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ERGODIC COCYCLES FOR GAUSSIAN ACTIONS

Dariusz Skrenty

Abstract. Ergodic Gaussian cocycles for rigid Gaussian actions are con-

structed. It is also shown when any isomorphism between Gaussian actions

is Gaussian.

1. Introduction

Throughout G denotes a countable Abelian group with identity element e

and discrete topology. Assume that (X,B, µ) is a standard probability space
and T : G × X → X (T g( · ) = T (g, · )) is a free G-action on (X,B, µ). Let A
be a locally compact metric Abelian group with Borel σ-algebra BA and Haar
measure λ. Recall that a Borel map F : G ×X → A is called a cocycle for T if
F (g1 + g2, x) = F (g1, x) + F (g2, T

g1x) for all g1, g2 ∈ G and for a.e. x ∈ X. A
cocycle F is said to be a coboundary if there exists a Borel map ξ:X → A such
that F (g, x) = ξ(x) − ξ(T gx). To a cocycle F we associate the corresponding
skew product TF : G× (X ×A,B⊗BA, µ× λ) → (X ×A,B⊗BA, µ× λ) given by
T g

F (x, a) = (T gx, F (g, x) + a). We say that F is ergodic if TF is ergodic.
An action T is called Gaussian if there exists H ⊂ L2(X,B, µ) a T -invariant

closed subspace of the zero mean real functions such that each nonzero h ∈ H is
a Gaussian variable and the smallest σ-algebra B(H) which makes all variables of
H measurable equals B. We call H a Gaussian space of T . The maximal spectral
type of T on H is called the spectral measure of T . We will consider T with
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continuous spectral measure. It implies that T will be ergodic and even weakly
mixing. We call a cocycle F Gaussian if F (g, · ) ∈ H for all g ∈ G. A Gaussian
cocycle is a Gaussian coboundary if it is a coboundary with transfer function ξ

in H.
Motivated by some strong dichotomies in the theory of Gaussian dynamical

systems (see [1], [2], [4], [5], [12]) in 1999 Lemańczyk proposed the following con-
jecture: every Gaussian cocycle either is ergodic or is a Gaussian coboundary.
There are Gaussian actions with trivial solutions of this, that is, every Gaussian
cocycle is a coboundary (see Section 2). So the first step to verify the conjecture
is a construction of ergodic Gaussian cocycles. Such a construction is done in
[3] for Gaussian Z-actions, where cocycles are identified with single measurable
functions. But if we replace Z-actions by G-actions then we have an additional
difficulty, namely, we do not know whether there exist nontrivial cocycles, be-
cause of the more complicated structure of them. There are results for different
types of Zd-actions (d > 1) showing, in contrast to Z-actions, that if we impose
some restriction on cocycles (for instance continuity) then the only cocycles are
trivial (see [9] and the references given there). We show that, as a rule, this is
not true for Gaussian G-actions and Gaussian cocycles. Section 3 is devoted to
constructing ergodic Gaussian cocycles for some rigid Gaussian G-actions. The
validity of the conjecture was not decided in [3] but authors proved it in its
multiplicative version considering cocycles of the form e2πih, where h is a Gauss-
ian cocycle. It is easy to check that the analogous result holds for Gaussian
G-actions.

Section 4 can be treated as an appendix. We give some condition, under
which, any isomorphism between Gaussian actions is Gaussian, i.e. it sends the
Gaussian structure of one action to the other. We generalize Theorem 5 from
[14] (given without proof). Although our result has not a direct connection with
Gaussian cocycles, we think, it is sufficiently interesting to placing in the paper
about Gaussian actions.

This is part of the author’s Ph.D. thesis. The author wishes to thank Profes-
sor Lemańczyk, the supervisor of the thesis, for suggesting problems and helpful
comments.

2. Preliminaries

Let T be a free ergodic G-action on a nonatomic standard probability space
(X,B, µ), and let F : G×X → A be a cocycle for T . Since G is Abelian, it follows
that

(2.1) F (g1, x)− F (g1, T
g2x) = F (g2, x)− F (g2, T

g1x)

for all g1, g2 ∈ G and x ∈ X.
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Conversely, suppose that (2.1) holds and F (g, · ) are real functions with zero
mean. Consider Ng1,g2(x) = F (g1 + g2, x)− F (g1, x)− F (g2, T

g1x). We have

Ng1,g2(x)−Ng1,g2(T
gx) = (F (g1 + g2, x)− F (g1 + g2, T

gx))

− (F (g1, x)− F (g1, T
gx))

− (F (g2, T
g1x)− F (g2, T

gT g1x))

= (F (g, x)− F (g, T g1+g2x))− (F (g, x)− F (g, T g1x))

− (F (g, T g1x)− F (g, T g2T g1x)) = 0

for all g ∈ G. Hence Ng1,g2 = const = 0 for all g1, g2 ∈ G, and consequently F is
a cocycle.

Let A = A ∪ {∞} be the one-point Alexandroff compactification of A (for
compact A, A = A). Recall from [13] that a ∈ A is called an essential value of
F if for every open neighbourhood U of a, and for every B ∈ B with µ(B) > 0,
there exists g ∈ G such that µ(B ∩ T gB ∩ {x ∈ X : F (g, x) ∈ U}) > 0. The
set of essential values of F will be denoted by E(F ). The set E(F ) = E(F ) ∩A
is a closed subgroup of A. It is shown in [13] that F is ergodic if and only if
E(F ) = A. A sequence (gt)∞t=1 ⊂ G is said to be a rigidity time for T if for
each measurable function f on X, f ◦ T gt → f in measure. We need an easy
generalization of Proposition 12 from [6] and we briefly prove it for reader’s
convenience.

Proposition 2.1. Let (gt)∞t=1 be a rigidity time for T . If F : G×X → A is
a cocycle satisfying

(a) for all ε > 0 there exists a compact set K ⊂ A such that, for all t ∈ N,
µ({x ∈ X : F (gt, x) ∈ K}) > 1− ε,

(b) for all χ ∈ Â, χ 6≡ 1 there exists C > 0 such that |
∫

X
χ(F (gt, x)) dµ(x)|

≤ C < 1 for almost all t ∈ N,

then F is ergodic.

Proof. We can assume that the sequence of measures µ ◦ F (gt, · )−1 con-
verges weakly to some probability measure ν on A. We first claim that for each
continuous function ϕ on A and each h ∈ L2(X,B, µ),

(2.2)
∫

X

ϕ(F (gt, x)) · h(x) dµ(x) →
∫

A
ϕ(a) dν(a)

∫
X

h(x) dµ(x).

Indeed, (2.2) holds for constant functions h and we can restrict to the case
h = ξ − ξ ◦ T g for ξ ∈ L2(X,B, µ) with zero mean. Then∫

X

ϕ(F (gt, x)) · h(x) dµ(x) =
∫

X

(ϕ(F (gt, T
gx))− ϕ(F (gt, x))) · ξ(T gx) dµ(x).

Since F (gt, x)− F (gt, T
gx) = F (g, x)− F (g, T gtx) and (gt)∞t=1 is a rigidity time

for T , the integral goes to 0, as ϕ is uniformly continuous.
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Now let us take a0 ∈ supp ν, an open neighbourhood U of a0 in A and B ∈ B
with µ(B) > 0. Choose a continuous function ϕ on A with 0 ≤ ϕ ≤ 1U and∫

A ϕ(a) dν(a) > 0. Since (gt)∞t=1 is a rigidity time for T ,

lim infµ(B ∩ T gtB ∩ {x ∈ X : F (gt, x) ∈ U})

= lim inf µ(B ∩ {x ∈ X : F (gt, x) ∈ U}) = lim inf
∫

B

1U (F (gt, x)) dµ(x)

≥ lim inf
∫

B

ϕ(F (gt, x)) dµ(x) = µ(B)
∫

A
ϕ(a) dν(a) > 0.

Hence a0 ∈ E(F ). Consequently supp ν ⊂ E(F ). From (a) it follows that
ν({∞}) = 0. Thus supp ν ⊂ E(F ). If F is not ergodic then there exists χ0 ∈ Â
such that χ0 6≡ 1 and χ0(a) = 1 for all a ∈ E(F ). Hence∫

X

χ0(F (gt, x)) dµ(x) →
∫

A
χ0(a) dν(a) = 1,

contrary to (b). �

Remark 2.2. In the case of A = R, the condition (a) is satisfied if, for
example, the sequence (F (gt, · ))∞t=1 is bounded in L1(X,B, µ).

Now we recall basic definitions from the spectral theory of unitary operators.
Let U be a unitary representation of G on a real Hilbert space H. Given h ∈ H,
we denote by G(h) the cyclic space generated by h, that is, the smallest closed
subspace containing Ugh, g ∈ G. By the spectral measure of h we mean the
measure σh on Ĝ, the dual group of G, determined by

∫
bG χ(g)dσh(χ) = 〈Ugh, h〉.

There exists h0 ∈ H such that σh � σh0 for every h ∈ H. The type of σh0 is
called the maximal spectral type of U . A measure σ, absolutely continuous with
respect to σh0 , has the multiplicity n if there exists a maximal sequence G(h1)⊕
. . . ⊕ G(hn) such that σhi ≡ σ, i.e. there is no element of type σ orthogonal to
the sum. A number n ∈ {1, 2, . . . }∪{∞} is an essential value of the multiplicity
function of U if there exists σ � σh0 with multiplicity n. We say that U has
simple spectrum if 1 is the only essential value (further details can be easily
adapted from the case of Z-representation, see [10], [11]).

We will consider a standard Gaussian action. If σ is a finite symmetric
Borel measure on Ĝ, then on the space Xσ = RG endowed with the natural
Borel structure Bσ there exists µσ, a measure such that projections {Yg}g∈G

(Yg(x) = x(g), x ∈ Xσ) form a real stationary centered Gaussian process whose
spectral measure is σ, i.e.

∫
bG χ(g) dσ(χ) =

∫
Xσ

YgYe dµσ for all g ∈ G. If we
denote by Tσ the G-action on (Xσ,Bσ, µσ) given by (T gx)(s) = x(s+ g) then Tσ

is a Gaussian action with Gaussian space Hσ = G(Ye). In the case of Z-action we
speak about a Gaussian automorphism Tσ. Write L2

her(Ĝ, σ) = {f ∈ L2(Ĝ, σ) :
f(χ) = f(χ)}. The corresponding Koopman representation UTσ

(Ug
Tσ

f = f ◦T g)
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on Hσ is unitarilly equivalent to the representation V on L2
her(Ĝ, σ) given by

V gf(χ) = χ(g)f(χ).

Lemma 2.3. Assume that

1− χ(g)
1− χ(g0)

∈ L2
her(Ĝ, σ)

for all g ∈ G and some g0 ∈ G. There exists a Gaussian cocycle F such that
F (g, · ) corresponds to the function (1− χ(g))/(1− χ(g0)) by the unitary equiv-
alence between UTσ

and V .

Proof. Let fg(χ) = (1− χ(g))/(1− χ(g0)). We have

fg1(χ)− χ(g2)fg1(χ) = fg2(χ)− χ(g1)fg2(χ).

Therefore functions F (g, · ) ∈ Hσ corresponding to fg satisfy (2.1). Hence F is
a cocycle. �

Lemma 2.4. Assume that

1
1− χ(g0)

∈ L∞(Ĝ, σ)

for some g0 ∈ G. Then each Gaussian cocycle for Tσ is a coboundary.

Proof. Let F be a Gaussian cocycle. By (2.1), the corresponding functions
fg ∈ L2

her(Ĝ, σ) satisfy fg(χ)(1− χ(g0)) = fg0(χ)(1− χ(g)). Thus

fg(χ) =
fg0(χ)

1− χ(g0)
− χ(g)

fg0(χ)
1− χ(g0)

.

Since (fg0(χ))/(1− χ(g0)) ∈ L2
her(Ĝ, σ), F is a coboundary. �

As an example, we take a generalization of well known Gaussian–Kronecker
Z-action (see [4]). A subset E of Ĝ is called a Kronecker set if for every continuous
function f on E, |f | = 1, and for every ε > 0, there exist g ∈ G such that
supχ∈E |f(χ) − χ(g)| < ε. Assume that σ is concentrated on E ∪ E, where
E ⊂ Ĝ is a Kronecker set. Let f be the constant function equals −1. Then
there exists g0 ∈ G such that, for all χ ∈ E, |1 + χ(g0)| = |f(χ) − χ(g0)| < 1.
Since |2 − |1 − χ(g0)|| ≤ |1 + χ(g0)|, we have |1 − χ(g0)| > 1. It follows that
1/(1− χ(g0)) ∈ L∞(Ĝ, σ), and each Gaussian cocycle for Tσ is a coboundary.

We will need an auxiliary result on L2 spaces generated by processes (see [3,
Corollary 1]).

Lemma 2.5. Let H ⊂ L2(X,B, µ) be a real subspace such that B(H) = B.
Then

span ({e2πih : h ∈ H}) = L2(X,B, µ).
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3. Construction of ergodic cocycles

Assume that G is not a torsion group and fix an element g0 ∈ G of infinite
order.

Proposition 3.1. Let σ be a finite continuous symmetric Borel measure
on Ĝ. If there exists an increasing sequence (nt)∞t=1 ⊂ N such that

(a) for all g ∈ G there exists Mg > 0 such that

|χ(g)− 1|
|χ(g0)− 1|

≤ Mg σ-a.e.

(b)
∫
bG |χ

nt(g0)− 1|2 dσ(χ) → 0,
(c) there exist C,D > 0 such that, for all t ∈ N,

D ≤
∫
bG

(
|χnt(g0)− 1|
|χ(g0)− 1|

)2

dσ(χ) ≤ C,

then there exists an ergodic Gaussian cocycle for the Gaussian G-action Tσ.

Proof. According to (a), we obtain

fg(χ) =
1− χ(g)
1− χ(g0)

∈ L2
her(Ĝ, σ)

for all g ∈ G, and from Lemma 2.3 it follows that corresponding functions
F (g, · ) ∈ Hσ form a cocycle. From (b), we have V ntg0f → f in L2

her(Ĝ, σ).
Hence Untg0

Tσ
h → h for each h ∈ Hσ, and we conclude from Lemma 2.5 that

(ntg0) is a rigidity time for Tσ. The condition (c) means that, for all t ∈ N,

D ≤ ‖F (ntg0, · )‖2Hσ
≤ C.

Since F (ntg0, · ) is a Gaussian variable,∣∣∣∣ ∫
X

e2πirF (ntg0,x) dµ(x)
∣∣∣∣ = e−2(πr)2‖F (ntg0, · )‖2Hσ ≤ e−2(πr)2D < 1

for all r 6= 0. It follows from Proposition 2.1 that F is an ergodic cocycle. �

Now we construct a class of measures satisfying the assumptions of Propo-
sition 3.1. We will often replace the Euclidean distance of two points from the
circle T by the equivalent distance % given by the length of the shorter arc join-
ing them. Let (gt)∞t=1 be a sequence of all elements of G \ {g0}. Assume that
(at)∞t=1 ⊂ R is a sequence such that at → ∞. For t ∈ N and a, b ∈ R satisfying
0 < (b/2) ≤ a < b < π, write

B(a,b) = {χ ∈ Ĝ : a < %(χ(g0), 1) < b}, A
(a)
t = {χ ∈ Ĝ : %(χ(gt), 1) < aat}.

The set

(3.1) B(a,b) ∩
⋂
t∈N

A
(a)
t = B(a,b) ∩

⋂
{t∈N:at≤π

a }

A
(a)
t
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is open as finite intersection of open sets. We will find a sequence (at)∞t=1

such that the set (3.1) is not empty for all b ∈ (0, π) and a ∈ [(b/2), b). Fix
t ∈ N. Let gi1 be an element of infinite order of {g1, . . . , gt−1} with the small-
est index such that {g0, gi1} is independent, gi2 be an element of infinite order
of {gi1+1, . . . , gt−1} with the smallest index such that {g0, gi1 , gi2} is indepen-
dent, and we continue this procedure maximal times getting the independent
set {g0, . . . , gimt

}, mt ≤ t − 1. If {g0, . . . , gimt
, gt} is independent then at = t,

otherwise there exist k
(t)
0 , . . . , k

(t)
imt

, k
(t)
t ∈ Z such that

(3.2) k
(t)
0 g0 + k

(t)
i1

gi1 + . . . + k
(t)
imt

gimt
+ k

(t)
t gt = e, k

(t)
t 6= 0,

and we put at = max{t, 2((|k(t)
0 |)/(|k(t)

t |))}. In general, if {g1, . . . , gt} is a de-
pendent set of elements of infinite order such that {g1, . . . , gt−1} is independent
and we assume that

k1g1 + . . . + kt−1gt−1 + ktgt = e = l1g1 + . . . + lt−1gt−1 + ltgt,

then
lt(k1g1 + . . . + kt−1gt−1) = kt(l1g1 + . . . + lt−1gt−1).

Hence (ki/kt) = (li/lt) for each i = 1, . . . , t − 1. It follows that (at)∞t=1 is well
defined.

Next we define some character χ0 of the set (3.1) describing principal argu-
ments αt of χ0(gt), t ≥ 0. As α0 we take some element of (a, b). Fix t ∈ N. If
{g0, gi1 , . . . , gimt

, gt} is independent then αt = 0, otherwise αt = −(k(t)
0 /k

(t)
t )α0

(mod 2π). Let us check that χ0 ∈ Ĝ. Let

(3.3) k1gj1 + . . . + ksgjs = e, (k1, . . . , ks ∈ Z \ {0}, j1, . . . , js ∈ N; s ≥ 1).

It suffices to show that k1αj1 + . . . + ksαjs = 0 (mod 2π). We can assume that
αj1 , . . . , αjs

are different from zero. Then the last equality may be written as

k1

(
− k

(j1)
0

k
(j1)
j1

α0

)
+ . . . + ks

(
− k

(js)
0

k
(js)
js

α0

)
= 0 (mod 2π).

Hence it is enough to show that

(3.4) −k1
k

(j1)
0

k
(j1)
j1

− . . .− ks
k

(js)
0

k
(js)
js

= 0.

From (3.3), we obtain k
(j1)
j1

. . . k
(js)
js

(k1gj1 + . . . + ksgjs
) = e. Then from (3.2).

we have

k
(j2)
j2

. . . k
(js)
js

k1(−k
(j1)
0 g0 − k

(j1)
i1

gi1 − . . .− k
(j1)
imj1

gimj1
) + . . .

+ k
(j1)
j1

. . . k
(js−1)
js−1

ks(−k
(js)
0 g0 − k

(js)
i1

gi1 − . . .− k
(js)
imjs

gimjs
) = e.
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There is a combination of elements of the independent set on the left-hand side.
Therefore taking the sum of coefficients of g0 we get

−k
(j2)
j2

. . . k
(js)
js

k1k
(j1)
0 − . . .− k

(j1)
j1

. . . k
(js−1)
js−1

ksk
(js)
0 = 0,

and dividing the last equality by k
(j1)
j1

. . . k
(js)
js

we obtain (3.4).
Let us notice that

%(χ0(gt), 1) ≤
∣∣∣∣k(t)

0

k
(t)
t

α0

∣∣∣∣ <

∣∣∣∣k(t)
0

k
(t)
t

∣∣∣∣b ≤ aat

for suitable t, and then %(χ0(gt), 1) ≤ aat for all t ∈ N. Hence χ0 ∈ B(a,b) ∩⋂
t∈N A

(a)
t . Thus, if we put Mg0 = 1, Mgt

= at and write

R =
{

χ ∈ Ĝ :
%(χ(g), 1)
%(χ(g0), 1)

≤ Mg for all g ∈ G
}

,

then we conclude that

(?) B(a,b) ∩ R is the set of positive Haar measure for all b ∈ (0, π) and
a ∈ [(b/2), b).

Our next goal is a construction of a sequence (σt)∞t=1 of absolutely continuous
measures with respect to Haar measure on Ĝ. Let Ĝ(z) = {χ ∈ Ĝ : χ(g0) = z}
for z ∈ T, and let G = {χ ∈ Ĝ : χ = χ−1

1 , χ1 ∈ G} for G ⊂ Ĝ. We decompose
Ĝ(1) into pairwise disjoint subsets G

(1)
0 , G

(1)
1 , G

(1)
2 , where G

(1)
0 = {χ ∈ Ĝ(1) :

χ = χ−1}, G
(1)
2 = G

(1)

1 . Similarly, we decompose Ĝ(−1) into G
(−1)
0 , G

(−1)
1 ,

G
(−1)
2 . Finally, we decompose Ĝ into two disjoint subsets Ĝ+, Ĝ−, where Ĝ+ =

G
(1)
0 ∪G

(1)
1 ∪G

(−1)
0 ∪G

(−1)
1 ∪

⋃
z∈T+ Ĝ(z), Ĝ− = G

(1)
2 ∪G

(−1)
2 ∪

⋃
z∈T− Ĝ(z), and

T+, T− denote the upper and lower half of the circle T (1,−1 6∈ T+, T−). Fix
n1 ∈ N and two constants 0 < D < E < πn1. Choose k1 different n1-roots of 1

ε
(1)
1 , . . . , ε

(1)
k1

∈ T+ ∪ {−1, 1}, ε
(1)
1 = 1, 1 ≤ k1 <

n1 + 3
2

.

Let I
(1)
1 , . . . , I

(1)
k1

⊂ T+ ∪ {−1, 1} be pairwise disjoint closed intervals such that

ε
(1)
l is the centre (1 and if need be −1 is the suitable end) of I

(1)
l . We denote by

d
(1)
l the length of I

(1)
l . We require that

n2
1 max

1≤l≤k1
{d(1)

l } ≤ E.

Let J
(1)
l = {χ ∈ Ĝ+ : χ(g0) ∈ I

(1)
l }, l = 1, 2, . . . , k1. These sets are pairwise

disjoint of positive Haar measure. The measure σ1 on Ĝ+ will be concentrated
on

⋃k1
l=1 J

(1)
l . On each J

(1)
l , σ1 is equal its Haar measure multiplied by some

positive constant and we require that

D ≤ n2
1σ1(J

(1)
1 ) ≤ E.
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Moreover, we put σ1(G) = σ1(G) for each Borel subset G ⊂ Ĝ−. Let us for-
mulate the induction hypothesis: we have positive integers nt, kt; we have a set
{ε(t)

1 , . . . , ε
(t)
kt
} of nt-roots of 1; for 1 ≤ l ≤ kt we have a family I

(t)
l of pairwise

disjoint closed intervals (called t-intervals) of the length d
(t)
l and a family J

(t)
l of

pairwise disjoint sets (called t-sets) with positive Haar measure; we have a finite
absolutely continuous symmetric measure σt on Ĝ. We choose now nt+1 > nt

such that
nt+1 >

4π

min1≤l≤kt
{d(t)

l }
.

Therefore there are at least two nt+1-roots of 1 in each t-interval. We choose
kt+1 different nt+1-roots of 1

ε
(t+1)
1 , . . . , ε

(t+1)
kt+1

∈ T+ ∪ {−1, 1}, ε
(t+1)
1 = 1, 1 ≤ kt+1 <

nt+1 + 3
2

and pairwise disjoint closed intervals I
(t+1)
1 , . . . , I

(t+1)
kt+1

⊂ T+ ∪ {−1, 1} with

centres ε
(t+1)
1 , . . . , ε

(t+1)
l respectively (1 and if need be −1 be suitable ends). We

choose them so that each (t+1)-interval is contained in a t-interval and there are
at least two (t + 1)-intervals in each t-interval. Moreover, if we denote by d

(t+1)
l

the length of I
(t+1)
l and write dt+1 = max1≤l≤kt+1{d

(t+1)
l } then we require that

n2
t+1dt+1 ≤ E.

Let J
(t+1)
l = {χ ∈ Ĝ+ : χ(g0) ∈ I

(t+1)
l }, l = 1, 2, . . . , kt+1. These sets are

pairwise disjoint of positive Haar measure. The measure σt+1 on Ĝ+ will be
concentrated on

⋃kt+1
l=1 J

(t+1)
l . It equals a multiple of Haar measure on J

(t+1)
1 so

that
σt+1(J

(t+1)
1 ) < σt(J

(t)
1 ), D ≤ n2

t+1σt+1(J
(t+1)
1 ) ≤ E

and on the remaining (t + 1)-sets contained in J
(t)
1 we distribute the mass

σt(J
(t)
1 ) − σt+1(J

(t+1)
1 ) in equal parts. Moreover, for 2 ≤ l ≤ kt, in all (t + 1)-

sets contained in J
(t)
l we distribute the mass σt(J

(t)
l ) in equal parts. Finally we

complete the definition of σt+1 on Ĝ− by symmetrization.
Choosing a subsequence, if necessary, we can assume that (σt)∞t=1 converges

weakly to a symmetric measure σ̃ on Ĝ. By the construction, it follows that the
support of σ̃ is contained in a disjoint sum of sets of the form

⋂∞
t=1 J

(t)
lt

with

J
(1)
l1

⊃ J
(2)
l2

⊃ . . . . The measure σ̃ is finite continuous, because σt(J
(t)
lt

) → 0,

and σs(J
(t)
l ) = σt(J

(t)
l ) for each s ≥ t, and σs(Ĝ) = σt(Ĝ) > 0 for all s, t ∈ N.

Notice that σ̃-a.e.
%(χnt(g0), 1) ≤ ntdt → 0.

Hence (b) of Proposition 3.1 holds for the measure σ̃. If %(χ(g0), 1) > (π/nt)
then σ̃-a.e.

%(χnt(g0), 1)
%(χ(g0), 1)

<
ntdt

π/nt
=

1
π

n2
t dt ≤

1
π

E
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If %(χ(g0), 1) ≤ (π/nt) then %(χnt(g0), 1)/%(χ(g0), 1) = nt. Moreover, since dt ≤
(E/n2

t ) ≤ ((πn1)/n2
t ) ≤ ((πnt)/n2

t ) = (π/nt), the sets {χ ∈ Ĝ+ : %(χ(g0), 1) ≤
(π/nt)}, J

(t)
1 are equal σt-a.e., and consequently σs-a.e. for all s ≥ t. This implies

that∫
{χ∈bG+:%(χ(g0),1)≤(π/nt)}

(
%(χnt(g0), 1)
%(χ(g0), 1)

)2

dσs(χ)

= n2
t σs(J

(t)
1 ) = n2

t σt(J
(t)
1 ) ∈ [D,E].

Therefore∫
bG

(
%(χnt(g0), 1)
%(χ(g0), 1)

)2

dσ̃(χ)

= lim
s→∞

∫
bG

(
%(χnt(g0), 1)
%(χ(g0), 1)

)2

dσs(χ) ∈ [D, 2E + (E/π)2σ̃(Ĝ)],

and (c) of Proposition 3.1 holds for the measure σ̃. Finally, let σ(G) = σ̃(G∩R)
for every Borel set G ⊂ Ĝ. From (?) it follows that J

(t)
1 ∩R is the set of positive

Haar measure for all t ∈ N. Hence the measure σ satisfies the assumptions
of Proposition 3.1 if we replace D ≤ n2

t σt(J
(t)
1 ) by D ≤ n2

t σt(J
(t)
1 ∩ R) in the

definition of σt.

4. Gaussian isomorphisms of Gaussian actions

We consider a Gaussian G-action Tσ with Gaussian space Hσ. There ex-
ists the decomposition of L2

0R(Xσ,Bσ, µσ), the space of real square-integrable
functions with zero mean, into Wiener chaos:

L2
0R(Xσ,Bσ, µσ) =

∞⊕
m=1

H(m)

where H(1) = Hσ, H(m) is real closed Tσ-invariant subspace. The maximal
spectral type on H(m) is σ(m), the mth convolution power of σ (see [1]). More-
over, if f ∈ L2

0R(Xσ,Bσ, µσ) is a Gaussian variable then either f ∈ H(1) or
f =

∑∞
m=1 fm, fm ∈ H(m) with infinitely many fm different from zero (see

e.g. [7]).
The centralizer of Tσ, denoted by C(Tσ), is defined to be the set of all auto-

morphisms of (Xσ,Bσ, µσ) such that T gS = ST g for all g ∈ G. C(Tσ) contains a
part coming directly from the Gaussian structure. It is the set of all S ∈ C(Tσ)
which preserve the Gaussian space and we will denote it by CG(Tσ). Let I be
an isomorphism of Gaussian actions Tσ, Tσ′ . I is called a Gaussian isomorphism
if UIHσ′ = Hσ. The existence of such an I is equivalent to saying that σ ≡ σ′

(see [5, Lemma 2]). In general, if Gaussian actions are isomorphic then the iso-
morphism need not be Gaussian. As an example, in the case of Z-actions, let
σ, σ′ be symmetric Lebesgue measures on the circle restricted to disjoint sets.
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Then Tσ, Tσ′ are Bernoulli automorphisms with infinity entropy (see e.g. [12])
and they have to be isomorphic by Ornstein’s isomorphism theorem.

Let Tσ be a Gaussian automorphism with simple spectrum and denote by
H(m) its mth chaos. Then every Gaussian space of Tσ is equal to H(1). This
assertion has been proved in much stronger version, for instances, in [5]. However,
one can obtain our statement with no effort. Indeed, let H be a Gaussian space
of Tσ and let h ∈ H. If h =

∑∞
m=1 hm, hm ∈ H(m) then σhi

⊥ σhj
. Hence

hm ∈
⊕∞

i=1 Z(hi) = Z(h) ⊂ H, and hm is a Gaussian variable. Therefore
hm = 0 for all m ≥ 2, and h ∈ H(1). Since B(H) = B, we have H = H(1).

Assume now that Tσ, Tσ′ are isomorphic Gaussian G-actions. Let I be an iso-
morphism between them. Assume that C(Tσ) = CG(Tσ). We can find in CG(Tσ′)
some Gaussian automorphism S′ with simple spectrum (see [5, Lemma 5]). Let
S = I−1S′I. Then S is a Gaussian automorphism with simple spectrum and
UIHσ′ is a Gaussian space of S. Since S ∈ C(Tσ) = CG(Tσ), Hσ is also a Gauss-
ian space of S. Hence UIHσ′ = Hσ. This proves:

Proposition 4.1. If C(Tσ) = CG(Tσ) then every isomorphism between Tσ

and another Gaussian G-action is Gaussian.

Proposition 4.2. If every spectral type absolutely continuous with respect
to σ has a finite multiplicity then C(Tσ) = CG(Tσ).

Proof. Let S ∈ C(Tσ) and assume that S 6∈ CG(Tσ). There exists h ∈ H(1)

such that USh 6∈ H(1). We have h =
∑∞

n=1 hn, hn ∈ Hn, where Hn are spaces
of the constant uniform multiplicity n from the spectral theorem (n 6= ∞).
Since σhi

⊥ σhj
for i 6= j, it follows that

⊕∞
n=1 G(hn) = G(h) ⊂ H(1). Hence

hn ∈ H(1) for all n ∈ N. Since USh =
∑∞

n=1 UShn, there exists N ∈ N such that
UShN 6∈ H(1). But UShN is a Gaussian variable, therefore UShN =

∑∞
m=1 h

(m)
N ,

h
(m)
N ∈ H(m) with infinitely many h

(m)
N different from zero. Write σm = σ

h
(m)
N

for each m ∈ N. Then infinitely many of σ1, σ2, . . . are different from zero.
We will find finite symmetric Borel measures σ′1, σ

′
2, . . . on Ĝ such that for

all m ∈ N:

(a) σ′m � σm,
(b) σ′m ⊥ σl for all l > m,
(c)

∑∞
m=1 σ′m ≡

∑∞
m=1 σm.

Then obviously

(d) σ′i ⊥ σ′j for all i 6= j.

For every m ∈ N we take decomposition of σm with respect to
∑∞

l=m+1 σl

σm = σ′m + σ′′m, σ′m ⊥
∞∑

l=m+1

σl, σ′′m �
∞∑

l=m+1

σl.
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Clearly (a) and (b) hold. Assume that
∑∞

m=1 σm are not absolutely continuous
with respect to

∑∞
m=1 σ′m. Then

∞∑
m=1

σm = γ′ + γ′′, where γ′ ⊥
∞∑

m=1

σ′m, γ′′ �
∞∑

m=1

σ′m, γ′ 6= 0.

There exists m1 ∈ N such that γ′ and σm1 are not mutually singular. Let us
take decomposition

σm1 = γ′1 + γ′′1 , γ′1 ⊥ γ′, γ′′1 � γ′, γ′′1 6= 0.

We have γ′′1 � σm1 = σ′m1
+ σ′′m1

, and γ′′1 � γ′ ⊥ σ′m1
. It follows that γ′′1 �

σ′′m1
�

∑∞
l=m1+1 σl. Thus there exists m2 > m1 such that γ′′1 and σm2 are

not mutually singular, and we repeat the above procedure. By N + 1 steps,
we get a nonzero measure γ′′N+1 which is absolutely continuous with respect to
σm1 , . . . , σmN

and
∑∞

l=mN+1 σl. Hence the multiplicity of γ′′N+1 is at least N +1,
a contradiction.

Since σ′m � σhN
, there exists h′m ∈ G(hN ) such that σh′m ≡ σ′m and∑∞

m=1 h′m is convergent. Let h′ =
∑∞

m=1 h′m ∈ G(hN ). Since G(h(i)
N ) ⊂ H(i) ⊥

H(j) ⊃ G(h(j)
N ) for all i 6= j, we have

σhN
= σUShN

=
∞∑

m=1

σm ≡
∞∑

m=1

σ′m = σh′ .

Therefore G(h′) = G(hN ). From (d) we obtain

USh′m ∈ G(USh′) = G(UShN ) ⊂
∞⊕

i=1

G(h(i)
N )

for all m ∈ N. Consequently, since USh′m is a Gaussian variable and the maximal
spectral type on G(h(i)

N ) ⊂ H(i) is σi, from (b), we conclude that USh′m ∈ H(1)

for all m ∈ N. Thus USh′ ∈ H(1), and UShN ∈ H(1), a contradiction. �

Corollary 4.3. If every spectral type absolutely continuous with respect
to σ has a finite multiplicity then every isomorphism between Tσ and another
Gaussian G-action is Gaussian.

This generalizes a fact for Z-actions from [14] (given without proof), where
author assumed that infinity is not an essential value of the multiplicity function
of one automorphism. We proved a stronger version even in the case of Z-action.
There exists a measure σ on the circle singular to the Lebesgue measure λ such
that σ ∗ σ ≡ λ (see [8]). It follows that σ(m) ≡ λ for each m ≥ 2, and the
multiplicity of λ is equal to infinity. Hence infinity is an essential value of the
multiplicity function of Tσ. But every spectral type absolutely continuous with
respect to σ has the multiplicity one.
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Remark 4.4. In [5], there are considered Gaussian automorphisms whose
ergodic self-joinings are Gaussian (GAG automorphisms). There is proved that
Corollary 4.3 holds for GAG (see Corollary 5 in [5]). Every GAG satisfies the
assumption of Corollary 4.3, but there is a Gaussian automorphism for which
infinity is not an essential value of the multiplicity function, and it is not a GAG
(Example 2 in [5]).
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