FREQUENCY-AMPLITUDE RELATIONSHIP OF THE DUFFING-HARMONIC OSCILLATOR

Zhao-Ling TaO

Abstract

The variational iteration method, the variational method and the parameter-expanding method are applied to obtain the frequency-amplitude relationship of the Duffing-harmonic oscillator. The obtained results reveal that all the three methods are very effective and convenient

1. Introduction

In [10], Ji-Huan He gave a very lucid as well as elementary discussion of the variational iteration method and the parameter-expansion method for various nonlinear equations. In particular, He used unheard-of simple numerical procedures to arrive at surprisingly accurate predictions of frequency-amplitude relationships for nonlinear oscillators [10]. In addition, He gave a great effort to give sophisticated interpretation of the numerical results.

In the present work, we will follow He's spirit of simplicity, while aiming at more accurate determination of the frequency-amplitude relationship of the Duffing-harmonic oscillator [2], [13]-[16], which reads

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+\frac{x^{3}}{1+x^{2}}=0 \tag{1.1}
\end{equation*}
$$

[^0]with initial conditions
$$
x(0)=A \quad \text { and } \quad \frac{d x}{d t}(0)=0
$$

Equation (1.1) is an example of a conservative nonlinear oscillatory system having a rational form for the non-dimensional restoring force. All the motions corresponding to (1.1) are periodic. And the angular frequency ω increases from 0 to 1 as the initial value of $x(0)=A$ increases [2]. Equation (1.1) is not amenable to exact treatment and, therefore, approximate techniques must be resorted to. In this paper we will apply the variational iteration method [7], [8], [12], the variational method [11] and the parameter-expanding method [9], [10], to the discussed problem.

2. Variational iteration method

Equation (1.1) can be re-written in the form

$$
\frac{d^{2} x}{d t^{2}}+\omega^{2} x=g(x)
$$

where $g(x)=\omega^{2} x-x^{3}-x^{2}\left(d^{2} x / d t^{2}\right)$, and ω is the unknown angular frequency of the nonlinear oscillator. Applying the variational iteration method [7], [8], [12], we have the following functional

$$
\begin{equation*}
x_{n+1}(t)=x_{n}(t)+\int_{0}^{t} \lambda\left(x_{n}^{\prime \prime}(\tau)+\omega^{2} x_{n}(\tau)-\widetilde{g}\left(x_{n}\right)\right) d \tau \tag{2.1}
\end{equation*}
$$

where \widetilde{g} is considered as a restricted variation, i.e. $\delta \widetilde{g}\left(x_{n}\right)=0$. The method can find wide applications [3], [4], [18], [23], [26].

Calculating variation with respect to x_{n}, and noting that $\delta \widetilde{g}=0$, we have the following stationary conditions:

$$
\left\{\begin{array}{l}
\lambda^{\prime \prime}(\tau)+\omega^{2} \lambda(\tau)=0 \\
\left.\lambda(\tau)\right|_{\tau=t}=0 \\
1-\left.\lambda^{\prime}(\tau)\right|_{\tau=t}=0
\end{array}\right.
$$

The multiplier, therefore, can be identified as

$$
\lambda=\frac{1}{\omega} \sin \omega(\tau-t)
$$

Substituting the identified multiplier into (2.1) results in the following iteration formula:

$$
\begin{equation*}
x_{n+1}(t)=x_{n}(t)+\frac{1}{\omega} \int_{0}^{t} \sin \omega(\tau-t)\left(x_{n}^{\prime \prime}(\tau)+x_{n}^{3}+x_{n}^{2} \frac{d^{2} x_{n}}{d t^{2}}\right) d \tau \tag{2.2}
\end{equation*}
$$

Assuming that its initial approximate solution has the form:

$$
\begin{equation*}
x_{0}(t)=A \cos \omega t \tag{2.3}
\end{equation*}
$$

and substituting (2.3) into (1.1) leads to the following residual

$$
R_{0}(t)=\left(\frac{3}{4} A^{2}-\omega^{2}-\frac{3}{4} \omega^{2} A^{2}\right) A \cos \omega t+\left(1-\omega^{2}\right) \frac{A^{3}}{4} \cos 3 \omega t
$$

By formula (2.2), we have

$$
x_{1}(t)=A \cos \omega t+\frac{1}{\omega} \int_{0}^{t} R_{0}(t) \sin \omega(\tau-t) d \tau
$$

In the case of no secular, we find the relation between frequency and amplitude of the Duffing-harmonic oscillator

$$
\begin{equation*}
\omega^{2}=\frac{3 A^{2} / 4}{1+3 A^{2} / 4}=1-\frac{1}{1+3 A^{2} / 4} \tag{2.4}
\end{equation*}
$$

This is valid for the whole range of values of A. Equation (2.4) is the same as that obtained by homotopy perturbation method in [2, equations (16), (17), (70) and (71)].

Equation (1.1) can also be written in the form

$$
\frac{d^{2} x}{d t^{2}}+\omega^{2} x+g(x)=0
$$

where $g(x)=x^{3} /\left(1+x^{2}\right)-\omega^{2} x$, and ω is the unknown angular frequency of the nonlinear oscillator.

Assuming $x_{0}(t)=A \cos \omega t$, by the same manipulation as illustrated in the above section, we obtain the following formula

$$
\begin{gathered}
x_{n+1}(t)=x_{n}(t)+\frac{1}{\omega} \int_{0}^{t} \sin \omega(\tau-t)\left(x_{n}^{\prime \prime}(\tau)+\frac{x_{n}^{3}}{1+x_{n}^{2}}\right) d \tau \\
R_{0}(t)=-\omega^{2} A \cos \omega t+\frac{A^{3} \cos ^{3} \omega t}{1+A^{2} \cos ^{2} \omega t}
\end{gathered}
$$

Use Fourier series expansion
(2.5) $\frac{A^{3} \cos ^{3} \omega t}{1+A^{2} \cos ^{2} \omega t}=\sum_{n=0}^{\infty} a_{2 n+1} \cos ((2 n+1) \omega t)=a_{1} \cos \omega t+a_{3} \cos \omega t+\ldots$

Here, the coefficient a_{1} can be obtained by means of the following equation

$$
\begin{align*}
a_{1} & =\frac{2}{\pi} \int_{0}^{\pi} \frac{A^{3} \cos ^{3} \tau}{1+A^{2} \cos ^{2} \tau} \cos \tau d \tau \tag{2.6}\\
& =\frac{2 A}{\pi} \int_{0}^{\pi} \frac{A^{2} \cos ^{4} \tau}{1+A^{2} \cos ^{2} \tau} d \tau=A+\frac{2}{A}\left(\frac{1}{\sqrt{1+A^{2}}}-1\right),
\end{align*}
$$

where $\tau=\omega t$. Therefore,

$$
\begin{aligned}
R_{0}(t)=-\omega^{2} A \cos \omega t+\left\{A+\frac{2}{A}\left(\frac{1}{\sqrt{1+A^{2}}}-1\right)\right\} & \cos \omega t \\
& +\sum_{n=1}^{\infty} a_{2 n+1} \cos ((2 n+1) \omega t)
\end{aligned}
$$

No secular requires

$$
-\omega^{2} A+A+\frac{2}{A}\left(\frac{1}{\sqrt{1+A^{2}}}-1\right)=0
$$

So the relation between frequency and amplitude of the Duffing-harmonic oscillator is

$$
\begin{equation*}
\omega^{2}=1+\frac{2}{A^{2}}\left(\frac{1}{\sqrt{1+A^{2}}}-1\right) \tag{2.7}
\end{equation*}
$$

This result coincides with that obtained in [2, equations (33), (74)-(76)].

3. Variational method

Assume the solution of equation (1.1) can be expressed as

$$
x(t)=A \cos \omega t
$$

where A and ω are the amplitude and frequency of the oscillator, respectively.
Using the novel variational method [11], we obtain the following

$$
J(x)=\frac{1}{2} \int_{0}^{T / 4}\left\{\left(\frac{d x}{d t}\right)^{2}+x^{2}-\ln \left(1+x^{2}\right)\right\} d t
$$

where T is the period of the nonlinear oscillator.

$$
J(A)=\int_{0}^{\pi / 2}\left\{-\frac{1}{2} A^{2} \omega \sin ^{2} t+\frac{1}{2 \omega} A^{2} \cos ^{2} t-\frac{1}{2 \omega} \ln \left(1+A^{2} \cos ^{2} t\right)\right\} d t
$$

The stationary condition with respect to A reads

$$
\frac{d J}{d A}=\int_{0}^{\pi / 2}\left\{-A \omega \sin ^{2} t+\frac{1}{\omega}\left(A \cos ^{2} t-\frac{A \cos ^{2} t}{1+A^{2} \cos ^{2} t}\right)\right\} d t=0
$$

and leads to the result

$$
\omega^{2}=1+\frac{2}{A^{2}}\left(\frac{1}{\sqrt{1+A^{2}}}-1\right)
$$

It is equal with (2.7).

4. Parameter expanding method

Now rewrite equation (1.1) in the form

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+0 \cdot x+1 \cdot \frac{x^{3}}{1+x^{2}}=0 \tag{4.1}
\end{equation*}
$$

According to the parameter-expanding method [5], [9], [10], the solution can be expressed as a power series in a bookkeeping parameter p :

$$
\begin{equation*}
x=x_{0}+p x_{1}+p^{2} x_{2}+\ldots, \tag{4.2}
\end{equation*}
$$

where p is a bookkeeping parameter $p=1$.
According to He's parameter-expanding method, the coefficients 0 and 1 in the left hand side of (4.1) should be respectively expanded to series in p :

$$
\begin{align*}
0 & =\omega^{2}+p \omega_{1}+p^{2} \omega_{2}+\ldots \tag{4.3}\\
1 & =p c_{1}+p^{2} c_{2}+\cdots \tag{4.4}
\end{align*}
$$

Substituting (4.2)-(4.4) into (4.1) and equating the terms with the identical powers of p, we have

$$
\begin{array}{lll}
x_{0}^{\prime \prime}+\omega^{2} x_{0}=0, & x_{0}(0)=A, & x_{0}^{\prime}(0)=0 \\
x_{1}^{\prime \prime}+\omega^{2} x_{1}+\omega_{1} x_{0}+c_{1} \frac{x_{0}^{3}}{1+x_{0}^{2}}=0, & x_{1}(0)=0, & x_{1}^{\prime}(0)=0
\end{array}
$$

Solving equation (4.5), we can easily obtain the result:

$$
x_{0}=A \cos \omega t
$$

Substituting x_{0} into (4.6) yields

$$
x_{1}^{\prime \prime}+\omega^{2} x_{1}+\omega_{1} A \cos \omega t+c_{1} \frac{A^{3} \cos ^{3} \omega t}{1+(A \cos \omega t)^{2}}=0
$$

Combine equations (2.5) and (2.6) with the no secular requirement, we have

$$
\omega_{1} A+c_{1} a_{1}=0
$$

If the first-order approximation is enough, then setting $p=1$, from (4.3) and (4.4), we have

$$
0=\omega^{2}+\omega_{1}, \quad 1=c_{1}
$$

Therefore, we obtain the relation between frequency and amplitude of the Du-ffing-harmonic oscillator, which reads

$$
\omega^{2}=1+\frac{2}{A^{2}}\left(\frac{1}{\sqrt{1+A^{2}}}-1\right)
$$

This is the same as equation (2.7).

The method is very effective [24], [25], and can lead to the same iteration scheme as that obtained by the homotopy perturbation method [1], [6], [17], [19]-[22], [27].

5. Conclusion

He's variational iteration method, variational method and parameter-expanding method are all proved to be powerful, convenient and efficient mathematical tools for searching for frequency-amplitude relationship of nonlinear oscillators.

References

[1] P. D. Ariel, T. Hayat and S. Asghar, Homotopy perturbation method and axisymmetric flow over a stretching sheet, Internat. J. Non-Linear Sci. Numer. Simul. 7 (2006), 399-406.
[2] A. Beléndez, A. Hernández, T. Beléndez, E. Fernández, M. L. Álvarez and C. Neipp, Application of He's homotopy perturbation method to the Duffing-harmonic oscillator, Internat. J. Non-Linear Sci. Numer. Simul. 8 (2007), 79-88.
[3] J. Biazar and H. Ghazvini, He's variational iteration method for solving hyperbolic differential equations, Internat. J. Non-Linear Sci. Numer. Simul. 8 (2007), 311-314.
[4] N. Bildik and A. Konuralp, The use of variational iteration method, differential transform method and Adomian decomposition method for solving different types of nonlinear partial differential equations, Internat. J. Non-Linear Sci. Numer. Simul. 7 (2006), 65-70.
[5] D.-H. Shou and J. H. He, Application of parameter expanding method to strongly nonlinear oscillators, Internat. J. Non-Linear Sci. Numer. Simul. 8 (2007), 121-124.
[6] D. D. Ganji and A. Sadighi, Application of He's homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations, Int. J. Non-Linear Sci. Numer. Simul. 7 (2006), 411-418.
[7] J. H. He, Variational iteration method - a kind of non-linear analytical technique: Some examples, Internat. J. Non-Linear Mech. 34 (1999), 699-708.
[8] , Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput. 114 (2000), 115-123.
[9] , Bookkeeping parameter in perturbation methods, Internat. J. Non-Linear Sci. Numer. Simul. 2 (2001), 257-264.
[10] , Some asymptotic methods for strongly nonlinear equations, Internat. J. Modern Phys. B 20 (2006), 1141-1199.
[11] , Variational approach for non-linear oscillators, Chaos Solitons Fractals 34 (2007), 1430-1439.
[12] J. H. He and X. H. Wu, Construction of solitary solution and compacton-like solution by variational iteration method, Chaos Solitons Fractals 29 (2006), 108-113.
[13] H. Hu, Solution of a Duffing-harmonic oscillator by an iteration procedure, J. Sound Vibration 298 (2006), 446-452.
[14] H. Hu and J. H. Tang, Solution of a Duffing-harmonic oscillator by the method of harmonic balance, J. Sound Vibration 298 (2006), 637-639.
[15] C. W. Lim and B. S. Wu, A new analytical approach to the Duffing-harmonic oscillator, Phys. Lett. A 311 (2003), 365-373.
[16] R. E. Mickens, Mathematical and numerical study of the Duffing-harmonic oscillator, J. Sound Vibration 244 (2001), 563-567.
[17] S. Momani and Z. Odibat, Numerical comparison of methods for solving linear differential equations of fractional order, Chaos Solitons Fractals (to appear).
[18] Z. Odibat and S. Momani, Application of He?s variational iteration method to nonlinear differential equations of fractional order, Internat. J. Non-Linear Sci. Numer. Simul. 7 (2006), 27-34.
[19] T. Ozis and A. Yildirim, Traveling wave solution of Korteweg-de Vries equation using He's homotopy perturbation method, Internat. J. Non-Linear Sci. Numer. Simul. 8 (2007), 239-242.
[20] , A comparative study of He's homotopy perturbation method for determining frequency-amplitude relation of a nonlinear oscillator with discontinuities, Internat. J. Non-Linear Sci. Numer. Simul. 8 (2007), 243-248.
[21] M. Rafei and D. D. Ganji, explicit solutions of Helmholtz equation and fifth-order KdV equation using homotopy perturbation method, Internat. J. Non-Linear Sci. Numer. Simul. 7 (2006), 321-328.
[22] A. Sadighi and D. D. Ganji, Solution of the generalized nonlinear Boussinesq equation using homotopy perturbation and variational iteration methods, Internat. J. Non-Linear Sci. Numer. Simul. 8 (2007), 435-443.
[23] H. Tari, D. D. Ganji and M. Rostamian, Approximate solutions of $K(2,2), K d V$ and modified KdV equations by variational iteration method, homotopy perturbation method and homotopy analysis method, Internat. J. Non-Linear Sci. Numer. Simul. 8 (2007), 203-210.
[24] L. Xu, He's parameter expanding methods for strongly nonlinear oscillators, J. Comput. Appl. Mathe. 207 (2007), 148-154.
[25] , Determination of limit cycle by He's parameter expanding method for strongly nonlinear oscillators, J. Sound Vibration 302 (2007), 178-184.
[26] E. Yusufoglu, Variational iteration method for construction of some compact and noncompact structures of Klein-Gordon equations, Internat. J. Non-Linear Sci. Numer. Simul. 8 (2007), 153-158.
[27] , Homotopy perturbation method for solving a nonlinear system of second order boundary value problems, Internat. J. Non-Linear Sci. Numer. Simul. 8 (2007), 353-358.

Nanjing 210044, P. R. CHINA
E-mail address: zaolingt@nuist.edu.cn

[^0]: 2000 Mathematics Subject Classification. Primary 20C20, 34A30; Secondary 14E20, 46E25.
 Key words and phrases. Variational iteration method, variational method, parameterexpanding method, non-linear oscillator, frequency-amplitude relationship.

 The work was supported by Nanjing University of Information Science and Technology Grant \#Y626; \#JG032006J03.

