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DIFFERENTIAL INCLUSIONS ON CLOSED SETS
IN BANACH SPACES

WITH APPLICATION TO SWEEPING PROCESS

Houcine Benabdellah

Abstract. This paper deals with the existence of absolutely continuous
solutions of a differential inclusion with state constraint in a separable

Banach space

x(0) = x0, x(t) ∈ C(t), ẋ(t) ∈ F (t, x(t))

where C: [0, a] → X is a multifunction with closed graph G and F : G → X
is a convex compact valued multifunction which is separately measurable

in t ∈ [0, a] and separately upper semicontinuous in x ∈ X. Application to
a non convex sweeping process is also considered.

1. Introduction

Let X be a Banach space, I = [0, a] ⊂ R, t 7→ C(t) a multifunction defined
on I with closed graph G in I × X. Let F :G → 2X \ ∅ be a multifunction
defined on G with nonempty convex compact values on X such that F (t, · ) is
upper semicontinuous (u.s.c.) on C(t) for every t ∈ I. In this paper, we consider
the following problem: to find absolutely continuous solutions for the differential
inclusion

(P) x(0) = x0, x(t) ∈ C(t) and x′(t) ∈ F (t, x(t)) a.e.
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By absolutely continuous function we mean a function x: I → X such that
x(t) = x0 +

∫ t

0
x′(s) ds, t ∈ I, with x′ ∈ L1

X(I). It is well known that prob-
lem (P) has applications in Evolution and Optimal Control Problems. Its origin
comes from the work of Nagumo [35] when the second member of (P) is single-
valued and dim(X) < ∞. Most results for (P) concern the case when X is a
finite dimensional space ([3], [23], [37]). Some papers deal with (P) when X is a
general Banach space ([5], [9], [14], [27]) under various assumptions on tangen-
tial conditions and measurability assumption for the multifunction F . In ([10],
[9], [27]), the authors consider the following tangential condition

(TB) there exists a negligible set N of I such that
(a) ({1} ×X) ∩ TG(t, x) 6= ∅ for all t ∈ N and x ∈ C(t)
(b) ({1} × F (t, x)) ∩ TG(t, x) 6= ∅ for all t ∈ I \N and x ∈ C(t)
and restrictive measurability assumptions.

In the present paper, we prove the existence of solutions to (P) by assuming
the following condition

(T) For every measurable selection σ of C( · ), the multifunction Λσ from I

to R×X defined by

t 7→ ({1} × F (t, σ(t))) ∩ TG(t, σ(t))

is Lebesgue-a.e. nonempty valued and admits at least a measurable se-
lection.

It is clear that condition (T) is weaker than those used in the literature.
Furthermore, it turn out that condition (a) of (TB), who first appeared in the
work of Bothe ([10], [9]), is a topological/analytical property of the constraint
C rather than a part of a tangential condition. In this work we replace it by the
condition less restrictive

(TC) For every (t, x) ∈ G (with t < a), lim infh→0+ d(x,C(t+ h))/h <∞.

Condition (TC) covers many known class of multifunctions including Lip-
schitzian and absolutely continuous multifunctions. In particular, we prove later
in this paper that results such as those of Frankowska–Plaskacz–Rzeuchowski
([26], [25]) can be deduced from the Lipschitzian case by a simple change of
variables. Moreover, our main result (Theorem 3.1) extends the results of Bothe
([10], [9]) and Gavioli ([27]) and is new even when X is of finite dimensional. Our
work relies on several sophisticated techniques because we deal with a general
Banach space and weaker assumption for both measurability and tangency condi-
tion (T). One of the main ingredient relies on a new extension of Scorza–Dragoni’s
theorem (Theorem 2.4) involving the use of the essential supremum for multi-
functions that appears first in the pioneering work of Castaing–Marques ([13]).
In this framework, consult ([9], [18], [4], [21], [36], [30]) for other related results
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concerning the Scorza–Dragoni property. We finish the paper by giving a sharp
application of Theorem 3.1 to the study of nonconvex sweeping process.

2. Definitions and preliminaries results

Let (T,F , µ) be a σ-finite complete measure space and let X be a Haus-
dorff topological space. We say that X is a Polish (resp. Suslin) space if it
is metrizable, separable and complete (resp. if there exists a Polish space Y

and a continuous onto mapping s:Y → X). Let Γ be a multifunction from T

to 2X . We say that Γ is weakly measurable if for every open set U in X, the set
Γ−(U) := {t ∈ T : Γ(t) ∩ U 6= ∅} belongs to F1. The multifunction Γ is said
to be graph-measurable if the graph graph(Γ) of Γ belongs to F ⊗B(X), where
B(X) denotes the Borel tribe of X. A function σ:T → X is called a selection of
the multifunction Γ if σ(t) ∈ Γ(t) for all t ∈ T . We denote by L0

Γ the set of all
measurable selections σ of Γ. For more about measurability of multifunctions,
we refer to Castaing–Valadier [15] and [29]. In the set of all weakly-measurable
(or graph-measurable) multifunctions Γ from T to X, we define a preorder 4 by
setting: Γ1 4 Γ2 if and only if Γ1(t) ⊆ Γ2(t) µ-almost everywhere; that is there
exists a µ-negligible set N of T such that Γ1(t) ⊆ Γ2(t) for all t ∈ T \N .

We denote by cl(X) (resp. K(X)) the set of all nonempty closed (resp. com-
pact) subsets of X. Let (An) be a sequence of subsets of X. The upper limit (in
the sense of Painlevé–Kuratowski) of the sequence (An) is defined by:

Ls(An) :=
⋂
p∈N

⋃
k≥p

Ak.

A multifunction F from a topological space Y to the subsets of X is said
to be upper semicontinuous (shortly u.s.c.) on Y if for every closed subset U
of X, the set F−(U) := {y ∈ Y : F (y) ∩ U 6= ∅} is closed in Y . We can easily
check that if X is a metric space, then the upper semicontinuity of F implies
that for every y ∈ Y and every sequence (yn) of Y converging to y, we have
LsF (yn) ⊂ F (y).

Suppose that X is a metric space with distance d. For A ⊆ X and x ∈ X,
we set d(x,A) := inf{d(x, a) : a ∈ A} with the convention d(x, ∅) := ∞. For
C,D ⊂ X, the excess of C over D is defined by e(C,D) := sup{d(x,D) : x ∈ C}.

If E is a Banach space, we denote by ck(E) (resp. cwk(E)) the set of all
nonempty convex compact (resp. convex weakly compact) subsets of X. For
A ⊂ E, we denote by co(A) (resp. co(A); resp. δ∗( · ;A)) the convex hull (resp.
closed convex hull; resp. the support function) of A. We also set for any A ⊂ E,
|A| := sup{‖x‖ : x ∈ A}.

1Note that this imply that the set {t ∈ T : Γ(t) = ∅} is measurable.
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We will need next the following general property of upper semicontinuous
multifunctions (c.f. [8]).

Lemma 2.1. Let X and Y be two Hausdorff topological spaces, X being first
countable. Let F be a multifunction from X to the subsets of Y . We suppose
that F has a closed graph in X × Y and that for every compact subset M of X,
the image set F (M) is relatively compact in Y . Then the multifunction F is
upper semicontinuous on X.

The following result is due to Valadier [40] (see also [13]). For the sake of
completeness, we produce an alternative proof.

Proposition 2.2. Let X be a separable and metrizable space and Σ:T → 2X

be a multifunction from T to the closed subsets of X. Then there exists a largest
weakly measurable multifunction Σ0:T → 2X from T to the closed subsets of X
such that Σ0(t) ⊆ Σ(t), for all t ∈ T \N , where N is some negligible subset of T .
The same result remains valid in the case of a Suslin space X; the multifunction
Σ0 is then graph-measurable instead of weakly measurable.

Proof. (1) We suppose that X is metrizable and separable. Let (xn)n≥1

be a dense sequence in X. Denote by M the set of all weakly measurable
multifunctions C:T → cl(X)∪{∅} such that C 4 Σ. We can set M = {Γα : α ∈
A} for some index set A. For α ∈ A and n ≥ 1, we set

fn
α (t) := d(xn,Γα(t)), t ∈ T.

Thus fn
α is a F− measurable function from T to [0,∞]. Let us put

fn := ess inf{fn
α : α ∈ A}.

Since the measure µ is σ-finite, there exists a sequence of indices (αn
k )k≥1 ⊂ A

such that
fn(t) = inf

k≥1
fn

αn
k
(t), t ∈ T.

Let Σ0(t) := cl
⋃

n,k≥1 Γαn
k
(t) for t ∈ T . Then obviously Σ0 is a weakly

measurable multifunction from T to the closed subsets of X such that Σ0(t) ⊆
Σ(t) µ-a.e. Let us prove that Σ0 is the largest member of M. Let Γα ∈M. For
any n we have, fn(t) ≤ fn

α (t) µ-a.e. Then let N be a negligible set such that for
every t ∈ T \N and every n ≥ 1, fn(t) ≤ fn

α (t) = d(xn,Γα(t)). We shall prove
that for every t ∈ T \N , Γα(t) ⊆ Σ0(t). Indeed, let us take x ∈ Γα(t) and ε > 0.
There exists nε such that d(xnε

, x) < ε/2. We have

fnε(t) = inf
k≥1

d(xnε
,Γαnε

k
(t)) ≤ d(xnε

,Γα(t)) <
ε

2
.

So there exist kε ≥ 1 and yε ∈ Γαnε
kε

(t) such that d(xnε , yε) < ε/2. It follows
that d(x, yε) ≤ d(x, xnε) + d(xnε , yε) < ε. This proves that, for every ε > 0,
B(x, ε) ∩ (

⋃
n,k≥1 Γαn

k
(t)) 6= ∅, thus x ∈ Σ0(t). Our claim is now proved.
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(2) Suppose now that X is a Suslin topological space. Let X0 be a Polish
space and s:X0 → X be a continuous onto mapping. Set Σ1(t) := s−1(Σ(t))
for t ∈ T . Then Σ1 is a multifunction from T to the closed subsets of X0. By
step (1) there exists a largest weakly measurable multifunction Γ0:T ⇒ X0

with closed values such that Γ0(t) ⊆ Σ1(t) µ-a.e. Let Γ(t) := s(Γ0(t)) for
t ∈ T . For every open set V of X, we have Γ−(V ) = Γ−0 (s−1(V )) ∈ F . So Γ is
weakly measurable and obviously we have Γ(t) ⊆ Σ(t) µ-a.e. Let Γ′ be an other
graph-measurable multifunction with closed values such that Γ′(t) ⊆ Σ(t) µ-a.e.
Then Γ1(t) := s−1(Γ′(t)), t ∈ T , is a graph-measurable multifunction (in fact
graph(Γ1) = ψ−1(graph(Γ′)) where ψ:T ×X0 → T ×X: (t, x) 7→ (t, s(x)) ) with
closed values satisfying Γ1(t) ⊆ Σ1(t) µ-a.e. Since Γ′ is also weakly measurable
([15, Theorem III.30]), this implies that Γ1(t) ⊆ Γ0(t) µ-a.e. It follows (since s
is onto) that

(2.1) Γ′(t) = s(s−1(Γ′(t))) = s(Γ1(t)) ⊆ s(Γ0(t)) = Γ(t) µ-a.e.

In particular if we take Γ′ = Γ (which is a graph-measurable multifunction) we
obtain that Γ(t) = Γ(t) µ-a.e. Hence we can consider without loss of gener-
ality that the multifunction Γ is closed valued and so it is graph-measurable.
Condition (2.1) shows also that Γ is the required multifunction. �

We suppose in what follows that T is a Hausdorff compact topological space,
µ a positive Radon measure on T and F = B̂(T ) the µ-completion of the Borel
tribe B(T ). Recall the following version of Scorza–Dragoni theorem which is due
to Castaing [11]:

Proposition 2.3. Let X be a Polish space. Let ϕ:T ×X → R be a function
such that ϕ( · , x) is µ-measurable for all x ∈ X, and ϕ(t, · ) is continuous on X

for all t ∈ T . Then for every ε > 0, there exists a compact set Tε ⊂ T with
µ(T \ Tε) < ε such that the restriction ϕ|Tε×X of ϕ to Tε ×X is continuous.

Let us denote by τ0 the topology of the compact space T . We consider
another topology τ on T finer than τ0 (i.e. τ0 ⊆ τ) and that is first countable.
When T is equipped with the topology τ , we will denote it by Tτ (note that this
is not necessarily a compact space).

We are now ready to state the following general multivalued version of
Scorza–Dragoni theorem for upper semicontinuous multifunctions:

Theorem 2.4. Let X and Y be two Polish topological spaces. Let C:T →
2X \ {∅} be a multifunction with measurable graph G in T × X; that is G ∈
B̂(T )⊗ B(X). Let F :G→ K(Y ) be a multifunction such that:

(i) For every t ∈ T , graph(Ft) = {(x, y) ∈ X × Y : x ∈ C(t) and y ∈
F (t, x)} is closed in X × Y .
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(ii) For every σ ∈ L0
C , the multifunction t 7→ F (t, σ(t)) admits at least

a µ-measurable selection.
(iii) For every ε > 0, there exists a compact set Jε ⊂ T with µ(T \ Jε) < ε

such that for every compact subset M of the set (Jε×X)∩G, endowed
by the topology inherited from Tτ ×X, the image set F (M) is relatively
compact in Y .

Then, there exists a multifunction F0:G→ K(X) ∪ {∅} such that

(a) The graph of F0 belongs to B̂(T )⊗ B(X)⊗ B(Y ).
(b) There exists a µ-negligible set N such that

∅ $ F0(t, x) ⊆ F (t, x) for all t ∈ T \N and all x ∈ C(t).

(c) If u:T → X and v:T → Y are two µ-measurable functions such that
(t, u(t)) ∈ G and v(t) ∈ F (t, u(t)) µ-a.e. then v(t) ∈ F0(t, u(t)) µ-a.e.

(d) For every ε > 0, there exists a compact set Kε ⊂ T with µ(T \Kε) < ε

such that the restriction F0|Gε
of F0 to the set Gε = (Kε × X) ∩ G,

equipped with the topology inherited from the product space Tτ ×X, is
upper semicontinuous.

Proof. For every t ∈ T put Φ(t) := graph(Ft). Then, by condition (i), Φ
is a multifunction from T to the closed subsets of X × Y . By Proposition 2.2,
there exists a largest weakly measurable multifunction Φ0:T → cl(X × Y )∪ {∅}
such that Φ0(t) ⊂ Φ(t), for all t ∈ T \N0, for some µ-negligible set N0 of T . By
[15, Proposition III.13], the multifunction Φ0 is also graph-measurable. Hence,
putting

F0(t, x) := {y ∈ Y : (x, y) ∈ Φ0(t)}, (t, x) ∈ G
we get a multifunction from G to the closed subsets of Y such that graph(F0) ∈
B̂(T )⊗ B(X)⊗ B(Y ). Moreover, we have

(A1) for all t ∈ T \N0 and for all x ∈ C(t), F0(t, x) ⊂ F (t, x).
(A2) If u:T → X and v:T → Y are two µ-measurable functions such that

(t, u(t)) ∈ G, for all t ∈ T and v(t) ∈ F (t, u(t)) µ-a.e. then v(t) ∈
F0(t, u(t)) µ-a.e.

Let {σn}n≥0 be a sequence of µ-measurable selections of the multifunction C
such that {σn(t) : n ≥ 0} is dense in C(t) for every t ∈ T ([15, Theorem III.22]).
By condition (ii), for every n ≥ 0 there exists a µ-measurable function vn:T → Y

such that vn(t) ∈ F (t, σn(t)) µ-a.e. By (A2), we have also vn(t) ∈ F0(t, σn(t))
µ-a.e. for every n. By modifying the µ-negligible set N0, we may suppose that

(2.2) vn(t) ∈ F0(t, σn(t)) for all n ∈ N and all t ∈ T \N0.

In particular, it follows that Φ0(t) 6= ∅ for all t ∈ T \ N0. By virtue of the
choice of Φ0, we may suppose without loss of generality that Φ0(t) 6= ∅ for all
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t ∈ T . Let ε > 0. By hypothesis, there exists a compact set Jε ⊂ T , with
µ(T \ Jε) < ε, such that compactness condition (iii) holds. Now we define
a function h0:T × (X × Y ) → [0,∞[ by setting h0(t, z) := d(z,Φ0(t)) for all
(t, z) ∈ T × (X × Y ). It is clear that function h0 is separately µ-measurable
in t and separately continuous in z. By Proposition 2.3, there exists a compact
set Kε ⊂ T such that λ(T \Kε) < ε and the restricted function h0|Kε×(X×Y ) is
continuous. We may suppose without loss of generality that Kε ⊂ Jε \N0. Let
us put Gε = (Kε×X)∩G. Then, from the continuity of h0|Kε×(X×Y ), it follows
easily that the graph of the multifunction F0|Gε

is closed in Gε × Y . Hence it is
also closed in Gτ

ε × Y , where Gτ
ε denotes the set Gε equipped with the topology

induced by the product space Tτ × X. By condition (iii), F0(M) is relatively
compact in Y for every compact set M of Gτ

ε . Hence by Lemma 2.1, we deduce
that F0|Gτ

ε
is upper semicontinuous2.

To finish the proof of the theorem, we will prove that

(2.3) F0(t, x) 6= ∅ for all (t, x) ∈ Gε.

Let (t, x) ∈ Gε. There exists a subsequence (σnj
(t))j of (σn(t))n converging

to x in X (this follows from the density of (σn(t)) in C(t)). Let us consider
the compact set B′ = {x} ∪ {σnj

(t) : j ≥ 0}. By the upper semicontinuity
of F0(t, · ) on C(t), the set F0(t, B′) is compact in Y . Furthermore, by ( 2.2),
vnj (t) ∈ F0(t, B′), for all j ≥ 0. So, we can suppose (along a subsequence) that
there exists y ∈ Y such that vnj

(t) → y in Y . Since the multifunction F0|Γε
is

closed, we deduce that y ∈ F0(t, x). Hence claim (2.3) is proved. �

Remarks. (1) Assertion (b) in Theorem 2.4 is crucial. It relies strongly on
the essential supremum property given in Proposition 2.2.

(2) We can find in the literature several works on multivalued versions of the
Scorza–Dragoni theorem (see for instance [11], [30], [36], [13]). Our result is an
extension of the result given in [13].

(3) Let us choose a sequence (Jn) of compact subsets of T with µ(T \ Jn) <
2−n such that compactness condition (iii) holds on Gn = (Jn×X)∩G for every n.
Take t in

⋃
n Jn and M an arbitrary compact subset of C(t). Then, by (iii) the

image set Ft(M) = F ({t} ×M) is relatively compact in Y . By Lemma 2.1, it
follows that Ft is u.s.c. on C(t). Hence it is equivalent to replace condition (i)
of the theorem by the following stronger condition:

(i1) For almost every t ∈ T , the multifunction F (t, · ) is upper semicontin-
uous on C(t).

2Note that condition (A1) imply that F0 is compact valued in Y .
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Now we will give an interesting application of Theorem 2.4. We suppose that
X = Y is a separable Banach space. We denote by αX the Kuratowski measure
of noncompactness defined on the set of all bounded subsets of X.

Let T = I = [0, a], with a > 0, be a compact interval of R and λ the Lebesgue
measure on I. We denote by L(I) the tribe of Lebesgue measurable subsets of I.
The left topology τ` (resp. right topology τr) on I is defined as the topology
generated by the basis of open sets {]s, t] ∩ I : s ≤ t} (resp. {[s, t[ ∩ I : s ≤ t}).
We denote by I` (resp. Ir) the set I equipped with the left topology (resp. right
topology). Let us denote by τu the usual topology on I. For t ∈ I, δ > 0 and
τ ∈ {τu, τ`, τr}, we set

Iτ
t,δ :=


[t− δ, t+ δ] ∩ I if τ = τu,

[t− δ, t] ∩ I if τ = τ`,

[t, t+ δ] ∩ I if τ = τr.

We have the following result:

Corollary 2.5. Let τ ∈ {τu, τ`, τr} and Iτ be the interval I equipped with
topology τ . Let X be a separable Banach space. Let C: I → 2X \ {∅} be a multi-
function with measurable graph G in I×X. Let F :G→ K(X) be a multifunction
such that:

(1) For every t ∈ I, graph(Ft) = {(x, y) ∈ X × X : x ∈ C(t) and y ∈
F (t, x)} is closed in X ×X.

(2) For every σ ∈ L0
C , the multifunction t 7→ F (t, σ(t)) admits at least a

λ-measurable selection.
(3) For every ε > 0, there exists a compact set Jε ⊂ I with λ(I \ Jε) < ε

such that for every t ∈ Jε and every compact set B of X, we have

inf
δ>0

αX [F (((Iτ
t,δ ∩ Jε)×B) ∩G)] = 0.

Then, there exists a multifunction F0:G→ K(X) ∪ {∅} such that

(a) The graph of F0 belongs to L(I)⊗ B(X)⊗ B(X).
(b) There exists a λ-negligible set N such that

∅ $ F0(t, x) ⊆ F (t, x) for all t ∈ I \N and all x ∈ C(t).

(c) If u: I → X and v: I → X are two λ-measurable functions such that
(t, u(t)) ∈ G and v(t) ∈ F (t, u(t)) λ-a.e. then v(t) ∈ F0(t, u(t)) λ-a.e.

(d) For every ε > 0, there exists a compact set Iε ⊂ I with λ(I \ Iε) < ε

such that the restriction F0|Gε
of F0 to the set Gε = (Iε × X) ∩ G,

equipped with the topology inherited from the product space Iτ × X, is
upper semicontinuous.
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Moreover, if the multifunction F is convex compact valued in X then so is F0.

Proof. Taking T = I and Y = X, we remark that all conditions of The-
orem 2.4 are satisfied except for the compactness condition (iii). Let us check
it. It is enough to give the proof in the case where τ = τ` (other cases are simi-
lar). Let ε > 0 and Jε be the compact subset of I given by condition (3). Take
M an arbitrary compact subset of G`

ε (where G`
ε denotes the set (Jε ×X) ∩ G

equipped with the induced topology from I` × X). Let (yn)n≥1 be a sequence
in F (M). Then yn ∈ F (tn, xn) for some (tn, xn) ∈ M, n = 1, 2, . . . Since M is
compact, we can suppose (along a subsequence) that (tn, xn) → (t, x) in G`

ε for
some (t, x) ∈ Gε. Consider the compact subset B := {x} ∪ {xn : n ≥ 1} of C(t)
and apply the compactness condition (3) to t. Then for every η > 0, there exists
δ > 0 such that

αX [F ((([t− δ, t] ∩ Jε)×B) ∩G)] < η.

Since tn → t in I`, there exists n1 = n(η) such that tn ∈ [t − δ, t] ∩ Jε for all
n ≥ n1. It follows that yn belongs to F (([t− δ, t]∩Jε)×B∩G) for every n ≥ n1.
Hence

αX [{yn : n ≥ n1}] < η.

Since η > 0 is arbitrary, we deduce that αX [{yn : n ≥ 1}] = 0. This proves that
the set F (M) is relatively compact in X.

For the last assertion of the theorem, let us preserve notations of the proof
of Theorem 2.4. By construction, Φ0(t) = graphF0(t, · ) is the largest weakly
measurable multifunction such that Φ0 4 Φ. On the other hand, the multifunc-
tion Φ1(t) := graphcoF0(t, · ) is also weakly measurable and satisfies Φ1 4 Φ.
Hence Φ1(t) = Φ0(t) a.e. Modifying F0 on a λ-negligible set we can infer that
F0 = coF0. This finish the proof of corollary. �

Remarks. Let us give some explicit examples providing compactness con-
dition (3) of Corollary 2.5.

(1) Suppose X is a finite dimensional space, F :G → K(X) a multifunction
such that |F (t, x)| ≤ g(t)(1+‖x‖), for all (t, x) ∈ G for some measurable function
g: I → R+. Then compactness condition (3) holds (apply Lusin theorem to g).

(2) Suppose X infinite dimensional and F :G → K(X) a multifunction such
that for some k ∈ L1

R+(I) we have

αX [F (t, B)] ≤ k(t)αX(B)

for every bounded subset B of X. Then compactness condition (3) is satisfied.

We shall need in what follows the following lemmas:

Lemma 2.6. Let c ∈ L1
R+(I) and let N be a λ-negligible set of I. Then there

exists a lower semicontinuous function c: I → ]0,∞] such that 0 ≤ c(t) < c(t),
for all t ∈ I, c(t) = ∞, for all t ∈ N , and

∫ a

0
c(s) ds <∞.
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Proof. Let us set as in Bothe (see [10]):

An := {t ∈ I : n− 1 ≤ c(t) < n} ∪N, n ∈ N∗.

Let us choose, for every n ∈ N∗, an open set On of I such that An ⊂ On and
λ(On \ An) < 2−n and set c :=

∑∞
n=1 nχOn . It is clear that 0 ≤ c < c on I

and that c is lower semicontinuous on I. Moreover, if t ∈ N , we have t ∈ On

for every n ≥ 1, so c(t) = ∞. Now, from the choice of An and On, we have
nχOn = nχOn\An

+nχAn ≤ nχOn\An
+χAn

c+χAn
. Hence, λ-a.e. c ≤ g+ c+1,

where g =
∑∞

n=1 nχOn\An
. Since

∫ a

0
g ≤

∑∞
n=1 n2−n < ∞, it follows that c is

λ-integrable. �

Let E be a normed space (with norm ‖ · ‖), K a subset of E and x ∈ K. We
recall that the Bouligand cone of K at x, denoted by TK(x), is defined by:

TK(x) :=
{
u ∈ E : lim inf

h→0+

1
h
d(x+ hu,K) = 0

}
.

We have the following lemma, providing a measurability property of the Bouli-
gand cone.

Lemma 2.7. Let E be a separable Banach space and K a nonempty subset
of E. Let us endow K with the topology induced by E. Then, there exists a
decreasing sequence (Φn) of weakly measurable multifunctions Φn:K → cl(E)
such that TK(ξ) =

⋂
n Φn(ξ) for each ξ ∈ K.

Proof. By definition, we have TK(ξ) = {v ∈ E : f(ξ, v) = 0}, where
f(ξ, v) := lim infh→0+ d(ξ+hv;K)/h. Let (εn) be a sequence of positive numbers
such that εn ↓ 0. Let us set

fn(ξ, v) := inf
0<h<εn

1
h
d(ξ + hv;K)

for n ∈ N, ξ ∈ K and v ∈ E. It is clear that every function fn is upper
semicontinuous on K ×E and that fn(ξ, · ) is continuous on E for every ξ ∈ K.
It follows by Theorem 6.2 of Himmelberg [29] (more exactly see the remark
following this theorem) that the multifunction Φn:K → cl(E) defined by

Φn(ξ) := cl{v ∈ E : fn(ξ, v) < εn}, ξ ∈ K

is weakly measurable. Now we let the reader check that TΓ(ξ) =
⋂

n Φn(ξ) for
every ξ ∈ K. �

Remark. Weak measurability in the statement of Lemma 2.7 is relative to
the measure space (K,B(K)), where the set K is equipped with the separable
metric topology inherited from E.
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3. The main result

Let us introduce some notations and definitions. Let I = [0, a] (a > 0) be
an interval of R and X a separable Banach space. If G is a subset of I ×X, we
set G∗ := {(t, x) ∈ G : t < a}. A Kamke function on I × R+ is a Carathéodory
mapping ω: I × R+ → R+ such that ω(t, 0) = 0 for all t ∈ I and that the
unique absolutely continuous function r: I → R+ such that r(0) = 0 and r′(t) ≤
ω(t, r(t)) λ-a.e. is the function identically equal to zero. Examples of Kamke
functions on I × R+ are the functions of type ω(t, x) = k(t)x with k ∈ L1

R+(I).
We state now the main result of this paper:

Theorem 3.1. Let I = [0, a] (with a > 0) be an interval of R and X a
separable Banach space. Let C: I → cl(X) be a multifunction with closed graph
G in I` ×X. Let F :G→ ck(X) be a multifunction such that:

(i) There exists c ∈ L1
R+(I) such that

|F (t, x)| ≤ c(t)(1 + ‖x‖) for all (t, x) ∈ G.

(ii) For every t ∈ I, the multifunction F (t, · ) is u.s.c. on C(t).
(iii) For every (t, x) ∈ G∗,

lim inf
h→0+

1
h
d(x,C(t+ h)) <∞.

(iv) For every σ ∈ L0
C , the multifunction

Λσ: t 7→ ({1} × F (t, σ(t))) ∩ TG(t, σ(t))

is λ-a.e. nonempty valued on I and admits at least a measurable selec-
tion.

(v) There exists a Kamke-function ω on I × R+ such that for every ε > 0,
there exists a compact set Jε ⊂ I, with λ(I \Jε) < ε, such that for every
t ∈ Jε we have:

inf
δ>0

αX [F ((([t− δ, t] ∩ Jε)×B) ∩G)] ≤ ω(t, αX(B))

for every bounded set B of X.

Then, given x0 ∈ C(0), there exists an absolutely continuous function x: I → X

and a function x′ ∈ L1
X(I) such that x(t) = x0 +

∫ t

0
x′(s) ds for all t ∈ I and

(P)

{
x(t) ∈ C(t) on I,

x′(t) ∈ F (t, x(t)) a.e. on I.

Proof. By virtue of Corollary 2.5, there exists a multifunction F0:G →
ck(X) and a λ-negligible set N0 such that:

(B1) graph(F0) ∈ L(I)⊗ B(X)⊗ B(X).
(B2) For every t ∈ I \N0 and every x ∈ C(t) we have ∅ 6= F0(t, x) ⊂ F (t, x).
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(B3) If u: I → X and v: I → X are two measurable functions such that
u ∈ L0

C and v(t) ∈ F (t, u(t)) a.e. then v(t) ∈ F0(t, u(t)) a.e.
(B4) For every ε > 0, there exists a compact set Jε ⊂ I with λ(I \ Jε) < ε,

such that if we denote by G`
ε the set Gε = (Jε × X) ∩ G equipped

with the topology induced by I` ×X, then the restriction F0|Gε
of the

multifunction F0 to Gε is u.s.c. on G`
ε.

Before going on with the proof of Theorem 3.1 we will need some preliminaries
lemmas. The first one is the following lemma.

Lemma 3.2. We preserve the preceding assumptions and notations. Then,
there exists a λ-negligible set N of I such that for every t ∈ I \ N and every
x ∈ C(t), ∅ 6= F0(t, x) ⊂ F (t, x) and ({1} × F0(t, x)) ∩ TG(t, x) 6= ∅.

Proof. By virtue of condition (B4), there exists a sequence of compact sets
(Jn)n≥1 in I such that for every n, λ(I \ Jn) < 2−n and the restriction F0|Gn

of
F0 to the set Gn = (Jn×X)∩G (equipped with the topology induced by I`×X)
is u.s.c. Let us put J :=

⋃
n≥1 Jn and consider the multifunction T defined by

T (t) := {x ∈ C(t) : ({1} × F0(t, x)) ∩ TG(t, x) 6= ∅}, t ∈ J.

We consider on J the complete tribe L(J) := L(I) ∩ J (which is actually the
λ-completion tribe of the Borel tribe B(J)). We shall prove that graph(T ) ∈
L(J)⊗B(X). Let G′ denote the Borel subset (J×X)∩G of I×X equipped with
the usual topology. We define on G′ a multifunction Φ by setting: Φ(t, x) :=
{1} × F0(t, x) for (t, x) ∈ G′. Then Φ is a weakly measurable multifunction
from G′ to ck(R × X). Indeed, this follows from the fact that for each n ≥ 1,
F0|(Jn×X)∩G is u.s.c. Furthermore, by Lemma 2.7, there exists a sequence of
weakly measurable multifunctions Φn:G′ → cl(R × X) such that TG(t, x) =⋂

n Φn(t, x) for every (t, x) ∈ G′. Hence, we have

graph(T ) =
{

(t, x) ∈ G′ : Φ(t, x) ∩
( ⋂

n

Φn(t, x)
)
6= ∅

}
.

In virtue of Theorem 4.1 of Himmelberg [29], the multifunction H:G′ ⇒ R×X

defined by H(t, x) := Φ(t, x) ∩ (
⋂

n Φn(t, x)) is weakly measurable (note that Φ
is compact valued). Since graph(T ) = {(t, x) ∈ G′ : H(t, x) 6= ∅}, we deduce
that graph(T ) ∈ B(G′). Now, by remarking that B(G′) ⊂ L(J)⊗ B(X), we see
that our claim is proved.

To finish the proof of the lemma, we will prove that T (t) = C(t) a.e. on J .
Indeed, suppose by contradiction that the contrary holds. Then, there exists a set
A ∈ L(J) with λ(A) > 0 such that for every t ∈ A, D(t) := C(t)\T (t) 6= ∅. Since
the graph of the multifunction D( · ) belongs to L(J)⊗B(X), selection theorem
of Aumann ([15, Theorem III.22]) implies that there exists a measurable function
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σ0:A → X such that σ0(t) ∈ D(t) for all t ∈ A. It is clear that we can extend
the function σ0 to all the set I in such a way that σ0 ∈ L0

C . By assumption
(iv) of the Theorem 3.1, there exists a measurable function v0: I → X such that
(1, v0(t)) ∈ Λσ0(t) a.e. on I. In particular, v0(t) ∈ F (t, σ0(t)) a.e. So, by (B3),
we have also v0(t) ∈ F0(t, σ0(t)) a.e. on I. Hence,

(1, v0(t)) ∈ ({1} × F0(t, σ0(t))) ∩ TG(t, σ0(t)) a.e. on I.

This contradicts the fact that σ0(t) ∈ C(t) \ T (t), for all t ∈ A. So T (t) = C(t)
a.e. on J and the lemma is proved. �

Let us choose, by Lemma 2.6, an integrable and lower semicontinuous func-
tion c: I → ]0,∞] such that c(t) < c(t) for every t ∈ I and c(t) = ∞, for
every t ∈ N , where N is the negligible set given by Lemma 3.2. Let m :=
(1+‖x0‖+a) exp(

∫ a

0
c(s) ds) and consider the integrable function g on I defined

by g(t) := mc(t) + 1, t ∈ I. For each τ ∈ I and each function u ∈ L1
X([0, τ ]), we

shall associate the absolutely continuous function ũ: [0, τ ] → X defined by

ũ(t) := x0 +
∫ t

0

u(s) ds, t ∈ [0, τ ].

Let us prove now the following lemma.

Lemma 3.3. For every ε ∈ ]0, 1], there exist a compact set Jε ⊂ I \N with
λ(I \ Jε) < ε, and a function wε ∈ L1

X(I) such that

(a) The compactness condition (v) of Theorem 3.1 is satisfied by Jε and
with Gε = (Jε ×X) ∩ G, the restriction F0|G`

ε
of the multifunction F0

to G`
ε is u.s.c.

(b) χI\Jε
wε = 0 and ‖wε(t)‖ ≤ g(t) λ-a.e. on I.

(c) (t, w̃ε(t)) ∈ G for all t ∈ I and wε(t) ∈ F0(t, w̃ε(t)) λ-a.e. on Jε.

Proof. Let ε ∈ ]0, 1] and choose a compact set Jε ⊂ I \ N satisfying the
compactness assumption (v) of Theorem 3.1 and the Scorza–Dragoni condition
(B4). Let us introduce some notations and definitions that we shall need bellow.
For η ∈ ]0, 1] and τ ∈ I, we denote by J−

η ([0, τ ]) the set of all nondecreasing
right continuous functions θ: [0, τ ] → [0, τ ] such that θ(0) = 0, θ(τ) = τ and
θ(t) ∈ [t− η, t], θ(θ(t)) = θ(t) for all t ∈ [0, τ ]. We denote by Pε,η([0, τ ]) the set
of all pairs (θ, u) of functions θ ∈ J−

η ([0, τ ]) and u ∈ L1
X([0, τ ]) satisfying the

following five conditions:

(C1) (θ(t), ũ(t)) ∈ G for all t ∈ [0, τ ].
(C2) u(t) ∈ F0(θ(t), ũ(θ(t))) + ηBX for a.e. t ∈ [0, τ ] ∩ Jε.
(C3) u(t) = 0 on [0, τ ] \ Jε.
(C4) For all t if t ∈ [0, τ [∩Jε then θ(t) ∈ Jε.
(C5) ‖u(t)‖ ≤ c(t)(1 + ‖ũ(θ(t))‖) + 1 for all t ∈ [0, τ ].
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We will consider, in what follows, the set Pε,η :=
⋃
{Pε,η([0, τ ]) : τ ∈ I}.

Note that Pε,η is nonempty. Indeed, at least the set Pε,η([0, 0]) is nonempty since
it contains the pair (θ0, u0) where θ0 and u0 are the identically null functions
0 7→ 0.

Let us begin by stating the following property of the elements of Pε,η:

(C6) For every τ ∈ I and every (θ, u) ∈ Pε,η([0, τ ]), we have ‖u(t)‖ ≤ g(t),
for all t ∈ [0, τ ].

Indeed, let us set ρ(t) := 1 + ‖ũ(θ(t))‖ for t ∈ [0, τ ]. We have

(3.1) 0 ≤ ρ(t) ≤ 1 + ‖x0‖+
∫ t

0

‖u(s)‖ ds, t ∈ [0, τ ].

It follows that ρ ∈ L∞X ([0, τ ]). On the other hand, by (C5), condition (3.1)
implies

ρ(t) ≤ 1 + ‖x0‖+
∫ t

0

[c(s)(1 + ‖ũ(θ(s))‖) + 1] ds

≤ 1 + ‖x0‖+ a+
∫ t

0

c(s)ρ(s) ds.

Using the Gronwall lemma ([5]), we deduce that

ρ(t) ≤ (1 + ‖x0‖+ a) exp
( ∫ a

0

c(s) ds
)

= m, for all t ∈ [0, τ ].

Hence, again by (C5), we obtain that ‖u(t)‖ ≤ mc(t)+1 = g(t), for all t ∈ [0, τ ].
Now, we introduce a preorder in Pε,η by setting (θ1, u1) � (θ2, u2) (with

(θi, ui) ∈ Pε,η([0, τi]) for i = 1, 2) if and ond only if τ1 ≤ τ2, θ2|[0,τ1] = θ1 and
u2|[0,τ1] = u1 a.e.

Let us prove that the set Pε,η satisfies the conditions of Zorn lemma for
the preorder � (we refer to [24, Chapter I], for related notions). Indeed, let
C = {(θα, uα) : α ∈ A} be a totally ordered subset of Pε,η with (θα, uα) ∈
Pε,η([0, τα]), for all α ∈ A. Let us set τ := supα∈A τα ∈ I. If there exists α0 ∈ A
such that τα0 = τ , then we have (θα, uα) � (θα0 , uα0) for every α ∈ A. Suppose
now that τα < τ for every α ∈ A. Then there exists a sequence (αn)n≥1 ⊂ A

such that ταn < ταn+1 , for all n and τ = supn≥1 ταn . Let us define a function
θ: [0, τ ] → [0, τ ] by setting θ|[0,τα] = θα for every α ∈ A and θ(τ) := τ . It is
clear that we have θ ∈ J−

η ([0, τ ]). Now, we have to define a suitable function u:
[0, τ ] → X. By hypothesis, for each n ≥ 1 there is a negligible set Ln ⊂ [0, ταn ]
such that uαn+1(t) = uαn

(t), for all t ∈ [0, ταn
] \ Ln. Let us set L :=

⋃
n≥1 Ln.

We define the function u on [0, τ ] by setting u(t) := uαn
(t) if t ∈ [0, ταn

] \ L
with n ≥ 1, and u(t) := 0 if t ∈ L ∪ {τ}. Then u is a measurable function
from [0, τ ] to X such that u|[0,ταn ] = uαn a.e. for every n. On the other hand,
condition (C6), applied to each uαn

, implies that ‖u(t)‖ ≤ g(t) a.e. on [0, τ ].
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So, we can state that u ∈ L1
X([0, τ ]). Moreover, one can easily check that all

conditions (C1)–(C5) are satisfied by the pair (θ, u). Hence (θ, u) ∈ Pε,η([0, τ ])
and by construction (θ, u) is an upper bound for the set C.

By Zorn lemma, the set Pε,η admits a maximal element (θ∗, u∗)∈Pε,η([0, τ∗]).
Let us prove that τ∗ = a. Suppose by contradiction that the contrary holds.
Then, we will construct a positive number h∗ > 0 with τ∗ + h∗ ∈ I, a vector
x∗ ∈ C(τ∗ +h∗) and a vector y∗ ∈ X such that the following four conditions are
satisfied:

(C7) ‖(x∗ − ũ∗(τ∗))/h∗ − y∗‖ < η.
(C8) ‖y∗‖ ≤ c(t)(1 + ‖ũ∗(τ∗)‖) for every t ∈ [τ∗, τ∗ + h∗].
(C9) If τ∗ ∈ I \N then y∗ ∈ F0(τ∗, ũ∗(τ∗)).

(C10) If τ∗ ∈ I \ Jε then Jε ∩ [τ∗, τ∗ + h∗] = ∅.

Indeed, let us distinguish two cases:
(a) If τ∗ ∈ I \N then by Lemma 3.2, there exists a vector y∗ ∈ F0(τ∗, ũ∗(τ∗))

such that (1, y∗) ∈ TG(τ∗, ũ∗(τ∗)). Hence, there exists a sequence hn → 0+ with
τ∗ + hn ∈ I for every n, and a sequence of vectors xn ∈ C(τ∗ + hn) such that
limn→∞ ‖1/hn(xn − ũ∗(τ∗))− y∗‖ = 0. We have

‖y∗‖ ≤ |F0(τ∗, ũ∗(τ∗))| ≤ c(τ∗)(1 + ‖ũ∗(τ∗)‖) < c(τ∗)(1 + ‖ũ∗(τ∗)‖).

Since function c is lower semicontinuous, there exists an integer n0 such that

(3.2) ‖y∗‖ < c(t)(1 + ‖ũ∗(τ∗)‖) for all t ∈ [τ∗, τ∗ + hn0 ].

We may also suppose that n0 satisfies ‖1/hn0(xn0 − ũ∗(τ∗))− y∗‖ < η.
(b) If τ∗ ∈ N , by virtue of condition (iii) applied to (τ∗, ũ∗(τ∗)), there exists

a constant M > 0, a sequence hn → 0+ with τ∗ + hn ∈ I, for all n and a
sequence xn ∈ C(τ∗ + hn) such that ‖1/hn(xn − ũ∗(τ∗))‖ ≤ M for all n. We
have M < c(τ∗)(1 + ‖ũ∗(τ∗)‖) = ∞ and the function c is lower semicontinuous.
Hence there exists an integer n0 such that

M < c(t)(1 + ‖ũ∗(τ∗)‖) for all t ∈ [τ∗, τ∗ + hn0 ].

We suppose also that the integer n0 is such that Jε∩ [τ∗, τ∗+hn0 ] = ∅ if τ∗ /∈ Jε.
In this case we set y∗ := 1/hn0(xn0 − ũ∗(τ∗)).

Now with the integer n0 and the vectors xn0 and y∗ constructed as in the
cases (a) or (b), we see that the conditions (C7)–(C10) are satisfied by h∗ := hn0 ,
x∗ := xn0 and y∗.

Let us put σ := τ∗ + h∗ ∈ I and define two functions ϑ and v on [0, σ] as
follows. We set ϑ(t) := θ∗(t) if t ∈ [0, τ∗[, ϑ(t) := τ∗ if t ∈ [τ∗, σ[ and ϑ(σ) := σ.
We define the function v by v(t) := u∗(t) if t ∈ [0, τ∗[, v(t) := 1/h∗(x∗−ũ∗(τ∗)) if
t ∈ [τ∗, σ]∩Jε and v(t) := 0 if t ∈ [τ∗, σ]\Jε. Then, it is clear that ϑ ∈ J−

η ([0, σ])
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and v ∈ L1
X([0, σ]). Moreover, by construction of ϑ and v and conditions (C7)–

(C10) above, it is easy to check that (ϑ, v) ∈ Pε,η([0, σ]). Now, we remark
that (θ∗, u∗) � (ϑ, v) and (ϑ, v) � (θ∗, u∗). So we get a contradiction with the
maximal assumption on (θ∗, u∗). Hence, we have proved the following property

(C11) For every η ∈ ]0, 1], the set Pε,η([0, a]) is nonempty.

Let (ηn)n≥1 be a sequence in ]0, 1] such that ηn ↓ 0. By (C11), for every
n ≥ 1 there exists θn ∈ J−

ηn
([0, a]) and un ∈ L1

X(I) such that with vn := ũn, we
have:

(C12) For every t ∈ I, (θn(t), vn(θn(t))) ∈ G.
(C13) For almost all t ∈ Jε, un(t) ∈ F0(θn(t), vn(θn(t))) + ηnBX .
(C14) For every t ∈ I \ Jε, un(t) = 0.
(C15) For every t ∈ Jε, θn(t) ∈ Jε.
(C16) For every t ∈ I, ‖un(t)‖ ≤ g(t).

By virtue of (C16), the set of continuous functions F := {vn : n ≥ 1} is
bounded and equicontinuous in CX(I). For t ∈ I, let us put A(t) := {vn(t) :
n ≥ 1} and r(t) := αX(A(t)). In virtue of Ascoli theorem, to prove that F is
relatively compact in CX(I) it is sufficient to prove that r(t) = 0 for every t ∈ I.
For t1 ≤ t2 in I, we have

A(t2) ⊂ A(t1) + {vn(t2)− vn(t1) : n ≥ 1} ⊂ A(t1) +
( ∫ t2

t1

g(s) ds
)
BX .

So αX(A(t2)) ≤ αX(A(t1)) + 2
∫ t2

t1
g(s) ds. By symmetry, we deduce that

|r(t2)− r(t1)| ≤ 2
∫ t2

t1

g(s) ds for 0 ≤ t1 ≤ t2 ≤ a.

It follows that function r is absolutely continuous on I. Let ṙ := dr/dλ ∈ L1
R(I)

be the derivative of r with respect to λ. Let us choose N ′ a λ-negligible set of
I such that the condition (C13) is satisfied everywhere on Jε \N ′ for all n and
that:

ṙ(t) = lim
γ→0+

1
γ

[r(t)− r(t− γ)] for every t ∈ I \N ′,(3.3)

lim
γ→0+

1
γ

∫
[t−γ,t]∩(I\Jε)

g(s) ds = 0 for every t ∈ Jε \N ′.(3.4)

We shall prove that

(C17) For every t ∈ I \N ′ with t 6= 0, we have ṙ(t) ≤ ω(t, r(t)).

Indeed, let t ∈ I \N ′ with t 6= 0. For γ > 0 so small that [t − γ, t] ⊂ I, we
put

Uγ
n (t) :=

{
1
γ

(vk(t)− vk(t− γ)) : k ≥ n

}
, n ∈ N∗.
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Then, we have A(t) ⊂ A(t− γ) + γ.Uγ
1 (t) and for every n0 ∈ N∗,

αX(A(t)) ≤ αX(A(t− γ)) + γαX(Uγ
1 (t)) = αX(A(t− γ)) + γαX(Uγ

n0
(t)).

Hence r(t) ≤ r(t− γ) + γαX(Uγ
n0

(t)) and so

1
γ

[r(t)− r(t− γ)] ≤ αX(Uγ
n0

(t)).

From (3.3), given δ > 0, there exists γ′ = γ(δ) > 0 such that for every
γ ∈ ]0, γ′] we have

ṙ(t) ≤ 1
γ

[r(t)− r(t− γ)] + δ.

It follows that

(3.5) ṙ(t) ≤ αX(Uγ
n0

(t)) + δ

for all n0 ∈ N∗ and all γ ∈ ]0, γ′]. Let us suppose first that t /∈ Jε. Then, we
may assume that [t− γ′, t] ⊂ I \ Jε. So, by (C14), we have

1
γ

(vk(t)− vk(t− γ)) =
1
γ

∫
[t−γ,t]

uk(s) ds = 0 for all k ∈ N∗.

Hence Uγ
n0

(t) = {0} and ṙ(t) ≤ δ by (3.5). Since δ is arbitrary, we get ṙ(t) ≤
0 ≤ ω(t, r(t)) and (C17) is proved in this case.

Suppose now that t ∈ Jε. Let h > 0 be too small such that [t−h, t] ⊂ I, and
let us consider the bounded set

Bt,h :=
⋃

s∈[t−h,t]

A(s).

By virtue of compactness condition (v) (applied to t and Bt,h) and (3.4), there
exists γ′′ ∈ ]0, inf(γ′, h/2)] such that for every γ ∈ ]0, γ′′] we have

αX [F ((([t− 2γ, t] ∩ Jε)×Bt,h) ∩G)] ≤ ω(t, αX(Bt,h)) + δ,(3.6)
1
γ

∫
[t−γ,t]∩(I\Jε)

g(s) ds ≤ δ.(3.7)

Let us take γ ∈ ]0, γ′′] and choose n0 ≥ 1 (n0 depending on γ) such that ηn ≤ γ

for all n ≥ n0. Then, by the mean value theorem, we have the following inclusion

Uγ
n0

(t) ⊂
( ⋃

n≥n0

co[{0} ∪ un([t− γ, t] ∩ (Jε \N ′))]
)

+
{

1
γ

∫
[t−γ,t]∩(I\Jε)

un(s) ds : n ≥ n0

}
.

It follows by (C16) and (3.7) that

Uγ
n0

(t) ⊂
( ⋃

n≥n0

co[{0} ∪ un([t− γ, t] ∩ (Jε \N ′))]
)

+ δBX .
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By condition (C13), for every n ≥ n0, we have

un([t− γ, t] ∩ (Jε \N ′)) ⊂
⋃

s∈[t−γ,t]∩Jε

F0(θn(s), vn(θn(s))) + ηnBX .

Now, recall condition (C15) and note that for every n ≥ n0 and every s ∈
[t−γ, t]∩Jε, we have ηn ≤ γ and t−2γ ≤ t−γ−εn ≤ θn(t−γ) ≤ θn(s) ≤ θn(t),
so θn(s) ∈ [t − 2γ, t] ∩ Jε ⊂ [t − h, t] ∩ Jε and vn(θn(s)) ∈ Bt,h. Hence for all
n ≥ n0,

un([t− γ, t] ∩ (Jε \N ′)) ⊂ F0((([t− 2γ, t] ∩ Jε)×Bt,h) ∩G) + γBX .

It follows that

Uγ
n0

(t) ⊂ (co{{0} ∪ [F0((([t− 2γ, t] ∩ Jε)×Bt,h) ∩G) + γBX ]}) + δBX .

From the properties of the measure of noncompactness αX and (3.6), we
deduce that

αX(Uγ
n0

(t)) ≤ αX(F0((([t− 2γ, t] ∩ Jε)×Bt,h) ∩G)) + 2γ + 2δ

≤ ω(t, αX(Bt,h)) + h+ 3δ.

It follows, by (3.5), that

(3.8) ṙ(t) ≤ ω(t, αX(Bt,h)) + h+ 4δ.

Now it is easy to check that

A(t) ⊂ Bt,h ⊂ A(t) +
( ∫ t

t−h

g(s) ds
)
BX .

Applying the measure of noncompactness αX , we get

r(t) ≤ αX(Bt,h) ≤ r(t) + 2
∫ t

t−h

g(s) ds

and hence limh→0+ αX(Bt,h) = r(t). Taking h→ 0+ and δ → 0+ in the inequal-
ity (3.8), we get ṙ(t) ≤ ω(t, r(t)). Hence condition (C17) is proved.

Now since r(0) = 0 and ω is a Kamke function, we deduce from (C17) that
r(t) = 0 for all t ∈ I. This completes the proof of the relative compactness of
the set F = {vn : n ≥ 1} in CX(I).

Without loss of generality, we can suppose that there exists v ∈ CX(I) such
that ‖vn − v‖∞ → 0 as n→∞. Now we remark from (C16) that

‖vn(t)− vn(θn(t))‖ ≤
∫ t

θn(t)

g(s) ds n→∞−→ 0

for every t ∈ I. It follows that vn(θn(t)) → v(t) as n → ∞ in norm for each
t ∈ I. Since G is closed in I`×X, condition (C12) implies that (t, v(t)) ∈ G for all
t ∈ I. Consider the set M(t) := {(θn(t), vn(θn(t))) : n ≥ 1}∪ {(t, v(t))} which is
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compact in I`×X. By condition (C15) for each t ∈ Jε,M(t) ⊂ Gε = (Jε×X)∩G;
hence M(t) is also a compact set in G`

ε. Since the multifunction F0|G`
ε

is u.s.c.,
it follows that for each t ∈ Jε the set F0(M(t)) is compact in X. Let us put

H(t) :=

{
F0(M(t)) if t ∈ Jε,

{0} if t ∈ I \ Jε.

Then H is a measurable multifunction from I to K(X). By virtue of conditions
(C13) and (C14), we have

un(t) ∈ H(t) + ηnBX λ-a.e. on I.

Furthermore, by (C16), the sequence (un) is uniformly integrable in L1
X(I). It

follows, by standard arguments (see [1]), that (un)n is relatively weakly com-
pact in L1

X(I). By Eberlein–Smulian theorem we may suppose without loss of
generality that there exists w ∈ L1

X(I) such that the sequence (un)n converges
weakly in L1

X(I) to w. It is clear that then w satisfies also (χI\Jε
w)(t) = 0 and

‖w(t)‖ ≤ g(t) a.e. on I. On the other hand, by condition (C13), for each n ≥ 1
there exists a measurable function wn: Jε → X such that

(3.9) ‖un(t)− wn(t)‖ ≤ ηn and wn(t) ∈ F0(θn(t), vn(θn(t))) λ-a.e. on Jε.

Let us extend wn to all the set I by setting wn(t) = 0 on I \ Jε. Then we
get wn ∈ L1

X(I) and wn → w weakly in L1
X(I). By Mazur lemma, we have

(3.10) w(t) ∈
⋂
n≥1

co{wk(t) : k ≥ n} λ-a.e on I.

By (C15), (θn(t), vn(θn(t))) ∈ Gε, for all t ∈ Jε, and F0|G`
ε

is u.s.c. hence

(3.11)
⋂
n≥1

co
⋃
k≥n

F0(θk(t), vk(θk(t))) ⊂ F0(t, v(t)), for all t ∈ Jε.

From (3.9)–(3.11), we deduce finally that

(3.12) w(t) ∈ F0(t, v(t)) λ-a.e. on Jε.

Remark now that for each t ∈ I, the sequence vn(t) = x0 +
∫ t

0
un(s) ds converges

weakly in X to w̃(t) := x0 +
∫ t

0
w(s) ds. We deduce that v(t) = w̃(t) for all t ∈ I.

Putting wε := w, we see now that Lemma 3.3 is completely proved. �

End of proof of Theorem 3.1. Let us now finish the proof of Theo-
rem 3.1. Let (εn)n≥1 be a sequence in ]0, 1] such that

∑∞
n=1 εn < ∞. For

every n ≥ 1, let Jn := Jεn
and wn := wεn

be given as in Lemma 3.3 corre-
sponding to ε = εn. Let us put vn := w̃n for n ≥ 1. From the condition
(b) of Lemma 3.3, it follows that the sequence of continuous functions (vn)n

is bounded and equicontinuous in CX(I). Let us prove that (vn)n is relatively
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compact in CX(I). By Ascoli theorem it suffice to prove that for every t ∈ I the
set V (t) := {vn(t) : n ≥ 1} is relatively compact in X.

Let us set %(t) := αX(V (t)) for t ∈ I. As in the proof of Lemma 3.3, we
can easily check that the non-negative function % is absolutely continuous on I.
Let then ρ̇ := dρ/dλ be its derivative with respect to λ. For every n ≥ 1, let us
choose a λ-negligible subset Nn of I such that

(D1) For every t ∈ Jn \Nn, un(t) ∈ F0(t, vn(t)).
(D2) For every t ∈ I \Nn, %̇(t) = limγ→0+ [%(t)− %(t− γ)]/γ.

Let us set N∗ :=
⋃

nNn and J := lim infn Jn. Since
∑∞

n=1 εn <∞, we have
λ(I \ J) = 0. Let us prove that

(D3) For every t ∈ J \N∗, with t 6= 0, we have %̇(t) ≤ ω(t, %(t)).

By the properties of the Kamke function ω, this will implies that %(t) = 0
for all t ∈ I (notice that %(0) = 0) and hence that the sets V (t) are relatively
compact for every t ∈ I. Let then t ∈ J \N∗, with t 6= 0, be fixed. Notice that
J =

⋃
n ↑ J ′n, where J ′n :=

⋂
k≥n Jk for n ≥ 1. Hence, there exists an integer nt

(depending on t) such that t ∈ J ′nt
.

Let h > 0 be too small such that [t− h, t] ⊂ I and consider the bounded set

Dt,h :=
⋃

s∈[t−h,t]

V (s).

By condition (a) of Lemma 3.3 (applied to ε = εn with n = nt) and condition
(D2), given ε > 0, there exists γt

ε ∈ ]0, h] such that for every γ ∈ ]0, γt
ε], we have

αX [F ((([t− γ, t] ∩ Jnt
)×Dt,h) ∩G)] ≤ ω(t, αX(Dt,h)) + ε,(3.13)

%̇(t) ≤ 1
γ

[%(t)− %(t− γ)] + ε.(3.14)

Let us take γ ∈ ]0, γt
ε] and put for n ≥ 1,

W γ
n (t) :=

{
1
γ

(vk(t)− vk(t− γ)) : k ≥ n

}
.

As in the proof of Lemma 3.3, we can easily check that for every n ≥ 1,

(3.15) %̇(t) ≤ αX(W γ
n (t)) + ε.

Moreover, we have W γ
n (t) ⊂ Aγ

n(t) +Bγ
n(t), where

Aγ
n(t) :=

{
1
γ

∫
[t−γ,t]∩(J′n\N∗)

uk(s) ds : k ≥ n

}
and

Bγ
n(t) :=

{
1
γ

∫
[t−γ,t]∩(I\J′n)

uk(s) ds : k ≥ n

}
.
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Hence

(3.16) αX(W γ
n (t)) ≤ αX(Aγ

n(t)) + αX(Bγ
n(t)) = αX(Aγ

nt
(t)) + αX(Bγ

n(t)).

By the mean value theorem, we have

Aγ
nt

(t) ⊂
⋃

k≥nt

co[{0} ∪ uk([t− γ, t] ∩ (J ′nt
\N∗))].

By (D1) (notice that J ′nt
\N∗ ⊂ Jk \Nk for k ≥ nt), we have

uk([t− γ, t] ∩ (J ′nt
\N∗)) ⊂ F0[(([t− γ, t] ∩ J ′nt

)×Dt,h) ∩G],

for all k ≥ nt. Hence

Aγ
nt

(t) ⊂ co[{0} ∪ F0[(([t− γ, t] ∩ J ′nt
)×Dt,h) ∩G]].

It follows that

αX(Aγ
nt

(t)) ≤ αX(F0[(([t− γ, t] ∩ J ′nt
)×Dt,h) ∩G])(3.17)

≤ ω(t, αX(Dt,h)) + ε

(the last inequality follows from (3.13)). On the other hand, for every n and
k ≥ 1, we have∥∥∥∥ 1

γ

∫
[t−γ,t]∩(I\J′n)

uk(s) ds
∥∥∥∥ ≤ 1

γ

∫
[t−γ,t]∩(I\J′n)

g(s) ds.

Hence

(3.18) αX(Bγ
n(t)) ≤ 2

γ

∫
[t−γ,t]∩(I\J′n)

g(s) ds.

We deduce now from (3.16)–(3.18) that

αX(W γ
n (t)) ≤ ω(t, αX(Dt,h)) +

2
γ

∫
[t−γ,t]∩(I\J′n)

g(s) ds+ ε,

and hence by (3.15), that

(3.19) %̇(t) ≤ ω(t, αX(Dt,h)) +
2
γ

∫
[t−γ,t]∩(I\J′n)

g(s) ds+ 2ε,

for every n ≥ 1 and γ ∈ ]0, γt
ε]. Passing to the limit in the inequality (3.19) as

n→∞, with h, ε and γ fixed, we get

(3.20) %̇(t) ≤ ω(t, αX(Dt,h)) + 2ε.

Moreover, limh→0+ αX(Dt,h) = %(t) (see the proof of Lemma 3.3 for Bt,h). Hence
passing to the limit in the inequality (3.20) as h → 0+ and ε → 0+, we obtain
%̇(t) ≤ ω(t, %(t)). This finish the proof of assertion (D3).

Applying Ascoli theorem, we can suppose (by passing to a subsequence) that
there exists a function v ∈ CX(I) such that ‖vn − v‖∞ → 0 as n → ∞. As the
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multifunction C is closed valued, we conclude from condition (c) of Lemma 3.3
that (t, v(t)) ∈ G for all t ∈ I. Let us put

K(t) := {vn(t) : n ≥ 1} ∪ {v(t)} and Φ(t) := F0(t,K(t)), t ∈ I.

Remark that for almost every t in I, the multifunction F0(t, · ) is compact valued
and u.s.c. on C(t). It follows that for almost every t in I, the set Φ(t) is compact
in X. Moreover, the multifunction Φ: I ⇒ X is measurable. By conditions (b)
and (c) of Lemma 3.3, we have for all n, χI\Jn

wn = 0 and wn(t) ∈ Φ(t) λ-a.e.
on Jn. Hence

(3.21) wn(t) ∈ Φ(t) ∪ {0} λ-a.e. on I.

As on the other hand, ‖wn(t)‖ ≤ g(t) a.e. we conclude that the sequence (wn)n

is relatively weakly compact in L1
X(I). We may suppose (by passing to a subse-

quence) that there exists u ∈ L1
X(I) such that (wn)n converges weakly to u in

L1
X(I). By standard arguments, it can be easily shown that v(t) = x0+

∫ t

0
u(s) ds

for t ∈ I.
It remains to prove that

(3.22) u(t) ∈ F0(t, v(t)) λ-a.e. on I.

By virtue of the inclusion (3.21), a classical result ([1]) implies that

(3.23) u(t) ∈ co Lsn{wn(t)} λ-a.e. on I.

Let us choose N∗ a λ-negligible set of I such that N∗ ⊂ N∗ and the condition
(3.23) is satisfied everywhere on I \N∗. Let us take t ∈ J \N∗. Then there exists
an integer nt ≥ 1 such that for every n ≥ nt, t ∈ Jn. Hence un(t) ∈ F0(t, vn(t))
for all n ≥ nt (recall here the condition (D1)). It follows that

Lsn{un(t)} ⊂ LsnF0(t, vn(t)) ⊂ F0(t, v(t))

where the last inclusion is due to the upper semicontinuity of the multifunction
F0(t, · ). By (3.23) and since F0( · ) convex closed valued, we deduce that u(t) ∈
F0(t, v(t)). This completes the proof of the theorem. �

Remarks. (1) Assertion (iv) of the theorem is both a tangential condition
and a measurability hypothesis for the multifunction F . It is weaker than con-
ditions we find usually in the literature ([10], [21], [25]–[27]). Most authors
suppose the multifunction F globally measurable with respect the product tribe
L(I)⊗B(X). Let us illustrate a simple case where this measurability assumption
holds.We suppose that C(t) ≡ X is constant on I. Let F : I×X → ck(X) be such
that for almost every t, F (t, · ) is u.c.s. on X and for every x, F ( · , x) admits
at least a measurable selection. Then a routine argument shows that for every
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measurable function σ on I the multifunction t 7→ F (t, σ(t)) admits at least a
measurable selection.

(2) In [10] Bothe introduced the condition

(B) For every t ∈ N and every x ∈ C(t), ({1} ×X) ∩ TG(t, x) 6= ∅.

The author didn’t give a real interpretation of such property. In fact (B) hides in
the background a topological/analytical property of the constraint C. Condition
(iii) in the statement of our theorem is the correct extension of (B) to infinite
dimensional spaces. A real meaning of (iii) find its base in a generalization of the
notions of derivability and absolute continuity for multifunctions. Particularly
Lipschitzian and absolutely continuous multifunctions (after a change of variable
for the last) satisfy condition (iii). Moreover, condition (iii) is illustrated by
Example 3.1, p. 29 of [9] which is not covered by (B).

We give an immediate consequence of Theorem 3.1.

Corollary 3.4. Let I and C as in Theorem 3.1. We suppose that F :G→
ck(X) is globally measurable and satisfies the conditions:

(a) There exists c ∈ L1
R+(I) such that

|F (t, x)| ≤ c(t)(1 + ‖x‖) for all (t, x) ∈ G.

(b) For every t ∈ I, the multifunction F (t, · ) is u.s.c. on C(t).
(c) For every (t, x) ∈ G∗,

lim inf
h→0+

1
h
d(x,C(t+ h)) <∞.

(d) There exists a negligible set N of I such that

({1} × F (t, x)) ∩ TG(t, x) 6= ∅ for all t ∈ I \N, x ∈ C(t).

(e) There exists a Kamke-function ω on I × R+ such that for every ε > 0,
there exists a compact set Jε ⊂ I, with λ(I \Jε) < ε, such that for every
t ∈ Jε we have:

inf
δ>0

αX [F ((([t− δ, t] ∩ Jε)×B) ∩G)] ≤ ω(t, αX(B))

for every bounded set B of X.

Then, given x0 ∈ C(0), there exists an absolutely continuous function x: I → X

and a function x′ ∈ L1
X(I) such that x(t) = x0 +

∫ t

0
x′(s) ds for all t ∈ I and

(P)

{
x(t) ∈ C(t) on I,

x′(t) ∈ F (t, x(t)) a.e. on I.

Proof. It is enough to take F0 = F in the proof of Theorem 3.1. Moreover,
as shown in the proof of Lemma 3.2, the multifunction H from G to K(R×X)
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defined by:

H: (t, x) 7→ ({1} × F (t, x)) ∩ TG(t, x)

is weakly measurable. So by the measurable selection theorem, condition (d)
implies condition (iv) of Theorem 3.1. �

4. Application to known results. The non convex sweeping process

We will suppose in all what follows that X is a finite dimensional space. Let
K be a nonempty closed subset of X and x ∈ K. We put

projK(x) := {y ∈ K : d(x,K) = ‖x− y‖}

the set of projections of x onto K. The proximal normal cone to K at x is defined
by

NP
K(x) := {v ∈ X : there exists δ > 0 such that d(x+ δv,K) = δ‖v‖}.

The limiting proximal normal cone to K at x is defined by

N̂K(x) :=
{

lim
n→∞

vn : for all n, vn ∈ NP
K(xn), xn ∈ K and lim

n→∞
xn = x

}
.

For these notions and related topics we refer to [16] and [17] (see also [6]).
Let us recall some facts about absolutely continuous functions. Let [a, b]

(with a < b) be a compact interval of R. Denote by λ the Lebesgue measure on
[a, b]. A function f : [a, b] → X is called absolutely continuous if for every ε > 0
there exists δ > 0 such that for every finite family of disjoint sub-intervals ]si, ti[
(i = 1, . . . , n) of [a, b], we have

n∑
i=1

(ti − si) ≤ δ ⇒
n∑

i=1

‖f(ti)− f(si)‖ ≤ ε.

It is known that any absolutely continuous function f : [a, b] → X is of bounded
variation on I and that if df denotes the differential measure3 of f , then |df | � λ

(cf. Moreau–Valadier [34, Section 3, Lemma 1]). Moreover, f is λ-a.e. derivable
on I and

f ′(t) =
df

dλ
(t) λ-a.e.

for any Radon–Nikodym density df/dλ of df with respect to λ (cf. [34, Section 3,
Proposition 2]).

We will need next the following lemma:

3In [24, III.5, p. 142] it is called Borel–Stieltjes measure determined by the function f .
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Lemma 4.1. Let I1 = [a1, b1], I2 = [a2, b2] be two compact intervals of R
with a1 < b1 and a2 < b2. For i ∈ {1, 2} let λi denotes the Lebesgue measure
on Ii. Let ϕ: I1 → I2 be an absolutely continuous function on I1 such that
ϕ(a1) = a2 and ϕ(b1) = b2. We suppose that dϕ admits a Radon–Nikodym
density ϕ̇ with respect to λ1 such that ϕ̇(t) > 0 for all t ∈ I1. Then we have the
following properties:

(a) For every Borel subset A of I1, λ2(ϕ(A)) = dϕ(A).
(b) If N is a λ1-negligible subset of I1 then ϕ(N) is a λ2-negligible subset

of I2.
(c) The inverse function φ = ϕ−1 of ϕ is strictly increasing and absolutely

continuous on I2. Moreover, if φ̇ is a Radon–Nikodym density of dφ
with respect to λ2 on I2, then for λ2-a.e. τ ∈ I2, φ̇(τ) = 1/ϕ̇(φ(τ)).

(d) Let f2: I2 → X be a given absolutely continuous function. Then the
composite function f1 = f2 ◦ ϕ: I1 → X is absolutely continuous on I1.
Moreover, if ḟ1 (resp. ḟ2) denotes a Radon–Nikodym density of df1 (resp.
df2) with respect to λ1 (resp. λ2), then ḟ1(t) = ḟ2(ϕ(t))ϕ̇(t) λ1-a.e.

Proof. Notice first that the hypothesis implies that ϕ is a non decreasing
homeomorphism from the interval I1 to the interval I2.

(a) Consider the positive measure µ defined on B(I1) by µ(A) := λ2(ϕ(A)).
Since ϕ is a homeomorphism from I1 to I2 and since the Lebesgue measure λ2

is regular on B(I2), it is easy to check that the measure µ is regular on B(I1).
For t ≤ t′ in I1, denote by J = (t, t′) any sub-interval of I1 of extremities t and
t′. We have ϕ(J) = (ϕ(t), ϕ(t′)). Hence µ(J) = ϕ(t′)− ϕ(t) = dϕ(J). Let A be
the field of all finite unions

(4.1) A = J1 ∪ . . . ∪ Jn

of sub-intervals Ji = (ti, t′i), i = 1, . . . , n, of I1. If the intervals Ji, i = 1, . . . , n
in (4.1) are disjoints, then

ϕ(A) = ϕ(J1) ∪ . . . ∪ ϕ(Jn)

where ϕ(Ji) = (ϕ(ti), ϕ(t′i)), i = 1, . . . , n are also disjoints sub-intervals of I2. It
follows that

µ(A) =
n∑

i=1

λ2(ϕ(Ji)) =
n∑

i=1

dϕ(Ji) = dϕ(A).

Hence the regular measures µ and dϕ coincide on the field A. Since B(I1) is
the σ-field generated by A, it follows by [24, Theorem III.5.14], that µ = dϕ

on B(I1).
(b) Let ε > 0. There exists ηε > 0 such that for every A ∈ B(I1), the

condition λ1(A) ≤ ηε implies dϕ(A) ≤ ε (this result from the fact that dϕ� λ1).
Since N is λ1-negligible, there exists a Borel subset U of I1 containing N such
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that λ1(U) ≤ ηε. Hence λ2(ϕ(U)) = dϕ(U) ≤ ε. Moreover, ϕ(U) is a Borel
subset containing ϕ(N). Since ε is arbitrary it follows that λ∗2(ϕ(N)) = 0.

(c) Let A ∈ B(I1) such that µ(A) = 0. Then
∫

A
ϕ̇(s) ds = 0. Since ϕ̇(s) > 0

on I1, we deduce that λ1(A) = 0. Hence λ1 � µ = dϕ. Let f be a Radon–
Nikodym density of λ1 with respect to µ. We have f ∈ L1

R+(I1, µ) and

(4.2)
∫

E

f(s)µ(ds) = λ1(E), E ∈ B(I1).

Consider the notations S1 := I2, Σ1 := B(I2), µ1 := λ2, S2 := I1, Σ2 := B(I1),
µ2 := µ. By virtue of (a) we have µ1(φ−1(A)) = µ2(A) for all A ∈ Σ2. Moreover,
since φ is a homeomorphism we have Σ1 = {φ−1(A) : A ∈ Σ2}. Hence we can
apply the “generalized change of variable lemma” [24, Lemma III.10.8]. We get
that f(φ( · )) is λ2-integrable and

(4.3)
∫

E

f(s)µ(ds) =
∫

φ−1(E)

f(φ(t)) dt for all E ∈ B(I1).

Let τ1 < τ2 in I2 and put E = [φ(τ1), φ(τ2)] = φ([τ1, τ1]). Then, applying (4.2)
and (4.3), we get ∫ τ2

τ1

f(φ(t)) dt = λ1(E) = φ(τ2)− φ(τ1).

This proves that φ is absolutely continuous on I2 and that φ̇ := f(φ( · )) is a
Radon–Nikodym density of dφ with respect to λ2. Since f = dλ1/dµ, by virtue
of Jeffery theorem (cf. e.g. [34, §4, Théorème 3]) for µ-almost every (hence also
λ1-almost every) s ∈ I1, we have

f(s) = lim
ε→0+

ε

µ([s, s+ ε])
= lim

ε→0+

ε

ϕ(s+ ε)− ϕ(s)
.

It follows easily that f(s) = 1/ϕ′(s) = 1/ϕ̇(s) λ1-a.e. on I1. This completes the
proof of assertion (c).

(d) The fact that f1 = f2 ◦ ϕ is absolutely continuous follows easily from
application of the ε − δ-definition of absolute continuity to f2 and ϕ. For the
second assertion, let N1 be a λ1-negligible subset of I1 and N2 be a λ2-negligible
subset of I2 such that

ϕ̇(s) = lim
ε→0+

ϕ(s+ ε)− ϕ(s)
ε

and ḟ2(t) = lim
δ→0+

f2(t+ δ)− f2(t)
δ

for all s ∈ I1 \N1 and all t ∈ I2 \N2. Let N ′
1 another λ1-negligible subset of I1

such that

ḟ1(s) = lim
ε→0+

f1(s+ ε)− f1(s)
ε

for all s ∈ I1 \N ′
1.
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Consider the λ1-negligible subset N := N1 ∪N ′
1 ∪ φ(N2) of I1. Take s ∈ I1 \N .

Then for ε > 0 enough small, we have

(4.4)
f1(s+ ε)− f1(s)

ε
=
f2(ϕ(s+ ε))− f1(ϕ(s))

ϕ(s+ ε)− ϕ(s)
.
ϕ(s+ ε)− ϕ(s)

ε
.

We have ϕ(s) /∈ N2 and ϕ(s + ε) ↘ ϕ(s) as ε → 0+. Hence by passing to the
limit in (4.4) as ε→ 0+ we get ḟ1(s) = ḟ2(ϕ(s))ϕ̇(s). �

The following theorem is a variant of our main result:

Theorem 4.2. Let I = [0, a] be a compact interval of R and C: I → cl(X)
be a multifunction with closed graph G in I`×X. Let F :G→ ck(X) be a globally
measurable multifunction such that:

(a) There exists c ∈ L1
R+(I) such that

|F (t, x)| ≤ c(t)(1 + ‖x‖) for all (t, x) ∈ G.

(b) For every t ∈ I, the multifunction F (t, · ) is u.s.c. on C(t).
(c) There exists a function r: I → R+ strictly increasing and absolutely

continuous such that,

lim inf
h→0+

d(x,C(t+ h))
r(t+ h)− r(t)

<∞ for all (t, x) ∈ G∗.

(d) There exists a negligible set N of I such that

({1} × F (t, x)) ∩ TG(t, x) 6= ∅ for all t ∈ I \N, x ∈ C(t).

Then, given x0 ∈ C(0), problem (P) has an absolutely continuous solution x: I →
X such that x(0) = x0.

Proof. Denote by r′ the derivative of the function r. For t ∈ I, put γ(t) :=
max{1, c(t), r′(t)} and consider the function

ϕ(t) :=
∫ t

0

γ(s) ds, t ∈ I.

Then ϕ is a strictly increasing homeomorphism from the interval I to the interval
I1 := [0, a1] where a1 := ϕ(a). Denote by λ (resp. λ1) the Lebesgue measure on
I (resp. on I1). By definition ϕ is absolutely continuous on I with dϕ/dλ = γ.
Consider φ := ϕ−1 the inverse function of ϕ. For t ∈ I1, put C1(t) := C(φ(t))
and

F1(t, x) :=
1

γ(φ(t))
F (φ(t), x) for t ∈ I1, x ∈ C1(t).

Then F1 is a globally measurable multifunction from G1 := graph(C1) to ck(X)
such that F1(t, · ) is u.s.c. on C1(t) for all t ∈ I1 and |F1(t, x)| ≤ 1 + ‖x‖ for all
(t, x) ∈ G1. Moreover, we have r(s+h)− r(s) ≤ ϕ(s+h)−ϕ(s) for s ∈ I, h > 0
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and ϕ is a strictly increasing homeomorphism from I to I1. Hence condition (c)
of the theorem implies

(4.5) lim inf
h→0+

1
h
d(x,C1(t+ h)) <∞ for all (t, x) ∈ G∗1.

By Lemma 4.1 the function φ is absolutely continuous on I1 with dφ/dλ1(t) =
1/γ(φ(t)). Choose a λ1-negligible subset N1 of I1 containing ϕ(N) such that for
all t ∈ I1 \ N1 the derivative φ′(t) exists and is equal to 1/γ(φ(t)). We shall
prove that

(4.6) ({1} × F1(t, x)) ∩ TG1(t, x) 6= ∅ for all t ∈ I1 \N1 and all x ∈ C1(t).

Let t ∈ I1 \N1 and x ∈ C1(t) be fixed. Since φ(t) ∈ I \N , by virtue of condition
(d) there exists y ∈ F (φ(t), x), a sequence hn → 0+ with φ(t) + hn ∈ I and a
sequence xn ∈ C(φ(t) + hn) such that

(4.7)
∥∥∥∥xn − x

hn
− y

∥∥∥∥ → 0 as n→∞.

Set kn := ϕ(φ(t)+hn)− t > 0. Then kn → 0+, t+kn ∈ I1 and φ(t+kn)−φ(t) =
hn. Moreover, (4.7) is equivalent to∥∥∥∥xn − x

kn
· kn

φ(t+ kn)− φ(t)
− y

∥∥∥∥ → 0 as n→∞

and
kn

φ(t+ kn)− φ(t)
→ γ(φ(t)) as n→∞.

It follows easily that∥∥∥∥xn − x

kn
− 1
γ(φ(t))

· y
∥∥∥∥ → 0 as n→∞.

Hence the point y1 := (1/γ(φ(t))) · y belongs to ({1} × F1(t, x)) ∩ TG1(t, x).
We can now apply Corollary 3.4 to F1 and C1. There exists an absolutely

continuous function x1: I1 → X such that x1(0) = x0, x1(t) ∈ C1(t), for all
t ∈ I1 and x′1(t) ∈ F1(t, x1(t)) a.e. on I1. Set x(s) := x1(ϕ(s)) for s ∈ I. By
Lemma 4.1(d) the function x is absolutely continuous on I and for almost every
s in I, x′(s) = x′1(ϕ(s)) · γ(s). On the other hand λ-a.e.

γ(s) · x′1(ϕ(s)) ∈ γ(s)F1(ϕ(s), x1(ϕ(s))) = F (s, x(s)).

Hence x is a solution of the problem (P). �

Now we provide a measurable characterization of the tangential condition (d)
in the light of results given in [2, Proposition 7.1] and [17, Theorem 2.10, p. 193].
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Proposition 4.3. Let C: I → cl(X) be a multifunction with closed graph G
in I × X. Let F :G → ck(X) be a globally measurable multifunction such that
F (t, · ) is upper semicontinuous on C(t) for every t ∈ I. We suppose that

|F (t, x)| ≤ c(t)(1 + ‖x‖) for all (t, x) ∈ G

for some measurable function c: I → R+. Then the following assertions are
equivalent:

(T1) For almost every t ∈ I,

({1} × F (t, x)) ∩ TG(t, x) 6= ∅ for all x ∈ C(t).

(T2) For almost every t ∈ I,

({1} × F (t, x)) ∩ coTG(t, x) 6= ∅ for all x ∈ C(t).

(T3) For almost every t ∈ I,

−α+ δ∗(−p, F (t, x)) ≥ 0 for all x ∈ C(t) and all (α, p) ∈ (TG(t, x))−.

(T4) For almost every t ∈ I,

−α+ δ∗(−p, F (t, x)) ≥ 0 for all x ∈ C(t) and all (α, p) ∈ NP
G (t, x).

Proof. The proof of the implications (T1)⇒(T2)⇒(T3)⇒(T4) follows from
arguments similar to those given in [2, Proposition 7.1]. It remains to prove
(T4)⇒(T1).

Assume that (T4) is satisfied. Let ε > 0 and find by Corollary 2.5(d) a
compact set Jε ⊂ I with λ(I \ Jε) < ε such that F|Gε

is upper semicontinuous
whereGε := (Jε×X)∩G. We may suppose also that condition (T4) is satisfied by
each point t of Jε. Now using a special multivalued version of Dugundji theorem,
we shall extend F|Gε

to an upper semicontinuous multifunction F̃ defined on all
the space E := R × X. Indeed, by [7, Théorème 2.2], there exists a locally
finite open cover (Uk)k∈K of E \ Gε, a partition of unity (ψk)k∈K subordinate
to (Uk)k∈K and a family (tk, xk)k∈K of points of Gε such that the multifunction
F̃ defined by

F̃ (t, x) :=

{
F (t, x) if (t, x) ∈ Gε,∑

k ψk(t, x)F (tk, xk) if (t, x) ∈ E \Gε,

is upper semicontinuous on E and has nonempty convex compact values. We
shall prove that

(4.8) −α+ δ∗(−p, F̃ (t, x)) ≥ 0 for all (t, x) ∈ G and all (α, p) ∈ NP
G (t, x).

Let (t, x) ∈ G. If (t, x) ∈ Gε then (4.8) holds since F̃|Gε
= F|Gε

and (T4) is
satisfied by each point of Jε.
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Now suppose that t ∈ R \ Jε and take (α, p) in NP
G (t, x). The set {k ∈ K :

ψk(t, x) 6= 0} is finite, say equal to {k1, . . . , kn}. For each i = 1, . . . , n choose yi

in F (tki
, xki

) such that δ∗(−p, F (tki
, xki

)) = 〈−p, yi〉. By virtue of (T4) we have

−α+ 〈−p, yi〉 ≥ 0 for i = 1, . . . , n.

Consider the vector y :=
∑n

i=1 ψki
(t, x)yi which belongs to F̃ (t, x). We have

−α+ 〈−p, y〉 =
n∑

i=1

ψki
(t, x)(−α+ 〈−p, yi〉) ≥ 0.

It follows that −α+ δ∗(−p, F̃ (t, x)) ≥ 0. Hence (4.8) is proved.
We conclude from (4.8) that the upper semicontinuous multifunction (t, x) 7→

{1} × F̃ (t, x) satisfies condition (iv) of [2, Proposition 7.1], with respect to the
closed set G. Applying implication (iv)⇒(i) of that proposition, we get

({1} × F̃ (t, x)) ∩ TG(t, x) 6= ∅ for all (t, x) ∈ G.

In particular, we have

(4.9) ({1} × F (t, x)) ∩ TG(t, x) 6= ∅ for all t ∈ Jε and all x ∈ C(t).

Now let ε = 2−n and find a sequence of compact sets Jn ⊂ I with λ(I\Jn) < 2−n

such that (4.9) holds true for each Jε = Jn. Since
⋃

n Jn is a set of full measure,
it is obvious that condition (T1) is satisfied. �

Remark. The equivalences (T1)⇔(T2)⇔(T3) can be found in the works
[26], [25] in a different context, namely, the constraint C there is assumed to
be absolutely continuous with respect to ρ-Hausdorff distances. Here we don’t
assume any analytic property on the multifunction C except that it’s graph is
closed.

To end this paper, we give an application to non convex sweeping pro-
cess which arises from Mechanics [31]–[33] and Mathematical Economics [19],
[20], [28].

Let I = [0, a] with a > 0. Let C: I → cl(X) be a given multifunction and
x0 ∈ C(0). The sweeping process by the moving set C(t) consists on finding
absolutely continuous solutions x : I → X of the differential inclusion

(Sw)


x(0) = x0,

x(t) ∈ C(t) for t ∈ I,
x′(t) ∈ −NC(t)(x(t)) a.e. on I,

where NC(t)(x(t)) denotes the Clarke cone of C(t) at x(t).
Intuitively, the problem (Sw) can be described as follows: at the initial time

a point belongs to C(0); during the time this point is possibly caught up by
the boundary of C(t) so that it can only proceed in an inward normal direction
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of C(t) as if pushed by this boundary. For an exclusive study of the sweeping
process in the convex case we refer to [33], [31] and [41]. Recently problem (Sw)
was extended to the case where the moving sets C(t) are not necessarily convex
([4], [18], [38]).

We will assume the following hypothesis on the multifunction C:

(H1) C is a multifunction from I to cl(X) with closed graph G in I` ×X.
(H2) There exists a nondecreasing absolutely continuous function r: I → R+

such that

e(C(t), C(t′)) ≤ r(t′)− r(t) for all t ≤ t′ in I.

Without loss of generality we may suppose that the derivative ṙ of r satisfies
ṙ(t) > 0 almost everywhere on I. Set

(4.10) F (t, x) := co[−N̂C(t)(x) ∩ ṙ(t)BX ] for (t, x) ∈ G

where N̂C(t)(x) denotes the limiting proximal normal cone to C(t) at x. Then
F is a multifunction from G to ck(X) such that

|F (t, x)| ≤ ṙ(t) for all (t, x) ∈ G.

For t ∈ I fixed, the multifunction x 7→ N̂C(t)(x) has a closed graph in
C(t) × X, hence obviously the multifunction F (t, · ) is upper semicontinuous
on C(t). Moreover, in virtue of Lemma 2.2 in [4] and Theorem III.40 in [15], the
multifunction F has a measurable graph.

Theorem 4.4. Assume that C satisfies the hypothesis (H1), (H2) and F

is the multifunction defined by (4.10). Then for every x0 ∈ C(0) there exists
an absolutely continuous function x( · ) such that x(0) = x0, x(t) ∈ C(t) for
all t ∈ I and ẋ(t) ∈ F (t, x(t)) a.e. on I. Consequently the sweeping process
problem (Sw) admits at least an absolutely continuous solution x( · ) such that
‖ẋ(t)‖ ≤ ṙ(t) almost everywhere.

Proof. By virtue of the preceding considerations, conditions (a)–(c) of The-
orem 4.2 are satisfied by the multifunction F and the constraint C. We shall
prove that condition (d) is also satisfied. Let ε = 2−n and choose by Corol-
lary 2.5 a compact set In ⊂ I with λ(I \ In) < 2−n such that the restriction
of F to Gn := (In × X) ∩ G is upper semicontinuous. We suppose also that
r is derivable on each point t of In with derivative equal to ṙ(t). For each n

choose a compact set Jn ⊂ In with λ(I \ Jn) < 2−n such that each point t of
Jn is a density point of In. Consider the negligible subset N := I \

⋃
n Jn of I.

Take t ∈ I \ N and x ∈ C(t). There exists an integer n0 such that t ∈ Jn0 .
Since t is a density point for In0 there exists a sequence (hk) of strictly positive
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numbers such that t + hk ∈ In0 and hk → 0+ as k → ∞. For each k choose
xk ∈ projC(t+hk)(x). By virtue of (H2) we have∥∥∥∥x− xk

hk

∥∥∥∥ =
d(x,C(t+ hk))

hk
≤ r(t+ hk)− r(t)

hk
.

Since r is derivable on t, we deduce that the sequence yk := (xk − x)/hk is
bounded in X. Hence a subsequence (again denoted by) yk converges to some
point y ∈ X. Now by construction of xk we have δ(xk − x) ∈ −NP

C(t+hk)(xk) for
all δ ≥ 0. In particular, putting

zk :=
ṙ(t)

r(t+ hk)− r(t)
· (xk − x)

we get
‖zk‖ ≤ ṙ(t) and zk ∈ −NP

C(t+hk)(xk).

Hence

(4.11) zk ∈ F (t+ hk, xk) for all k.

Furthermore, since ṙ(t) is the derivative of r at t, it is easy to check that zk → y as
k →∞. Now remark that (t+hk, xk) ∈ Gn0 and F|Gn0

is upper semicontinuous.
Hence condition (4.11) implies that y ∈ F (t, x). We have thus proved that the
point (1, y) lies in ({1} × F (t, x)) ∩ TG(t, x). Now we complete the proof by
applying the conclusion of Theorem 4.2. �
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