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FREQUENCY-AMPLITUDE RELATIONSHIP
OF THE DUFFING-HARMONIC OSCILLATOR

Zhao-Ling Tao

Abstract. The variational iteration method, the variational method and

the parameter-expanding method are applied to obtain the frequency-am-
plitude relationship of the Duffing-harmonic oscillator. The obtained re-

sults reveal that all the three methods are very effective and convenient.

1. Introduction

In [10], Ji-Huan He gave a very lucid as well as elementary discussion of
the variational iteration method and the parameter-expansion method for var-
ious nonlinear equations. In particular, He used unheard-of simple numerical
procedures to arrive at surprisingly accurate predictions of frequency-amplitude
relationships for nonlinear oscillators [10]. In addition, He gave a great effort to
give sophisticated interpretation of the numerical results.

In the present work, we will follow He’s spirit of simplicity, while aiming
at more accurate determination of the frequency-amplitude relationship of the
Duffing-harmonic oscillator [2], [13]–[16], which reads

(1.1)
d2x

dt2
+

x3

1 + x2
= 0
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with initial conditions

x(0) = A and
dx

dt
(0) = 0.

Equation (1.1) is an example of a conservative nonlinear oscillatory system
having a rational form for the non-dimensional restoring force. All the motions
corresponding to (1.1) are periodic. And the angular frequency ω increases from
0 to 1 as the initial value of x(0) = A increases [2]. Equation (1.1) is not
amenable to exact treatment and, therefore, approximate techniques must be
resorted to. In this paper we will apply the variational iteration method [7], [8],
[12], the variational method [11] and the parameter-expanding method [9], [10],
to the discussed problem.

2. Variational iteration method

Equation (1.1) can be re-written in the form

d2x

dt2
+ ω2x = g(x),

where g(x) = ω2x − x3 − x2(d2x/dt2), and ω is the unknown angular frequency
of the nonlinear oscillator. Applying the variational iteration method [7], [8],
[12], we have the following functional

(2.1) xn+1(t) = xn(t) +
∫ t

0

λ(x′′n(τ) + ω2xn(τ) − g̃(xn)) dτ,

where g̃ is considered as a restricted variation, i.e. δg̃(xn) = 0. The method can
find wide applications [3], [4], [18], [23], [26].

Calculating variation with respect to xn, and noting that δg̃ = 0, we have
the following stationary conditions:

λ′′(τ) + ω2λ(τ) = 0,

λ(τ)|τ=t = 0,

1 − λ′(τ)|τ=t = 0.

The multiplier, therefore, can be identified as

λ =
1
ω

sinω(τ − t).

Substituting the identified multiplier into (2.1) results in the following iteration
formula:

(2.2) xn+1(t) = xn(t) +
1
ω

∫ t

0

sinω(τ − t)
(

x′′n(τ) + x3
n + x2

n

d2xn

dt2

)
dτ.

Assuming that its initial approximate solution has the form:

(2.3) x0(t) = A cos ωt,
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and substituting (2.3) into (1.1) leads to the following residual

R0(t) =
(

3
4
A2 − ω2 − 3

4
ω2A2

)
A cos ωt + (1 − ω2)

A3

4
cos 3ωt.

By formula (2.2), we have

x1(t) = A cos ωt +
1
ω

∫ t

0

R0(t)sinω(τ − t) dτ.

In the case of no secular, we find the relation between frequency and ampli-
tude of the Duffing-harmonic oscillator

(2.4) ω2 =
3A2/4

1 + 3A2/4
= 1 − 1

1 + 3A2/4
.

This is valid for the whole range of values of A. Equation (2.4) is the same as
that obtained by homotopy perturbation method in [2, equations (16), (17), (70)
and (71)].

Equation (1.1) can also be written in the form

d2x

dt2
+ ω2x + g(x) = 0,

where g(x) = x3/(1 + x2)−ω2x, and ω is the unknown angular frequency of the
nonlinear oscillator.

Assuming x0(t) = A cos ωt, by the same manipulation as illustrated in the
above section, we obtain the following formula

xn+1(t) = xn(t) +
1
ω

∫ t

0

sinω(τ − t)
(

x′′n(τ) +
x3

n

1 + x2
n

)
dτ.

R0(t) = −ω2A cos ωt +
A3 cos3 ωt

1 + A2 cos2 ωt
.

Use Fourier series expansion

(2.5)
A3 cos3 ωt

1 + A2 cos2 ωt
=

∞∑
n=0

a2n+1 cos((2n + 1)ωt) = a1 cos ωt + a3 cos ωt + . . .

Here, the coefficient a1 can be obtained by means of the following equation

a1 =
2
π

∫ π

0

A3 cos3 τ

1 + A2 cos2 τ
cos τ dτ(2.6)

=
2A

π

∫ π

0

A2 cos4 τ

1 + A2 cos2 τ
dτ = A +

2
A

(
1√

1 + A2
− 1

)
,
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where τ = ωt. Therefore,

R0(t) = −ω2A cos ωt +
{

A +
2
A

(
1√

1 + A2
− 1

)}
cos ωt

+
∞∑

n=1

a2n+1 cos((2n + 1)ωt).

No secular requires

−ω2A + A +
2
A

(
1√

1 + A2
− 1

)
= 0.

So the relation between frequency and amplitude of the Duffing-harmonic oscil-
lator is

(2.7) ω2 = 1 +
2

A2

(
1√

1 + A2
− 1

)
.

This result coincides with that obtained in [2, equations (33), (74)–(76)].

3. Variational method

Assume the solution of equation (1.1) can be expressed as

x(t) = A cos ωt,

where A and ω are the amplitude and frequency of the oscillator, respectively.
Using the novel variational method [11], we obtain the following

J(x) =
1
2

∫ T/4

0

{(
dx

dt

)2

+ x2 − ln(1 + x2)
}

dt,

where T is the period of the nonlinear oscillator.

J(A) =
∫ π/2

0

{
− 1

2
A2ωsin2t +

1
2ω

A2 cos2 t − 1
2ω

ln(1 + A2 cos2 t)
}

dt,

The stationary condition with respect to A reads

dJ

dA
=

∫ π/2

0

{
− Aω sin2 t +

1
ω

(
A cos2 t − A cos2 t

1 + A2 cos2 t

)}
dt = 0,

and leads to the result

ω2 = 1 +
2

A2

(
1√

1 + A2
− 1

)
.

It is equal with (2.7).
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4. Parameter expanding method

Now rewrite equation (1.1) in the form

(4.1)
d2x

dt2
+ 0 · x + 1 · x3

1 + x2
= 0.

According to the parameter-expanding method [5], [9], [10], the solution can
be expressed as a power series in a bookkeeping parameter p:

(4.2) x = x0 + px1 + p2x2 + . . . ,

where p is a bookkeeping parameter p = 1.
According to He’s parameter-expanding method, the coefficients 0 and 1 in

the left hand side of (4.1) should be respectively expanded to series in p:

0 = ω2 + pω1 + p2ω2 + . . . ,(4.3)

1 = pc1 + p2c2 + · · · .(4.4)

Substituting (4.2)–(4.4) into (4.1) and equating the terms with the identical
powers of p, we have

x′′0 + ω2x0 = 0, x0(0) = A, x′0(0) = 0,(4.5)

x′′1 + ω2x1 + ω1x0 + c1
x3

0

1 + x2
0

= 0, x1(0) = 0, x′1(0) = 0.(4.6)

Solving equation (4.5), we can easily obtain the result:

x0 = A cos ωt.

Substituting x0 into (4.6) yields

x′′1 + ω2x1 + ω1A cos ωt + c1
A3 cos3 ωt

1 + (A cos ωt)2
= 0.

Combine equations (2.5) and (2.6) with the no secular requirement, we have

ω1A + c1a1 = 0.

If the first-order approximation is enough, then setting p = 1, from (4.3) and
(4.4), we have

0 = ω2 + ω1, 1 = c1.

Therefore, we obtain the relation between frequency and amplitude of the Du-
ffing-harmonic oscillator, which reads

ω2 = 1 +
2

A2

(
1√

1 + A2
− 1

)
.

This is the same as equation (2.7).
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The method is very effective [24], [25], and can lead to the same iteration
scheme as that obtained by the homotopy perturbation method [1], [6], [17],
[19]–[22], [27].

5. Conclusion

He’s variational iteration method, variational method and parameter-expan-
ding method are all proved to be powerful, convenient and efficient mathematical
tools for searching for frequency-amplitude relationship of nonlinear oscillators.
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