(t) on [0, T ].
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Then S(x0;Rn) is a nonempty compact connected subset of A1([0, T ],Rn).

Remark 3.7. In Theorems 3.4–3.6 notice that S(x0;Rn) is a Rδ subset of
C([0, T ],Rn).
It is possible to extend these results to the integral inclusion (1.3) (however an

extra condition on g will be needed in (3.10)). Let S(h;Rn) denote the solution
set of (1.3). The following result can be found in [3].

Theorem 3.8. Suppose (3.1)–(3.3) hold and in addition assume the follow-
ing conditions are satisfied:

(3.12) h ∈ C([0, T ],Rn)

(3.13) for each t ∈ [0, T ], k(t, s) is measurable on [0, t] and k(t) = esssup |k(t, s)|,
0 ≤ s ≤ t, is bounded on [0, T ],

and

(3.14) the map t 7→ kt is continuous from [0, T ] to L∞([0, T ], L1n×n[0, T ]), here
kt(s) = k(t, s).

Then S(h;Rn) is a nonempty compact connected set C([0, T ],Rn).

Next suppose (3.1) and (3.2) hold. In addition assume the following condi-
tions are satisfied:

(3.15) for each r > 0 there exists µr ∈ L1[0, T ] with |F (t, x)| ≤ µr(t) for a.e.
t ∈ [0, T ] and every x ∈ Rn with |x| ≤ r,

and

(3.16) there exists M0 > |h|0 with |y|0 < M for any possible solution y to (1.3).

Let ε > 0 be given and let τε and F̃ be as before. Consider the problem

(3.17) y(t) ∈ h(t) +
∫ t
0
k(t, s)F̃ (s, y(s)) ds for t ∈ [0, T ]

and let Sε(h;Rn) denote the solution set of (3.17). Essentially the same reasoning
as in Section 2 immediately yields the following result.

Theorem 3.9. Suppose (3.1), (3.2), (3.12)–(3.16) hold. Let ε > 0 be given
and assume

(3.18) |w|0 < M0 for any possible solution w to (3.17).

Then S(h;Rn) is a nonempty compact connected subset of C([0, T ],Rn).
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Theorem 3.10. Suppose (3.1), (3.2), (3.12)–(3.14) hold. In addition sup-
pose the following conditions are satisfied:

(3.19) there exists a L1-Carathéodory function g: [0, T ] × [0,∞) → [0,∞) such
that |F (t, x)| ≤ g(t, |x|) for a.e. t ∈ [0, T ] and all x ∈ Rn,

(3.20) g(t, x) is nondecreasing in x for a.e. t ∈ [0, T ],

and

(3.21) the problem{
v′(t) = (supt∈[0,T ] k(t))g(t, v(t)) a.e. t ∈ [0, T ],
v(0) = |h|0,

has a maximal solution r(t) on [0, T ].

Then S(h;Rn) is a nonempty compact connected subset of C([0, T ],Rn).

Proof. We will apply Theorem 3.9 with ε > 0 and M0 = supt∈[0,T ] r(t)+1.
Let u be a possible solution of (1.3). Then

|u(t)| ≤ |h|0 + ( sup
t∈[0,T ]

k(t))
∫ t
0
g(s, |u(s)|) ds ≡ v(t)

for t ∈ [0, T ]. Now (3.20) implies

v′(t) = ( sup
t∈[0,T ]

k(t))g(t, |u(t)|) ≤ ( sup
t∈[0,T ]

k(t))g(t, v(t))

almost everywhere. So{
v′(t) ≤ ( sup

t∈[0,T ]
k(t))g(t, v(t)) for a.e. t ∈ [0, T ],

v(0) = |h|0.

Now [8, Theorem 1.10.2] guarantees that v(t) ≤ r(t) for t ∈ [0, T ], so |u(t)| < M0
for t ∈ [0, T ]. A similar argument guarantees that |y(t)| < M0, t ∈ [0, T ], for any
possible solution y of (3.17). �
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