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ANALYTICAL APPROACH TO KAWAHARA EQUATION
USING VARIATIONAL ITERATION METHOD
AND HOMOTOPY PERTURBATION METHOD

Junfeng Lu

Abstract. Variational iteration method and homotopy perturbation me-
thod are introduced to solve the Kawahara equation. Comparison of the
obtained results with the numerical solution shows that both methods lead
to remarkably accurate solutions. The main property of the both methods
is its flexibility and ability to solve nonlinear equations accurately and
conveniently.

1. Introduction

Consider the Kawahara equation given by [21]

(1.1) ut + uux + uxxx − uxxxxx = 0,

subject to the initial condition

u(x, 0) =
105
169

sech4

(
x

2
√

13

)
.

The Kawahara equation plays an important role in describing motions of plasma
waves, capillary-gravity water waves, water waves with surface tension, shallow
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water waves and so forth [1], [5], [13], [14]. This equation has been the subject
of extensive research work in past decades using various methods, such as tanh-
function method, extended tanh-function method, sine-cosine method, direct
algebraic method and Adomian decomposition method.

The variational iteration method was first proposed by J. H. He [8], [9] and
systematically illustrated in 1999 [10]. It was successfully applied to Burger’s
equation and coupled Burger’s equation, to generalized KdV and coupled Schrö-
dinger- KdV, to delay differential equations, to Duffing equation and mathema-
tical pendulum, to autonomous ordinary differential systems, to construction of
solitary solution and compacton-like solution, and to various other problems [3],
[4], [8], [10], [12], [15]–[17], [20], [23], while the homotopy perturbation method
proposed by J. H. He is constantly being developed and applied to solve various
nonlinear problems [2], [6], [7], [11], [18], [19], [22], [24].

In this paper, we apply both methods to solve the Kawahara equation. The
main advantage of the methods is that they can give the approximate solutions
without unrealistic nonlinear assumptions, linearization, discretization or calcu-
lation of the complicated Adomian polynomials, therefore, the methods provide
efficient approaches to solve the Kawahara equation. Numerical results are pre-
sented to show the efficiencies of the methods.

The rest of this paper is organized as follows. In Section 2, the variational
iteration method and homotopy perturbation method are applied to solve the
Kawahara equation. The numerical results for the Kawahara equation are pre-
sented in Section 3. Finally, we give the conclusion in Section 4.

2. Numerical examples

In this section, we apply the variational iteration method [8]–[10] and homo-
topy perturbation method [11], [12] to solve the Kawahara equation (1.1). Note
that the exact solution of (1.1) is given by [21]

u(x, t) =
105
169

sech4

(
1

2
√

13

(
x − 36

169
t

))
.

2.1. Variational iteration method for the Kawahara equation.
According to the variational iteration method [8]–[10], we can construct the
following correct functional:

(2.1) un+1(x, t) = un(x, t)

+
∫ t

0

λ{unξ(x, ξ) + ũn(x, ξ)ũnx(x, ξ) + ũnxxx(x, ξ) − ũnxxxxx(x, ξ)}dξ,

where ũn is considered as a restricted variation, i.e. δũn = 0, and λ is the general
Lagrange multiplier.
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Making the above correct functional stationary, and noticing that δũn = 0,
we have

δun+1(x, t) = δun(x, t)

+ δ

∫ t

0

λ{unξ(x, ξ) + ũn(x, ξ)ũnx(x, ξ) + ũnxxx(x, ξ) − ũnxxxxx(x, ξ)}dξ

= δun(x, t) + λδun(x, ξ)|ξ=t −
∫ t

0

λ
′
δun(x, ξ)dξ,

which yields the following stationary conditions

1 + λ = 0, λ
′
= 0.

Therefore, the general Lagrange multiplier can be readily identified as λ = −1.
Then substituting this value of the Lagrange multiplier into functional (2.1)

(2.2) un+1(x, t) = un(x, t)

−
∫ t

0

{unξ(x, ξ) + un(x, ξ)unx(x, ξ) + unxxx(x, ξ) − unxxxxx(x, ξ)} dξ.

Beginning with u0 = (105/169)sech4(x/(2
√

13)), by the above iteration formula,
we obtain

u1 =
105
169

sech4

(
x

2
√

13

)
+

7560
28561

√
13

tsech4

(
x

2
√

13

)
tanh

(
x

2
√

13

)
,

u2 =
105
169

sech4

(
x

2
√

13

)
+

7560
28561

√
13

tsech4

(
x

2
√

13

)
tanh

(
x

2
√

13

)

+
68040

62748517
t2sech4

(
x

2
√

13

)(
4 − 5sech2

(
x

2
√

13

))

+
9525600

10604499373
t3sech8

(
x

2
√

13

)
tanh

(
x

2
√

13

)(
4 − 5sech2

(
x

2
√

13

))
.

In the same manner, the rest of components of the iteration formula (2.2) can
be obtained by using Maple or Mathematica package.

2.2. Homotopy perturbation method for the Kawahara equation.
By the homotopy perturbation method [11], [12], we can construct the homotopy
which satisfies

(2.3) ut − y0t + py0t + p(uux + uxxx − uxxxxx) = 0,

with the initial approximation y0 = u(x, 0) = (105/169)sech4(x/(2
√

13)).
Suppose that the solution of (2.3) has the form:

(2.4) u = u0 + pu1 + p2u2 + . . . .
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Substituting (2.4 ) into (2.3), and equating the terms of the same power of p, it
follows that

(2.5) p0 : u0t − y0t = 0, y0 =
105
169

sech4

(
x

2
√

13

)
,

p1 : u1t + u0u0x + u0xxx − u0xxxxx + y0t = 0, u1(x, 0) = 0,

p2 : u2t + u0u1x + u1u0x + u1xxx − u1xxxxx = 0, u2(x, 0) = 0.

Setting u0 = y0 and solving the above equations results in u(x, t). According
to (2.4) and the assumption p = 1, we have

u(x, t) =
105
169

sech4

(
x

2
√

13

)
+

7560
28561

√
13

tsech4

(
x

2
√

13

)
tanh

(
x

2
√

13

)

+
68040

62748517
t2sech4

(
x

2
√

13

)(
4 − 5sech2

(
x

2
√

13

))
.

3. Numerical results for the Kawahara equation

For the purpose of comparison, we give the absolute errors of the approximate
solutions obtained by variational iteration method and homotopy perturbation
method in Table 1. The evolution results for the approximate solutions and the
exact solutions of the Kawahara equation with −20 ≤ x ≤ 20 and 0 ≤ t ≤
2 are given in Figure 1. From the numerical results, we can easily conclude
that both methods yield high accuracy of the approximate solutions for the
Kawahara equation. It’s important to note that both methods don’t involve
the unrealistic assumptions. In addition, we obtain the high accuracy of the
approximate solutions by two iterations only, see (2.2) and (2.5), respectively.
The accuracy can be further improved if the solution procedure continues to a
higher order.
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Figure 1. The evolution results for the approximate solutions obtained
by VIM and HPM, and the exact solutions of the Kawahara equation
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x = −5 x = −2.5

t VIM HPM VIM HPM

0.01 1.13523E−11 3.17016E−10 4.43000E−11 4.61000E−10

0.02 3.12801E−10 3.80149E−10 8.84000E−11 1.52800E−10

0.03 7.31032E−10 3.79879E−10 4.18000E−11 7.97000E−11

0.04 1.74229E−9 8.22488E−10 4.66700E−10 1.41200E−9

0.05 3.52950E−9 1.26447E−9 7.95400E−10 2.98700E−9

x = 0 x = 2.5

t VIM HPM VIM HPM

0.01 1.00000E−10 1.00000E−10 1.17500E−10 1.04900E−10

0.02 1.00000E−10 1.00000E−10 1.80000E−11 3.60700E−10

0.03 0.00000E+00 0.00000E+00 1.58200E−10 6.95900E−10

0.04 0.00000E+00 0.00000E+00 4.10100E−10 1.64030E−9

0.05 0.00000E+00 0.00000E+00 9.21400E−10 3.77840E−9

x = 5 x = 7.5

t VIM HPM VIM HPM

0.01 3.05612E−11 3.17466E−10 1.96880E−10 1.14560E−10

0.02 3.24375E−10 1.27076E−10 1.19000E−11 1.82200E−10

0.03 7.84474E−10 5.08666E−10 7.72000E−11 3.87600E−10

0.04 1.72904E−9 2.54513E−10 2.21800E−10 3.09100E−10

0.05 3.53590E−9 1.14612E−9 3.25800E−10 8.64000E−10

Table 1. The numerical results for the approximate solutions obtained by
VIM and HPM in comparison with the exact solutions of (1.1)

4. Conclusions

In this paper, the variational iteration method and homotopy perturbation
method have been applied to solve the Kawahara equation. Numerical results
have been presented to show the efficiencies of both methods. A clear conclusion
can be drawn from the numerical results that both methods lead to high accuracy
of the obtained analytical solutions for the Kawahara equation. Therefore, both
methods can be seen as promising and powerful methods for solving various
nonlinear equations.
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