ERGODIC COCYCLES FOR GAUSSIAN ACTIONS

Dariusz Skrenty

Abstract

Ergodic Gaussian cocycles for rigid Gaussian actions are constructed. It is also shown when any isomorphism between Gaussian actions is Gaussian.

1. Introduction

Throughout \mathbb{G} denotes a countable Abelian group with identity element e and discrete topology. Assume that (X, \mathcal{B}, μ) is a standard probability space and $\mathcal{T}: \mathbb{G} \times X \rightarrow X\left(T^{g}(\cdot)=\mathcal{T}(g, \cdot)\right)$ is a free \mathbb{G}-action on (X, \mathcal{B}, μ). Let \mathbb{A} be a locally compact metric Abelian group with Borel σ-algebra $\mathcal{B}_{\mathbb{A}}$ and Haar measure λ. Recall that a Borel map $F: \mathbb{G} \times X \rightarrow \mathbb{A}$ is called a cocycle for \mathcal{T} if $F\left(g_{1}+g_{2}, x\right)=F\left(g_{1}, x\right)+F\left(g_{2}, T^{g_{1}} x\right)$ for all $g_{1}, g_{2} \in \mathbb{G}$ and for a.e. $x \in X$. A cocycle F is said to be a coboundary if there exists a Borel map $\xi: X \rightarrow \mathbb{A}$ such that $F(g, x)=\xi(x)-\xi\left(T^{g} x\right)$. To a cocycle F we associate the corresponding skew product $\mathcal{T}_{F}: \mathbb{G} \times\left(X \times \mathbb{A}, \mathcal{B} \otimes \mathcal{B}_{\mathbb{A}}, \mu \times \lambda\right) \rightarrow\left(X \times \mathbb{A}, \mathcal{B} \otimes \mathcal{B}_{\mathbb{A}}, \mu \times \lambda\right)$ given by $T_{F}^{g}(x, a)=\left(T^{g} x, F(g, x)+a\right)$. We say that F is ergodic if \mathcal{T}_{F} is ergodic.

An action \mathcal{T} is called Gaussian if there exists $\mathcal{H} \subset L^{2}(X, \mathcal{B}, \mu)$ a \mathcal{T}-invariant closed subspace of the zero mean real functions such that each nonzero $h \in \mathcal{H}$ is a Gaussian variable and the smallest σ-algebra $\mathcal{B}(\mathcal{H})$ which makes all variables of \mathcal{H} measurable equals \mathcal{B}. We call \mathcal{H} a Gaussian space of \mathcal{T}. The maximal spectral type of \mathcal{T} on \mathcal{H} is called the spectral measure of \mathcal{T}. We will consider \mathcal{T} with

[^0]continuous spectral measure. It implies that \mathcal{T} will be ergodic and even weakly mixing. We call a cocycle F Gaussian if $F(g, \cdot) \in \mathcal{H}$ for all $g \in \mathbb{G}$. A Gaussian cocycle is a Gaussian coboundary if it is a coboundary with transfer function ξ in \mathcal{H}.

Motivated by some strong dichotomies in the theory of Gaussian dynamical systems (see [1], [2], [4], [5], [12]) in 1999 Lemańczyk proposed the following conjecture: every Gaussian cocycle either is ergodic or is a Gaussian coboundary. There are Gaussian actions with trivial solutions of this, that is, every Gaussian cocycle is a coboundary (see Section 2). So the first step to verify the conjecture is a construction of ergodic Gaussian cocycles. Such a construction is done in [3] for Gaussian \mathbb{Z}-actions, where cocycles are identified with single measurable functions. But if we replace \mathbb{Z}-actions by \mathbb{G}-actions then we have an additional difficulty, namely, we do not know whether there exist nontrivial cocycles, because of the more complicated structure of them. There are results for different types of \mathbb{Z}^{d}-actions $(d>1)$ showing, in contrast to \mathbb{Z}-actions, that if we impose some restriction on cocycles (for instance continuity) then the only cocycles are trivial (see [9] and the references given there). We show that, as a rule, this is not true for Gaussian \mathbb{G}-actions and Gaussian cocycles. Section 3 is devoted to constructing ergodic Gaussian cocycles for some rigid Gaussian \mathbb{G}-actions. The validity of the conjecture was not decided in [3] but authors proved it in its multiplicative version considering cocycles of the form $\mathrm{e}^{2 \pi \mathrm{i} h}$, where h is a Gaussian cocycle. It is easy to check that the analogous result holds for Gaussian \mathbb{G}-actions.

Section 4 can be treated as an appendix. We give some condition, under which, any isomorphism between Gaussian actions is Gaussian, i.e. it sends the Gaussian structure of one action to the other. We generalize Theorem 5 from [14] (given without proof). Although our result has not a direct connection with Gaussian cocycles, we think, it is sufficiently interesting to placing in the paper about Gaussian actions.

This is part of the author's Ph.D. thesis. The author wishes to thank Professor Lemańczyk, the supervisor of the thesis, for suggesting problems and helpful comments.

2. Preliminaries

Let \mathcal{T} be a free ergodic \mathbb{G}-action on a nonatomic standard probability space (X, \mathcal{B}, μ), and let $F: \mathbb{G} \times X \rightarrow \mathbb{A}$ be a cocycle for \mathcal{T}. Since \mathbb{G} is Abelian, it follows that

$$
\begin{equation*}
F\left(g_{1}, x\right)-F\left(g_{1}, T^{g_{2}} x\right)=F\left(g_{2}, x\right)-F\left(g_{2}, T^{g_{1}} x\right) \tag{2.1}
\end{equation*}
$$

for all $g_{1}, g_{2} \in \mathbb{G}$ and $x \in X$.

Conversely, suppose that (2.1) holds and $F(g, \cdot)$ are real functions with zero mean. Consider $N_{g_{1}, g_{2}}(x)=F\left(g_{1}+g_{2}, x\right)-F\left(g_{1}, x\right)-F\left(g_{2}, T^{g_{1}} x\right)$. We have

$$
\begin{aligned}
N_{g_{1}, g_{2}}(x)-N_{g_{1}, g_{2}}\left(T^{g} x\right)= & \left(F\left(g_{1}+g_{2}, x\right)-F\left(g_{1}+g_{2}, T^{g} x\right)\right) \\
& -\left(F\left(g_{1}, x\right)-F\left(g_{1}, T^{g} x\right)\right) \\
& -\left(F\left(g_{2}, T^{g_{1}} x\right)-F\left(g_{2}, T^{g} T^{g_{1}} x\right)\right) \\
= & \left(F(g, x)-F\left(g, T^{g_{1}+g_{2}} x\right)\right)-\left(F(g, x)-F\left(g, T^{g_{1}} x\right)\right) \\
& -\left(F\left(g, T^{g_{1}} x\right)-F\left(g, T^{g_{2}} T^{g_{1}} x\right)\right)=0
\end{aligned}
$$

for all $g \in \mathbb{G}$. Hence $N_{g_{1}, g_{2}}=$ const $=0$ for all $g_{1}, g_{2} \in \mathbb{G}$, and consequently F is a cocycle.

Let $\overline{\mathbb{A}}=\mathbb{A} \cup\{\infty\}$ be the one-point Alexandroff compactification of \mathbb{A} (for compact $\mathbb{A}, \overline{\mathbb{A}}=\mathbb{A})$. Recall from $[13]$ that $a \in \overline{\mathbb{A}}$ is called an essential value of F if for every open neighbourhood U of a, and for every $B \in \mathcal{B}$ with $\mu(B)>0$, there exists $g \in \mathbb{G}$ such that $\mu\left(B \cap T^{g} B \cap\{x \in X: F(g, x) \in U\}\right)>0$. The set of essential values of F will be denoted by $\bar{E}(F)$. The set $E(F)=\bar{E}(F) \cap \mathbb{A}$ is a closed subgroup of \mathbb{A}. It is shown in [13] that F is ergodic if and only if $E(F)=\mathbb{A}$. A sequence $\left(g_{t}\right)_{t=1}^{\infty} \subset \mathbb{G}$ is said to be a rigidity time for \mathcal{T} if for each measurable function f on $X, f \circ T^{g_{t}} \rightarrow f$ in measure. We need an easy generalization of Proposition 12 from [6] and we briefly prove it for reader's convenience.

Proposition 2.1. Let $\left(g_{t}\right)_{t=1}^{\infty}$ be a rigidity time for \mathcal{T}. If $F: \mathbb{G} \times X \rightarrow \mathbb{A}$ is a cocycle satisfying
(a) for all $\varepsilon>0$ there exists a compact set $K \subset \mathbb{A}$ such that, for all $t \in \mathbb{N}$, $\mu\left(\left\{x \in X: F\left(g_{t}, x\right) \in K\right\}\right)>1-\varepsilon$,
(b) for all $\chi \in \widehat{\mathbb{A}}, \chi \not \equiv 1$ there exists $C>0$ such that $\left|\int_{X} \chi\left(F\left(g_{t}, x\right)\right) d \mu(x)\right|$ $\leq C<1$ for almost all $t \in \mathbb{N}$,
then F is ergodic.
Proof. We can assume that the sequence of measures $\mu \circ F\left(g_{t}, \cdot\right)^{-1}$ converges weakly to some probability measure ν on $\overline{\mathbb{A}}$. We first claim that for each continuous function φ on $\overline{\mathbb{A}}$ and each $h \in L^{2}(X, \mathcal{B}, \mu)$,

$$
\begin{equation*}
\int_{X} \varphi\left(F\left(g_{t}, x\right)\right) \cdot h(x) d \mu(x) \rightarrow \int_{\overline{\mathbb{A}}} \varphi(a) d \nu(a) \int_{X} h(x) d \mu(x) . \tag{2.2}
\end{equation*}
$$

Indeed, (2.2) holds for constant functions h and we can restrict to the case $h=\xi-\xi \circ T^{g}$ for $\xi \in L^{2}(X, \mathcal{B}, \mu)$ with zero mean. Then

$$
\int_{X} \varphi\left(F\left(g_{t}, x\right)\right) \cdot h(x) d \mu(x)=\int_{X}\left(\varphi\left(F\left(g_{t}, T^{g} x\right)\right)-\varphi\left(F\left(g_{t}, x\right)\right)\right) \cdot \xi\left(T^{g} x\right) d \mu(x)
$$

Since $F\left(g_{t}, x\right)-F\left(g_{t}, T^{g} x\right)=F(g, x)-F\left(g, T^{g_{t}} x\right)$ and $\left(g_{t}\right)_{t=1}^{\infty}$ is a rigidity time for \mathcal{T}, the integral goes to 0 , as φ is uniformly continuous.

Now let us take $a_{0} \in \operatorname{supp} \nu$, an open neighbourhood U of a_{0} in $\overline{\mathbb{A}}$ and $B \in \mathcal{B}$ with $\mu(B)>0$. Choose a continuous function φ on $\overline{\mathbb{A}}$ with $0 \leq \varphi \leq 1_{U}$ and $\int_{\overline{\mathbb{A}}} \varphi(a) d \nu(a)>0$. Since $\left(g_{t}\right)_{t=1}^{\infty}$ is a rigidity time for \mathcal{T},

$$
\begin{aligned}
& \lim \inf \mu\left(B \cap T^{g_{t}} B \cap\left\{x \in X: F\left(g_{t}, x\right) \in U\right\}\right) \\
& \quad=\liminf \mu\left(B \cap\left\{x \in X: F\left(g_{t}, x\right) \in U\right\}\right)=\liminf \int_{B} 1_{U}\left(F\left(g_{t}, x\right)\right) d \mu(x) \\
& \quad \geq \liminf \int_{B} \varphi\left(F\left(g_{t}, x\right)\right) d \mu(x)=\mu(B) \int_{\overline{\mathbb{A}}} \varphi(a) d \nu(a)>0
\end{aligned}
$$

Hence $a_{0} \in \bar{E}(F)$. Consequently $\operatorname{supp} \nu \subset \bar{E}(F)$. From (a) it follows that $\nu(\{\infty\})=0$. Thus supp $\nu \subset E(F)$. If F is not ergodic then there exists $\chi_{0} \in \widehat{\mathbb{A}}$ such that $\chi_{0} \not \equiv 1$ and $\chi_{0}(a)=1$ for all $a \in E(F)$. Hence

$$
\int_{X} \chi_{0}\left(F\left(g_{t}, x\right)\right) d \mu(x) \rightarrow \int_{\mathbb{A}} \chi_{0}(a) d \nu(a)=1
$$

contrary to (b).
Remark 2.2. In the case of $\mathbb{A}=\mathbb{R}$, the condition (a) is satisfied if, for example, the sequence $\left(F\left(g_{t}, \cdot\right)\right)_{t=1}^{\infty}$ is bounded in $L^{1}(X, \mathcal{B}, \mu)$.

Now we recall basic definitions from the spectral theory of unitary operators. Let U be a unitary representation of \mathbb{G} on a real Hilbert space H. Given $h \in H$, we denote by $\mathbb{G}(h)$ the cyclic space generated by h, that is, the smallest closed subspace containing $U^{g} h, g \in \mathbb{G}$. By the spectral measure of h we mean the measure σ_{h} on $\widehat{\mathbb{G}}$, the dual group of \mathbb{G}, determined by $\int_{\widehat{\mathbb{G}}} \chi(g) d \sigma_{h}(\chi)=\left\langle U^{g} h, h\right\rangle$. There exists $h_{0} \in H$ such that $\sigma_{h} \ll \sigma_{h_{0}}$ for every $h \in H$. The type of $\sigma_{h_{0}}$ is called the maximal spectral type of U. A measure σ, absolutely continuous with respect to $\sigma_{h_{0}}$, has the multiplicity n if there exists a maximal sequence $\mathbb{G}\left(h_{1}\right) \oplus$ $\ldots \oplus \mathbb{G}\left(h_{n}\right)$ such that $\sigma_{h_{i}} \equiv \sigma$, i.e. there is no element of type σ orthogonal to the sum. A number $n \in\{1,2, \ldots\} \cup\{\infty\}$ is an essential value of the multiplicity function of U if there exists $\sigma \ll \sigma_{h_{0}}$ with multiplicity n. We say that U has simple spectrum if 1 is the only essential value (further details can be easily adapted from the case of \mathbb{Z}-representation, see [10], [11]).

We will consider a standard Gaussian action. If σ is a finite symmetric Borel measure on $\widehat{\mathbb{G}}$, then on the space $X_{\sigma}=\mathbb{R}^{\mathbb{G}}$ endowed with the natural Borel structure \mathcal{B}_{σ} there exists μ_{σ}, a measure such that projections $\left\{Y_{g}\right\}_{g \in \mathbb{G}}$ $\left(Y_{g}(x)=x(g), x \in X_{\sigma}\right)$ form a real stationary centered Gaussian process whose spectral measure is σ, i.e. $\int_{\widehat{\mathbb{G}}} \chi(g) d \sigma(\chi)=\int_{X_{\sigma}} Y_{g} Y_{e} d \mu_{\sigma}$ for all $g \in \mathbb{G}$. If we denote by \mathcal{T}_{σ} the \mathbb{G}-action on $\left(X_{\sigma}, \mathcal{B}_{\sigma}, \mu_{\sigma}\right)$ given by $\left(T^{g} x\right)(s)=x(s+g)$ then \mathcal{T}_{σ} is a Gaussian action with Gaussian space $\mathcal{H}_{\sigma}=\mathbb{G}\left(Y_{e}\right)$. In the case of \mathbb{Z}-action we speak about a Gaussian automorphism T_{σ}. Write $L_{\text {her }}^{2}(\widehat{\mathbb{G}}, \sigma)=\left\{f \in L^{2}(\widehat{\mathbb{G}}, \sigma)\right.$: $f(\bar{\chi})=\overline{f(\chi)}\}$. The corresponding Koopman representation $U_{\mathcal{T}_{\sigma}}\left(U_{\mathcal{T}_{\sigma}}^{g} f=f \circ T^{g}\right)$
on \mathcal{H}_{σ} is unitarilly equivalent to the representation V on $L_{\text {her }}^{2}(\widehat{\mathbb{G}}, \sigma)$ given by $V^{g} f(\chi)=\chi(g) f(\chi)$.

Lemma 2.3. Assume that

$$
\frac{1-\chi(g)}{1-\chi\left(g_{0}\right)} \in L_{\mathrm{her}}^{2}(\widehat{\mathbb{G}}, \sigma)
$$

for all $g \in \mathbb{G}$ and some $g_{0} \in \mathbb{G}$. There exists a Gaussian cocycle F such that $F(g, \cdot)$ corresponds to the function $(1-\chi(g)) /\left(1-\chi\left(g_{0}\right)\right)$ by the unitary equivalence between $U_{\mathcal{T}_{\sigma}}$ and V.

Proof. Let $f_{g}(\chi)=(1-\chi(g)) /\left(1-\chi\left(g_{0}\right)\right)$. We have

$$
f_{g_{1}}(\chi)-\chi\left(g_{2}\right) f_{g_{1}}(\chi)=f_{g_{2}}(\chi)-\chi\left(g_{1}\right) f_{g_{2}}(\chi)
$$

Therefore functions $F(g, \cdot) \in \mathcal{H}_{\sigma}$ corresponding to f_{g} satisfy (2.1). Hence F is a cocycle.

Lemma 2.4. Assume that

$$
\frac{1}{1-\chi\left(g_{0}\right)} \in L^{\infty}(\widehat{\mathbb{G}}, \sigma)
$$

for some $g_{0} \in \mathbb{G}$. Then each Gaussian cocycle for \mathcal{T}_{σ} is a coboundary.
Proof. Let F be a Gaussian cocycle. By (2.1), the corresponding functions $f_{g} \in L_{\text {her }}^{2}(\widehat{\mathbb{G}}, \sigma)$ satisfy $f_{g}(\chi)\left(1-\chi\left(g_{0}\right)\right)=f_{g_{0}}(\chi)(1-\chi(g))$. Thus

$$
f_{g}(\chi)=\frac{f_{g_{0}}(\chi)}{1-\chi\left(g_{0}\right)}-\chi(g) \frac{f_{g_{0}}(\chi)}{1-\chi\left(g_{0}\right)}
$$

Since $\left(f_{g_{0}}(\chi)\right) /\left(1-\chi\left(g_{0}\right)\right) \in L_{\mathrm{her}}^{2}(\widehat{\mathbb{G}}, \sigma), F$ is a coboundary.
As an example, we take a generalization of well known Gaussian-Kronecker \mathbb{Z}-action (see [4]). A subset E of $\widehat{\mathbb{G}}$ is called a Kronecker set if for every continuous function f on $E,|f|=1$, and for every $\varepsilon>0$, there exist $g \in \mathbb{G}$ such that $\sup _{\chi \in E}|f(\chi)-\chi(g)|<\varepsilon$. Assume that σ is concentrated on $E \cup \bar{E}$, where $E \subset \widehat{\mathbb{G}}$ is a Kronecker set. Let f be the constant function equals -1 . Then there exists $g_{0} \in \mathbb{G}$ such that, for all $\chi \in E,\left|1+\chi\left(g_{0}\right)\right|=\left|f(\chi)-\chi\left(g_{0}\right)\right|<1$. Since $\left|2-\left|1-\chi\left(g_{0}\right)\right|\right| \leq\left|1+\chi\left(g_{0}\right)\right|$, we have $\left|1-\chi\left(g_{0}\right)\right|>1$. It follows that $1 /\left(1-\chi\left(g_{0}\right)\right) \in L^{\infty}(\widehat{\mathbb{G}}, \sigma)$, and each Gaussian cocycle for \mathcal{T}_{σ} is a coboundary.

We will need an auxiliary result on L^{2} spaces generated by processes (see [3, Corollary 1]).

Lemma 2.5. Let $H \subset L^{2}(X, \mathcal{B}, \mu)$ be a real subspace such that $\mathcal{B}(H)=\mathcal{B}$. Then

$$
\operatorname{span}\left(\left\{\mathrm{e}^{2 \pi \mathrm{i} h}: h \in H\right\}\right)=L^{2}(X, \mathcal{B}, \mu)
$$

3. Construction of ergodic cocycles

Assume that \mathbb{G} is not a torsion group and fix an element $g_{0} \in \mathbb{G}$ of infinite order.

Proposition 3.1. Let σ be a finite continuous symmetric Borel measure on $\widehat{\mathbb{G}}$. If there exists an increasing sequence $\left(n_{t}\right)_{t=1}^{\infty} \subset \mathbb{N}$ such that
(a) for all $g \in \mathbb{G}$ there exists $M_{g}>0$ such that

$$
\frac{|\chi(g)-1|}{\left|\chi\left(g_{0}\right)-1\right|} \leq M_{g} \quad \sigma \text {-a.e. }
$$

(b) $\int_{\widehat{\mathbb{G}}}\left|\chi^{n_{t}}\left(g_{0}\right)-1\right|^{2} d \sigma(\chi) \rightarrow 0$,
(c) there exist $C, D>0$ such that, for all $t \in \mathbb{N}$,

$$
D \leq \int_{\widehat{\mathbb{G}}}\left(\frac{\left|\chi^{n_{t}}\left(g_{0}\right)-1\right|}{\left|\chi\left(g_{0}\right)-1\right|}\right)^{2} d \sigma(\chi) \leq C
$$

then there exists an ergodic Gaussian cocycle for the Gaussian \mathbb{G}-action \mathcal{T}_{σ}.
Proof. According to (a), we obtain

$$
f_{g}(\chi)=\frac{1-\chi(g)}{1-\chi\left(g_{0}\right)} \in L_{\mathrm{her}}^{2}(\widehat{\mathbb{G}}, \sigma)
$$

for all $g \in \mathbb{G}$, and from Lemma 2.3 it follows that corresponding functions $F(g, \cdot) \in \mathcal{H}_{\sigma}$ form a cocycle. From (b), we have $V^{n_{t} g_{0}} f \rightarrow f$ in $L_{\text {her }}^{2}(\widehat{\mathbb{G}}, \sigma)$. Hence $U_{\mathcal{T}_{\sigma}}^{n_{t} g_{0}} h \rightarrow h$ for each $h \in \mathcal{H}_{\sigma}$, and we conclude from Lemma 2.5 that $\left(n_{t} g_{0}\right)$ is a rigidity time for \mathcal{T}_{σ}. The condition (c) means that, for all $t \in \mathbb{N}$,

$$
D \leq\left\|F\left(n_{t} g_{0}, \cdot\right)\right\|_{\mathcal{H}_{\sigma}}^{2} \leq C
$$

Since $F\left(n_{t} g_{0}, \cdot\right)$ is a Gaussian variable,
for all $r \neq 0$. It follows from Proposition 2.1 that F is an ergodic cocycle.
Now we construct a class of measures satisfying the assumptions of Proposition 3.1. We will often replace the Euclidean distance of two points from the circle \mathbb{T} by the equivalent distance ϱ given by the length of the shorter arc joining them. Let $\left(g_{t}\right)_{t=1}^{\infty}$ be a sequence of all elements of $\mathbb{G} \backslash\left\{g_{0}\right\}$. Assume that $\left(a_{t}\right)_{t=1}^{\infty} \subset \mathbb{R}$ is a sequence such that $a_{t} \rightarrow \infty$. For $t \in \mathbb{N}$ and $a, b \in \mathbb{R}$ satisfying $0<(b / 2) \leq a<b<\pi$, write

$$
B^{(a, b)}=\left\{\chi \in \widehat{\mathbb{G}}: a<\varrho\left(\chi\left(g_{0}\right), 1\right)<b\right\}, \quad A_{t}^{(a)}=\left\{\chi \in \widehat{\mathbb{G}}: \varrho\left(\chi\left(g_{t}\right), 1\right)<a a_{t}\right\} .
$$

The set

$$
\begin{equation*}
B^{(a, b)} \cap \bigcap_{t \in \mathbb{N}} A_{t}^{(a)}=B^{(a, b)} \cap \bigcap_{\left\{t \in \mathbb{N}: a_{t} \leq \frac{\pi}{a}\right\}} A_{t}^{(a)} \tag{3.1}
\end{equation*}
$$

is open as finite intersection of open sets. We will find a sequence $\left(a_{t}\right)_{t=1}^{\infty}$ such that the set (3.1) is not empty for all $b \in(0, \pi)$ and $a \in[(b / 2), b)$. Fix $t \in \mathbb{N}$. Let $g_{i_{1}}$ be an element of infinite order of $\left\{g_{1}, \ldots, g_{t-1}\right\}$ with the smallest index such that $\left\{g_{0}, g_{i_{1}}\right\}$ is independent, $g_{i_{2}}$ be an element of infinite order of $\left\{g_{i_{1}+1}, \ldots, g_{t-1}\right\}$ with the smallest index such that $\left\{g_{0}, g_{i_{1}}, g_{i_{2}}\right\}$ is independent, and we continue this procedure maximal times getting the independent set $\left\{g_{0}, \ldots, g_{i_{m_{t}}}\right\}, m_{t} \leq t-1$. If $\left\{g_{0}, \ldots, g_{i_{m_{t}}}, g_{t}\right\}$ is independent then $a_{t}=t$, otherwise there exist $k_{0}^{(t)}, \ldots, k_{i_{m_{t}}}^{(t)}, k_{t}^{(t)} \in \mathbb{Z}$ such that

$$
\begin{equation*}
k_{0}^{(t)} g_{0}+k_{i_{1}}^{(t)} g_{i_{1}}+\ldots+k_{i_{m_{t}}}^{(t)} g_{i_{m_{t}}}+k_{t}^{(t)} g_{t}=e, \quad k_{t}^{(t)} \neq 0 \tag{3.2}
\end{equation*}
$$

and we put $a_{t}=\max \left\{t, 2\left(\left(\left|k_{0}^{(t)}\right|\right) /\left(\left|k_{t}^{(t)}\right|\right)\right)\right\}$. In general, if $\left\{g_{1}, \ldots, g_{t}\right\}$ is a dependent set of elements of infinite order such that $\left\{g_{1}, \ldots, g_{t-1}\right\}$ is independent and we assume that

$$
k_{1} g_{1}+\ldots+k_{t-1} g_{t-1}+k_{t} g_{t}=e=l_{1} g_{1}+\ldots+l_{t-1} g_{t-1}+l_{t} g_{t}
$$

then

$$
l_{t}\left(k_{1} g_{1}+\ldots+k_{t-1} g_{t-1}\right)=k_{t}\left(l_{1} g_{1}+\ldots+l_{t-1} g_{t-1}\right)
$$

Hence $\left(k_{i} / k_{t}\right)=\left(l_{i} / l_{t}\right)$ for each $i=1, \ldots, t-1$. It follows that $\left(a_{t}\right)_{t=1}^{\infty}$ is well defined.

Next we define some character χ_{0} of the set (3.1) describing principal arguments α_{t} of $\chi_{0}\left(g_{t}\right), t \geq 0$. As α_{0} we take some element of (a, b). Fix $t \in \mathbb{N}$. If $\left\{g_{0}, g_{i_{1}}, \ldots, g_{i_{m_{t}}}, g_{t}\right\}$ is independent then $\alpha_{t}=0$, otherwise $\alpha_{t}=-\left(k_{0}^{(t)} / k_{t}^{(t)}\right) \alpha_{0}$ $(\bmod 2 \pi)$. Let us check that $\chi_{0} \in \widehat{\mathbb{G}}$. Let

$$
\begin{equation*}
k_{1} g_{j_{1}}+\ldots+k_{s} g_{j_{s}}=e, \quad\left(k_{1}, \ldots, k_{s} \in \mathbb{Z} \backslash\{0\}, j_{1}, \ldots, j_{s} \in \mathbb{N} ; s \geq 1\right) \tag{3.3}
\end{equation*}
$$

It suffices to show that $k_{1} \alpha_{j_{1}}+\ldots+k_{s} \alpha_{j_{s}}=0(\bmod 2 \pi)$. We can assume that $\alpha_{j_{1}}, \ldots, \alpha_{j_{s}}$ are different from zero. Then the last equality may be written as

$$
k_{1}\left(-\frac{k_{0}^{\left(j_{1}\right)}}{k_{j_{1}}^{\left(j_{1}\right)}} \alpha_{0}\right)+\ldots+k_{s}\left(-\frac{k_{0}^{\left(j_{s}\right)}}{k_{j_{s}}^{\left(j_{s}\right)}} \alpha_{0}\right)=0 \quad(\bmod 2 \pi)
$$

Hence it is enough to show that

$$
\begin{equation*}
-k_{1} \frac{k_{0}^{\left(j_{1}\right)}}{k_{j_{1}}^{\left(j_{1}\right)}}-\ldots-k_{s} \frac{k_{0}^{\left(j_{s}\right)}}{k_{j_{s}}^{\left(j_{s}\right)}}=0 \tag{3.4}
\end{equation*}
$$

From (3.3), we obtain $k_{j_{1}}^{\left(j_{1}\right)} \ldots k_{j_{s}}^{\left(j_{s}\right)}\left(k_{1} g_{j_{1}}+\ldots+k_{s} g_{j_{s}}\right)=e$. Then from (3.2). we have

$$
\begin{aligned}
& k_{j_{2}}^{\left(j_{2}\right)} \ldots k_{j_{s}}^{\left(j_{s}\right)} k_{1}\left(-k_{0}^{\left(j_{1}\right)} g_{0}-k_{i_{1}}^{\left(j_{1}\right)} g_{i_{1}}-\ldots-k_{i_{m_{j_{1}}}}^{\left(j_{1}\right)} g_{i_{m_{j_{1}}}}\right)+\ldots \\
& \quad+k_{j_{1}}^{\left(j_{1}\right)} \ldots k_{j_{s-1}}^{\left(j_{s-1}\right)} k_{s}\left(-k_{0}^{\left(j_{s}\right)} g_{0}-k_{i_{1}}^{\left(j_{s}\right)} g_{i_{1}}-\ldots-k_{i_{m_{j_{s}}}}^{\left(j_{s}\right)} g_{i_{m_{j_{s}}}}\right)=e .
\end{aligned}
$$

There is a combination of elements of the independent set on the left-hand side. Therefore taking the sum of coefficients of g_{0} we get

$$
-k_{j_{2}}^{\left(j_{2}\right)} \ldots k_{j_{s}}^{\left(j_{s}\right)} k_{1} k_{0}^{\left(j_{1}\right)}-\ldots-k_{j_{1}}^{\left(j_{1}\right)} \ldots k_{j_{s-1}}^{\left(j_{s-1}\right)} k_{s} k_{0}^{\left(j_{s}\right)}=0
$$

and dividing the last equality by $k_{j_{1}}^{\left(j_{1}\right)} \ldots k_{j_{s}}^{\left(j_{s}\right)}$ we obtain (3.4).
Let us notice that

$$
\varrho\left(\chi_{0}\left(g_{t}\right), 1\right) \leq\left|\frac{k_{0}^{(t)}}{k_{t}^{(t)}} \alpha_{0}\right|<\left|\frac{k_{0}^{(t)}}{k_{t}^{(t)}}\right| b \leq a a_{t}
$$

for suitable t, and then $\varrho\left(\chi_{0}\left(g_{t}\right), 1\right) \leq a a_{t}$ for all $t \in \mathbb{N}$. Hence $\chi_{0} \in B^{(a, b)} \cap$ $\bigcap_{t \in \mathbb{N}} A_{t}^{(a)}$. Thus, if we put $M_{g_{0}}=1, M_{g_{t}}=a_{t}$ and write

$$
R=\left\{\chi \in \widehat{\mathbb{G}}: \frac{\varrho(\chi(g), 1)}{\varrho\left(\chi\left(g_{0}\right), 1\right)} \leq M_{g} \text { for all } g \in \mathbb{G}\right\}
$$

then we conclude that
$(\star) B^{(a, b)} \cap R$ is the set of positive Haar measure for all $b \in(0, \pi)$ and $a \in[(b / 2), b)$.
Our next goal is a construction of a sequence $\left(\sigma_{t}\right)_{t=1}^{\infty}$ of absolutely continuous measures with respect to Haar measure on $\widehat{\mathbb{G}}$. Let $\widehat{\mathbb{G}}(z)=\left\{\chi \in \widehat{\mathbb{G}}: \chi\left(g_{0}\right)=z\right\}$ for $z \in \mathbb{T}$, and let $\bar{G}=\left\{\chi \in \widehat{\mathbb{G}}: \chi=\chi_{1}^{-1}, \chi_{1} \in G\right\}$ for $G \subset \widehat{\mathbb{G}}$. We decompose $\widehat{\mathbb{G}}^{(1)}$ into pairwise disjoint subsets $G_{0}^{(1)}, G_{1}^{(1)}, G_{2}^{(1)}$, where $G_{0}^{(1)}=\left\{\chi \in \widehat{\mathbb{G}}^{(1)}\right.$: $\left.\chi=\chi^{-1}\right\}, G_{2}^{(1)}=\bar{G}_{1}^{(1)}$. Similarly, we decompose $\widehat{\mathbb{G}}^{(-1)}$ into $G_{0}^{(-1)}, G_{1}^{(-1)}$, $G_{2}^{(-1)}$. Finally, we decompose $\widehat{\mathbb{G}}$ into two disjoint subsets $\widehat{\mathbb{G}}^{+}$, $\widehat{\mathbb{G}}^{-}$, where $\widehat{\mathbb{G}}^{+}=$ $G_{0}^{(1)} \cup G_{1}^{(1)} \cup G_{0}^{(-1)} \cup G_{1}^{(-1)} \cup \bigcup_{z \in \mathbb{T}^{+}} \widehat{\mathbb{G}}^{(z)}, \widehat{\mathbb{G}}^{-}=G_{2}^{(1)} \cup G_{2}^{(-1)} \cup \bigcup_{z \in \mathbb{T}^{-}} \widehat{\mathbb{G}}^{(z)}$, and $\mathbb{T}^{+}, \mathbb{T}^{-}$denote the upper and lower half of the circle $\mathbb{T}\left(1,-1 \notin \mathbb{T}^{+}, \mathbb{T}^{-}\right)$. Fix $n_{1} \in \mathbb{N}$ and two constants $0<D<E<\pi n_{1}$. Choose k_{1} different n_{1}-roots of 1

$$
\varepsilon_{1}^{(1)}, \ldots, \varepsilon_{k_{1}}^{(1)} \in \mathbb{T}^{+} \cup\{-1,1\}, \quad \varepsilon_{1}^{(1)}=1, \quad 1 \leq k_{1}<\frac{n_{1}+3}{2}
$$

Let $I_{1}^{(1)}, \ldots, I_{k_{1}}^{(1)} \subset \mathbb{T}^{+} \cup\{-1,1\}$ be pairwise disjoint closed intervals such that $\varepsilon_{l}^{(1)}$ is the centre (1 and if need be -1 is the suitable end) of $I_{l}^{(1)}$. We denote by $d_{l}^{(1)}$ the length of $I_{l}^{(1)}$. We require that

$$
n_{1}^{2} \max _{1 \leq l \leq k_{1}}\left\{d_{l}^{(1)}\right\} \leq E
$$

Let $J_{l}^{(1)}=\left\{\chi \in \widehat{\mathbb{G}}^{+}: \chi\left(g_{0}\right) \in I_{l}^{(1)}\right\}, l=1,2, \ldots, k_{1}$. These sets are pairwise disjoint of positive Haar measure. The measure σ_{1} on $\widehat{\mathbb{G}}^{+}$will be concentrated on $\bigcup_{l=1}^{k_{1}} J_{l}^{(1)}$. On each $J_{l}^{(1)}$, σ_{1} is equal its Haar measure multiplied by some positive constant and we require that

$$
D \leq n_{1}^{2} \sigma_{1}\left(J_{1}^{(1)}\right) \leq E
$$

Moreover, we put $\sigma_{1}(G)=\sigma_{1}(\bar{G})$ for each Borel subset $G \subset \widehat{\mathbb{G}}^{-}$. Let us formulate the induction hypothesis: we have positive integers n_{t}, k_{t}; we have a set $\left\{\varepsilon_{1}^{(t)}, \ldots, \varepsilon_{k_{t}}^{(t)}\right\}$ of n_{t}-roots of 1 ; for $1 \leq l \leq k_{t}$ we have a family $I_{l}^{(t)}$ of pairwise disjoint closed intervals (called t-intervals) of the length $d_{l}^{(t)}$ and a family $J_{l}^{(t)}$ of pairwise disjoint sets (called t-sets) with positive Haar measure; we have a finite absolutely continuous symmetric measure σ_{t} on $\widehat{\mathbb{G}}$. We choose now $n_{t+1}>n_{t}$ such that

$$
n_{t+1}>\frac{4 \pi}{\min _{1 \leq l \leq k_{t}}\left\{d_{l}^{(t)}\right\}}
$$

Therefore there are at least two n_{t+1}-roots of 1 in each t-interval. We choose k_{t+1} different n_{t+1}-roots of 1

$$
\varepsilon_{1}^{(t+1)}, \ldots, \varepsilon_{k_{t+1}}^{(t+1)} \in \mathbb{T}^{+} \cup\{-1,1\}, \quad \varepsilon_{1}^{(t+1)}=1, \quad 1 \leq k_{t+1}<\frac{n_{t+1}+3}{2}
$$

and pairwise disjoint closed intervals $I_{1}^{(t+1)}, \ldots, I_{k_{t+1}}^{(t+1)} \subset \mathbb{T}^{+} \cup\{-1,1\}$ with centres $\varepsilon_{1}^{(t+1)}, \ldots, \varepsilon_{l}^{(t+1)}$ respectively (1 and if need be -1 be suitable ends). We choose them so that each $(t+1)$-interval is contained in a t-interval and there are at least two $(t+1)$-intervals in each t-interval. Moreover, if we denote by $d_{l}^{(t+1)}$ the length of $I_{l}^{(t+1)}$ and write $d_{t+1}=\max _{1 \leq l \leq k_{t+1}}\left\{d_{l}^{(t+1)}\right\}$ then we require that

$$
n_{t+1}^{2} d_{t+1} \leq E
$$

Let $J_{l}^{(t+1)}=\left\{\chi \in \widehat{\mathbb{G}}^{+}: \chi\left(g_{0}\right) \in I_{l}^{(t+1)}\right\}, l=1,2, \ldots, k_{t+1}$. These sets are pairwise disjoint of positive Haar measure. The measure σ_{t+1} on $\widehat{\mathbb{G}}^{+}$will be concentrated on $\bigcup_{l=1}^{k_{t+1}} J_{l}^{(t+1)}$. It equals a multiple of Haar measure on $J_{1}^{(t+1)}$ so that

$$
\sigma_{t+1}\left(J_{1}^{(t+1)}\right)<\sigma_{t}\left(J_{1}^{(t)}\right), \quad D \leq n_{t+1}^{2} \sigma_{t+1}\left(J_{1}^{(t+1)}\right) \leq E
$$

and on the remaining $(t+1)$-sets contained in $J_{1}^{(t)}$ we distribute the mass $\sigma_{t}\left(J_{1}^{(t)}\right)-\sigma_{t+1}\left(J_{1}^{(t+1)}\right)$ in equal parts. Moreover, for $2 \leq l \leq k_{t}$, in all $(t+1)$ sets contained in $J_{l}^{(t)}$ we distribute the mass $\sigma_{t}\left(J_{l}^{(t)}\right)$ in equal parts. Finally we complete the definition of σ_{t+1} on $\widehat{\mathbb{G}}^{-}$by symmetrization.

Choosing a subsequence, if necessary, we can assume that $\left(\sigma_{t}\right)_{t=1}^{\infty}$ converges weakly to a symmetric measure $\widetilde{\sigma}$ on $\widehat{\mathbb{G}}$. By the construction, it follows that the support of $\widetilde{\sigma}$ is contained in a disjoint sum of sets of the form $\bigcap_{t=1}^{\infty} J_{l_{t}}^{(t)}$ with $J_{l_{1}}^{(1)} \supset J_{l_{2}}^{(2)} \supset \ldots$ The measure $\widetilde{\sigma}$ is finite continuous, because $\sigma_{t}\left(J_{l_{t}}^{(t)}\right) \rightarrow 0$, and $\sigma_{s}\left(J_{l}^{(t)}\right)=\sigma_{t}\left(J_{l}^{(t)}\right)$ for each $s \geq t$, and $\sigma_{s}(\widehat{\mathbb{G}})=\sigma_{t}(\widehat{\mathbb{G}})>0$ for all $s, t \in \mathbb{N}$. Notice that $\widetilde{\sigma}$-a.e.

$$
\varrho\left(\chi^{n_{t}}\left(g_{0}\right), 1\right) \leq n_{t} d_{t} \rightarrow 0
$$

Hence (b) of Proposition 3.1 holds for the measure $\widetilde{\sigma}$. If $\varrho\left(\chi\left(g_{0}\right), 1\right)>\left(\pi / n_{t}\right)$ then $\widetilde{\sigma}$-a.e.

$$
\frac{\varrho\left(\chi^{n_{t}}\left(g_{0}\right), 1\right)}{\varrho\left(\chi\left(g_{0}\right), 1\right)}<\frac{n_{t} d_{t}}{\pi / n_{t}}=\frac{1}{\pi} n_{t}^{2} d_{t} \leq \frac{1}{\pi} E
$$

If $\varrho\left(\chi\left(g_{0}\right), 1\right) \leq\left(\pi / n_{t}\right)$ then $\varrho\left(\chi^{n_{t}}\left(g_{0}\right), 1\right) / \varrho\left(\chi\left(g_{0}\right), 1\right)=n_{t}$. Moreover, since $d_{t} \leq$ $\left(E / n_{t}^{2}\right) \leq\left(\left(\pi n_{1}\right) / n_{t}^{2}\right) \leq\left(\left(\pi n_{t}\right) / n_{t}^{2}\right)=\left(\pi / n_{t}\right)$, the sets $\left\{\chi \in \widehat{\mathbb{G}}^{+}: \varrho\left(\chi\left(g_{0}\right), 1\right) \leq\right.$ $\left.\left(\pi / n_{t}\right)\right\}, J_{1}^{(t)}$ are equal σ_{t}-a.e., and consequently σ_{s}-a.e. for all $s \geq t$. This implies that

$$
\begin{array}{rl}
\int_{\left\{\chi \in \widehat{\mathbb{G}}^{+}: \varrho\left(\chi\left(g_{0}\right), 1\right) \leq\left(\pi / n_{t}\right)\right\}}\left(\frac{\varrho\left(\chi^{n_{t}}\left(g_{0}\right), 1\right)}{\varrho\left(\chi\left(g_{0}\right), 1\right)}\right)^{2} & d \sigma_{s}(\chi) \\
& =n_{t}^{2} \sigma_{s}\left(J_{1}^{(t)}\right)=n_{t}^{2} \sigma_{t}\left(J_{1}^{(t)}\right) \in[D, E] .
\end{array}
$$

Therefore

$$
\begin{aligned}
& \int_{\widehat{\mathbb{G}}}\left(\frac{\varrho\left(\chi^{n_{t}}\left(g_{0}\right), 1\right)}{\varrho\left(\chi\left(g_{0}\right), 1\right)}\right)^{2} d \widetilde{\sigma}(\chi) \\
& \quad=\lim _{s \rightarrow \infty} \int_{\widehat{\mathbb{G}}}\left(\frac{\varrho\left(\chi^{n_{t}}\left(g_{0}\right), 1\right)}{\varrho\left(\chi\left(g_{0}\right), 1\right)}\right)^{2} d \sigma_{s}(\chi) \in\left[D, 2 E+(E / \pi)^{2} \widetilde{\sigma}(\widehat{\mathbb{G}})\right]
\end{aligned}
$$

and (c) of Proposition 3.1 holds for the measure $\widetilde{\sigma}$. Finally, let $\sigma(G)=\widetilde{\sigma}(G \cap R)$ for every Borel set $G \subset \widehat{\mathbb{G}}$. From (\star) it follows that $J_{1}^{(t)} \cap R$ is the set of positive Haar measure for all $t \in \mathbb{N}$. Hence the measure σ satisfies the assumptions of Proposition 3.1 if we replace $D \leq n_{t}^{2} \sigma_{t}\left(J_{1}^{(t)}\right)$ by $D \leq n_{t}^{2} \sigma_{t}\left(J_{1}^{(t)} \cap R\right)$ in the definition of σ_{t}.

4. Gaussian isomorphisms of Gaussian actions

We consider a Gaussian \mathbb{G}-action \mathcal{T}_{σ} with Gaussian space \mathcal{H}_{σ}. There exists the decomposition of $L_{0 \mathbb{R}}^{2}\left(X_{\sigma}, \mathcal{B}_{\sigma}, \mu_{\sigma}\right)$, the space of real square-integrable functions with zero mean, into Wiener chaos:

$$
L_{0 \mathbb{R}}^{2}\left(X_{\sigma}, \mathcal{B}_{\sigma}, \mu_{\sigma}\right)=\bigoplus_{m=1}^{\infty} \mathcal{H}^{(m)}
$$

where $\mathcal{H}^{(1)}=\mathcal{H}_{\sigma}, \mathcal{H}^{(m)}$ is real closed \mathcal{T}_{σ}-invariant subspace. The maximal spectral type on $\mathcal{H}^{(m)}$ is $\sigma^{(m)}$, the m th convolution power of σ (see [1]). Moreover, if $f \in L_{0 \mathbb{R}}^{2}\left(X_{\sigma}, \mathcal{B}_{\sigma}, \mu_{\sigma}\right)$ is a Gaussian variable then either $f \in \mathcal{H}^{(1)}$ or $f=\sum_{m=1}^{\infty} f_{m}, f_{m} \in \mathcal{H}^{(m)}$ with infinitely many f_{m} different from zero (see e.g. [7]).

The centralizer of \mathcal{T}_{σ}, denoted by $C\left(\mathcal{T}_{\sigma}\right)$, is defined to be the set of all automorphisms of $\left(X_{\sigma}, \mathcal{B}_{\sigma}, \mu_{\sigma}\right)$ such that $T^{g} S=S T^{g}$ for all $g \in \mathbb{G} . C\left(\mathcal{T}_{\sigma}\right)$ contains a part coming directly from the Gaussian structure. It is the set of all $S \in C\left(\mathcal{T}_{\sigma}\right)$ which preserve the Gaussian space and we will denote it by $C^{G}\left(\mathcal{T}_{\sigma}\right)$. Let I be an isomorphism of Gaussian actions $\mathcal{I}_{\sigma}, \mathcal{T}_{\sigma^{\prime}} . I$ is called a Gaussian isomorphism if $U_{I} \mathcal{H}_{\sigma^{\prime}}=\mathcal{H}_{\sigma}$. The existence of such an I is equivalent to saying that $\sigma \equiv \sigma^{\prime}$ (see [5, Lemma 2]). In general, if Gaussian actions are isomorphic then the isomorphism need not be Gaussian. As an example, in the case of \mathbb{Z}-actions, let σ, σ^{\prime} be symmetric Lebesgue measures on the circle restricted to disjoint sets.

Then $T_{\sigma}, T_{\sigma^{\prime}}$ are Bernoulli automorphisms with infinity entropy (see e.g. [12]) and they have to be isomorphic by Ornstein's isomorphism theorem.

Let T_{σ} be a Gaussian automorphism with simple spectrum and denote by $\mathcal{H}^{(m)}$ its m th chaos. Then every Gaussian space of T_{σ} is equal to $\mathcal{H}^{(1)}$. This assertion has been proved in much stronger version, for instances, in [5]. However, one can obtain our statement with no effort. Indeed, let \mathcal{H} be a Gaussian space of T_{σ} and let $h \in \mathcal{H}$. If $h=\sum_{m=1}^{\infty} h_{m}, h_{m} \in \mathcal{H}^{(m)}$ then $\sigma_{h_{i}} \perp \sigma_{h_{j}}$. Hence $h_{m} \in \bigoplus_{i=1}^{\infty} \mathbb{Z}\left(h_{i}\right)=\mathbb{Z}(h) \subset \mathcal{H}$, and h_{m} is a Gaussian variable. Therefore $h_{m}=0$ for all $m \geq 2$, and $h \in \mathcal{H}^{(1)}$. Since $\mathcal{B}(\mathcal{H})=\mathcal{B}$, we have $\mathcal{H}=\mathcal{H}^{(1)}$.

Assume now that $\mathcal{I}_{\sigma}, \mathcal{T}_{\sigma^{\prime}}$ are isomorphic Gaussian \mathbb{G}-actions. Let I be an isomorphism between them. Assume that $C\left(\mathcal{T}_{\sigma}\right)=C^{G}\left(\mathcal{T}_{\sigma}\right)$. We can find in $C^{G}\left(\mathcal{T}_{\sigma^{\prime}}\right)$ some Gaussian automorphism S^{\prime} with simple spectrum (see [5, Lemma 5]). Let $S=I^{-1} S^{\prime} I$. Then S is a Gaussian automorphism with simple spectrum and $U_{I} \mathcal{H}_{\sigma^{\prime}}$ is a Gaussian space of S. Since $S \in C\left(\mathcal{T}_{\sigma}\right)=C^{G}\left(\mathcal{T}_{\sigma}\right), \mathcal{H}_{\sigma}$ is also a Gaussian space of S. Hence $U_{I} \mathcal{H}_{\sigma^{\prime}}=\mathcal{H}_{\sigma}$. This proves:

Proposition 4.1. If $C\left(\mathcal{T}_{\sigma}\right)=C^{G}\left(\mathcal{T}_{\sigma}\right)$ then every isomorphism between \mathcal{T}_{σ} and another Gaussian \mathbb{G}-action is Gaussian.

Proposition 4.2. If every spectral type absolutely continuous with respect to σ has a finite multiplicity then $C\left(\mathcal{T}_{\sigma}\right)=C^{G}\left(\mathcal{T}_{\sigma}\right)$.

Proof. Let $S \in C\left(\mathcal{T}_{\sigma}\right)$ and assume that $S \notin C^{G}\left(\mathcal{T}_{\sigma}\right)$. There exists $h \in \mathcal{H}^{(1)}$ such that $U_{S} h \notin \mathcal{H}^{(1)}$. We have $h=\sum_{n=1}^{\infty} h_{n}, h_{n} \in H_{n}$, where H_{n} are spaces of the constant uniform multiplicity n from the spectral theorem $(n \neq \infty)$. Since $\sigma_{h_{i}} \perp \sigma_{h_{j}}$ for $i \neq j$, it follows that $\bigoplus_{n=1}^{\infty} \mathbb{G}\left(h_{n}\right)=\mathbb{G}(h) \subset \mathcal{H}^{(1)}$. Hence $h_{n} \in \mathcal{H}^{(1)}$ for all $n \in \mathbb{N}$. Since $U_{S} h=\sum_{n=1}^{\infty} U_{S} h_{n}$, there exists $N \in \mathbb{N}$ such that $U_{S} h_{N} \notin \mathcal{H}^{(1)}$. But $U_{S} h_{N}$ is a Gaussian variable, therefore $U_{S} h_{N}=\sum_{m=1}^{\infty} h_{N}^{(m)}$, $h_{N}^{(m)} \in \mathcal{H}^{(m)}$ with infinitely many $h_{N}^{(m)}$ different from zero. Write $\sigma_{m}=\sigma_{h_{N}^{(m)}}$ for each $m \in \mathbb{N}$. Then infinitely many of $\sigma_{1}, \sigma_{2}, \ldots$ are different from zero.

We will find finite symmetric Borel measures $\sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \ldots$ on $\widehat{\mathbb{G}}$ such that for all $m \in \mathbb{N}$:
(a) $\sigma_{m}^{\prime} \ll \sigma_{m}$,
(b) $\sigma_{m}^{\prime} \perp \sigma_{l}$ for all $l>m$,
(c) $\sum_{m=1}^{\infty} \sigma_{m}^{\prime} \equiv \sum_{m=1}^{\infty} \sigma_{m}$.

Then obviously
(d) $\sigma_{i}^{\prime} \perp \sigma_{j}^{\prime}$ for all $i \neq j$.

For every $m \in \mathbb{N}$ we take decomposition of σ_{m} with respect to $\sum_{l=m+1}^{\infty} \sigma_{l}$

$$
\sigma_{m}=\sigma_{m}^{\prime}+\sigma_{m}^{\prime \prime}, \quad \sigma_{m}^{\prime} \perp \sum_{l=m+1}^{\infty} \sigma_{l}, \quad \sigma_{m}^{\prime \prime} \ll \sum_{l=m+1}^{\infty} \sigma_{l} .
$$

Clearly (a) and (b) hold. Assume that $\sum_{m=1}^{\infty} \sigma_{m}$ are not absolutely continuous with respect to $\sum_{m=1}^{\infty} \sigma_{m}^{\prime}$. Then

$$
\sum_{m=1}^{\infty} \sigma_{m}=\gamma^{\prime}+\gamma^{\prime \prime}, \quad \text { where } \gamma^{\prime} \perp \sum_{m=1}^{\infty} \sigma_{m}^{\prime}, \quad \gamma^{\prime \prime} \ll \sum_{m=1}^{\infty} \sigma_{m}^{\prime}, \quad \gamma^{\prime} \neq 0
$$

There exists $m_{1} \in \mathbb{N}$ such that γ^{\prime} and $\sigma_{m_{1}}$ are not mutually singular. Let us take decomposition

$$
\sigma_{m_{1}}=\gamma_{1}^{\prime}+\gamma_{1}^{\prime \prime}, \quad \gamma_{1}^{\prime} \perp \gamma^{\prime}, \quad \gamma_{1}^{\prime \prime} \ll \gamma^{\prime}, \quad \gamma_{1}^{\prime \prime} \neq 0
$$

We have $\gamma_{1}^{\prime \prime} \ll \sigma_{m_{1}}=\sigma_{m_{1}}^{\prime}+\sigma_{m_{1}}^{\prime \prime}$, and $\gamma_{1}^{\prime \prime} \ll \gamma^{\prime} \perp \sigma_{m_{1}}^{\prime}$. It follows that $\gamma_{1}^{\prime \prime} \ll$ $\sigma_{m_{1}}^{\prime \prime} \ll \sum_{l=m_{1}+1}^{\infty} \sigma_{l}$. Thus there exists $m_{2}>m_{1}$ such that $\gamma_{1}^{\prime \prime}$ and $\sigma_{m_{2}}$ are not mutually singular, and we repeat the above procedure. By $N+1$ steps, we get a nonzero measure $\gamma_{N+1}^{\prime \prime}$ which is absolutely continuous with respect to $\sigma_{m_{1}}, \ldots, \sigma_{m_{N}}$ and $\sum_{l=m_{N}+1}^{\infty} \sigma_{l}$. Hence the multiplicity of $\gamma_{N+1}^{\prime \prime}$ is at least $N+1$, a contradiction.

Since $\sigma_{m}^{\prime} \ll \sigma_{h_{N}}$, there exists $h_{m}^{\prime} \in \mathbb{G}\left(h_{N}\right)$ such that $\sigma_{h_{m}^{\prime}} \equiv \sigma_{m}^{\prime}$ and $\sum_{m=1}^{\infty} h_{m}^{\prime}$ is convergent. Let $h^{\prime}=\sum_{m=1}^{\infty} h_{m}^{\prime} \in \mathbb{G}\left(h_{N}\right)$. Since $\mathbb{G}\left(h_{N}^{(i)}\right) \subset \mathcal{H}^{(i)} \perp$ $\mathcal{H}^{(j)} \supset \mathbb{G}\left(h_{N}^{(j)}\right)$ for all $i \neq j$, we have

$$
\sigma_{h_{N}}=\sigma_{U_{S} h_{N}}=\sum_{m=1}^{\infty} \sigma_{m} \equiv \sum_{m=1}^{\infty} \sigma_{m}^{\prime}=\sigma_{h^{\prime}}
$$

Therefore $\mathbb{G}\left(h^{\prime}\right)=\mathbb{G}\left(h_{N}\right)$. From (d) we obtain

$$
U_{S} h_{m}^{\prime} \in \mathbb{G}\left(U_{S} h^{\prime}\right)=\mathbb{G}\left(U_{S} h_{N}\right) \subset \bigoplus_{i=1}^{\infty} \mathbb{G}\left(h_{N}^{(i)}\right)
$$

for all $m \in \mathbb{N}$. Consequently, since $U_{S} h_{m}^{\prime}$ is a Gaussian variable and the maximal spectral type on $\mathbb{G}\left(h_{N}^{(i)}\right) \subset \mathcal{H}^{(i)}$ is σ_{i}, from (b), we conclude that $U_{S} h_{m}^{\prime} \in \mathcal{H}^{(1)}$ for all $m \in \mathbb{N}$. Thus $U_{S} h^{\prime} \in \mathcal{H}^{(1)}$, and $U_{S} h_{N} \in \mathcal{H}^{(1)}$, a contradiction.

Corollary 4.3. If every spectral type absolutely continuous with respect to σ has a finite multiplicity then every isomorphism between \mathcal{T}_{σ} and another Gaussian \mathbb{G}-action is Gaussian.

This generalizes a fact for \mathbb{Z}-actions from [14] (given without proof), where author assumed that infinity is not an essential value of the multiplicity function of one automorphism. We proved a stronger version even in the case of \mathbb{Z}-action. There exists a measure σ on the circle singular to the Lebesgue measure λ such that $\sigma * \sigma \equiv \lambda$ (see [8]). It follows that $\sigma^{(m)} \equiv \lambda$ for each $m \geq 2$, and the multiplicity of λ is equal to infinity. Hence infinity is an essential value of the multiplicity function of T_{σ}. But every spectral type absolutely continuous with respect to σ has the multiplicity one.

Remark 4.4. In [5], there are considered Gaussian automorphisms whose ergodic self-joinings are Gaussian (GAG automorphisms). There is proved that Corollary 4.3 holds for GAG (see Corollary 5 in [5]). Every GAG satisfies the assumption of Corollary 4.3, but there is a Gaussian automorphism for which infinity is not an essential value of the multiplicity function, and it is not a GAG (Example 2 in [5]).

References

[1] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer-Verlag, New York, 1982.
[2] M. Lemańczyk, Entropy of Gaussian actions for countable Abelian groups, Fund. Math. 157 (1998), 277-286.
[3] M. Lemańczyk, E. Lesigne and D. Skrenty, Multiplicative Gaussian cocycles, Aequationes Math. 61 (2001), 162-178.
[4] M. Lemańczyk and F. Parreau, On the disjointness problem for Gaussian automorphisms, Proc. Amer. Math. Soc. 127 (1998), 2073-2081.
[5] M. Lemańczyk, F. Parreau and J.-P. Thouvenot, Gaussian automorphisms whose ergodic self-joinings are Gaussian, Fund. Math. 164 (2000), 253-293.
[6] M. Lemańczyk, F. Parreau and D. Volný, Ergodic properties of real cocycles and pseudo-homogenous Banach spaces, Trans. Amer. Math. Soc. 348 (1996), 4919-4938.
[7] M. Lemańczyk and J. Sam Lazaro, Spectral analysis of certain compact factors for Gaussian dynamical systems, Israel J. Math. 98 (1997), 307-328.
[8] D. Newton and W. Parry, On a factor automorphism of a normal dynamical system, Ann. Math. Statist. 37 (1966), 1528-1533.
[9] W. Parry, Instances of cohomological triviality and rigidity, Ergodic Theory Dynam. System 15 (1995), 685-696.
[10] , Topics in Ergodic Theory, Cambridge Tracts in Math., Cambridge Univ. Press, Cambridge, 1981.
[11] M. Queffélec, Substitution Dynamical Systems-Spectral Analysis, Lecture Notes in Math. 1294, Springer-Verlag, Berlin, 1987.
[12] T. De la Rue, Entropie d'un système dynamique gaussien: cas d'une action de \mathbb{Z}^{d}, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 191-194.
[13] K. Schmidt, Cocycles of Ergodic Transformation Groups, MacMillan Lectures in Mathematics vol. 1, MacMillan Company of India, Delhi, 1977.
[14] A. M. Vershik, Spectral and metric isomorphism of some normal dynamical systems, Soviet Math. Dokl. 144 (1962), 693-696.

Dariusz Skrenty
Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
Chopina 12/18
87-100 Toruń, POLAND
E-mail address: darsk@mat.uni.torun.pl
TMNA : Volume $30-2007-\mathrm{N}^{\mathrm{o}} 2$

[^0]: 2000 Mathematics Subject Classification. 37A15, 37A20.
 Key words and phrases. Gaussian actions, Gaussian cocycles, Gaussian isomorphism.
 Research partially supported by KBN grant 1/P03A/03826.

