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ON LIFESPAN
OF SOLUTIONS TO THE EINSTEIN EQUATIONS

Piotr Bogus law Mucha

Abstract. We investigate the issue of existence of maximal solutions to

the vacuum Einstein solutions for asymptotically flat spacetime. Solutions
are established globally in time outside a domain of influence of a suitable

large compact set, where singularities can appear. Our approach shows
existence of metric coefficients which obey the following behavior: gαβ =

ηαβ +O(r−δ) for a small fixed δ > 0 at infinity (where ηαβ is the Minkowski
metric). The system is studied in the harmonic (wavelike) gauge.

1. Introduction

The analysis of the issue of existence of solutions to the Einstein equations
is the subject of this paper. We want to examine an area of the spacetime,
where we are able to control a metric describing the sought pseudo-Riemannian
manifold. We consider

(1.1) ds2 = gαβdxαdxβ α, β = 0, 1, 2, 3

with the signature (−+ ++), where the summing convention is used. Points in
the spacetime are denoted by x = (x0, x1, x2, x3).
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We investigate the Cauchy problem for an initial submanifold which is re-
quired to be asymptotically flat. The solutions will be searched by the following
initial problem

Gµν = Tµν ,(1.2)

gµν |x0=0 = g0
µν ,

∂gµν

∂x0
|x0=0 = g1

µν ,(1.3)

where Gµν is the Einstein tensor and Tµν — the energy-momentum tensor de-
scribing influence of external forces. As examples of tensor Tµν we may consider
models of a collisionless gas given by the Vlasov equation [1], [3], [12], [15], or the
relativistic Maxwell system taking into account influence of the electro-magnetic
field [2], or others [13], [14].

Conditions (1.2)–(1.3) can be replaced by assumptions on the curvature ten-
sor of the initial submanifold and the relations between them can be described
via the Gauss–Codazzi equations [5].

The geometric structure of equations implies the Bianchi identity

(1.4) Gµν
;ν = 0, Tµν

;ν = 0,

where “;” denotes the covariant differentiation. It follows that we may look at
system (1.2)–(1.3) as a set of ten equations with constraints (1.4). And it is
related to the fact that the same geometry can be described by different metrics.

From the analytical point of view the geometrical invariance of the system
causes serious difficulties. It is not obvious which type of coordinates are the
best (or the most suitable) to investigate the issue of existence. In the only result
[5] about the global in time existence and stability of solutions for the vacuum
Einstein equations, the authors consider the so-called traceless coordinates. This
form of the metric leads to a good structure of nonlinear terms which is related
to the null condition property from the theory of the nonlinear wave equations
[4], [10]. This approach enables to control solutions for all times under suitable
smallness of initial data.

In our paper we want to consider a more general question about the existence
of solutions. We search for maximal solutions to system (1.2)–(1.3) for a suitable
large class of initial data, however the analysis will concentrate outside of the
cone of influence of possible singularities (see Figure 1.1). As an answer we
will obtain information about the asymptotic behavior of metric coefficients and
about a domain U , where the solution to (1.2)–(1.3) will be well defined. The
result obtained here will be an improvement of paper [6], where similar problem
for the vacuum equations has been studied.
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Figure 1.1

The initial data are defined on an initial submanifold Σ0 as follows

gµν |x0=0 = g0
µν on Σ0,

∂gµν

∂x0

∣∣∣∣
x0=0

= g1
µν on Σ0,

where Σ0 = R3 \B(0, R).
Requirements of the asymptotic flatness can be described by the following

relations
g0

µν − ηµν → 0 as r →∞,

where ηµν is the Minkowski metric

ds2 = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2

and r = |x| = ((x1)2 + (x2)2 + (x3)2)1/2.
Looking for some reasonable types of behavior of solutions at infinity we con-

sider an important example, it is the Schwarzschild metric given by the following
formula (in the spherical coordinates)

ds2 = −(1− 2M/r)(dx0)2 + (1− 2M/r)−1(dr)2 + r2(dΩ)2.

The above example describes a universe where all mass is localized, and influence
of it implies the following spatial asymptotic behavior of metric coefficients

(1.5) gµν = ηµν + O(r−1).

Thus, more rigoristic (faster) restrictions on vanishing at infinity would have no
good physical interpretation.

To concentrate our investigations on dependence from initial data we assume
that energy-momentum tensor Tµν is also localized in the spacetime (i.e. we
require to the support of Tµν be in the cone of influence of possible singularities,
see Figure 1.1), hence we reduce problem (1.2)–(1.3) to the case

(1.6) Tµν ≡ 0.

We want to consider initial data which fulfill at most relation (1.5). However, we
are interested not only in globally regular data, we admit singularities located
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only in a ball B(0, R). On submanifold Σ0 metric coefficients g0
µν , g1

µν are re-
quired to be sufficiently regular. As we will see the asymptotic structure allows
to examine our issue with no restrictions on largeness of initial data.

To reach our aims we examine system (1.1) in the harmonic (wavelike) co-
ordinates. It follows that the Einstein equations are of hyperbolic type, more
precisely, we obtain a set of nonlinear wave equations on metric gαβ [2], [3], [7].
As we know this gauge is well defined, however for global analysis we meet dif-
ficulties with stability of solutions. Nevertheless, to answer on our question this
approach will simplify the structure of equations and enables to concentrate our
attention only on the analytical difficulties.

We will search for metrics satisfying the asymptotic behavior

(1.7) gµν = ηµν + O(r−δ) in U ,

with initial data fulfilling

(1.8)
g0

µν = ηµν + O(r−δ) on Σ0,

g1
µν =O(r−1−δ) on Σ0

for a small fixed number δ > 0 with suitable regularity which will be stated
precisely in the next section of the paper. Conditions (1.8) will be improved,
however to define them we will need some analytical notations (see Theorem 2.1).
Additionally we assume that (1.8) generates the metric in the harmonic gauge,
(so conditions (2.7) will be fulfilled).

The main result of our paper is the following.

Theorem 1.1. Let g0
µν , g1

µν be defined on the initial submanifold Σ0 and be
sufficiently smooth, moreover let

g0
µν |Σ0 , g1

µν |Σ0 satisfy condition (1.8).

Then there exists the maximal solution defined on domain U , see Figure 1.1 such
that metric coefficients gµν fulfill (1.7) and set U satisfies the following inclusion

(1.9) U ⊃ ((0,∞)× R3) \ {x : (1 + ε)x0 ≤ r + M}

for any ε > 0, provided M sufficiently large.

The result of Theorem 1.1 characterizes the spacetime generated by the initial
data satisfying asymptotic behavior (1.8). The method enables to prove inclusion
(1.9), which says that outside of the domain of influence of “large data” our
spacetime is, by relation (1.7), a perturbation of the Minkowski manifold. The
magnitude of constant M and conditions (1.8) will reduce any large initial data
to the case of small solutions.

A similar result for the studied problem has been proved in [6] with the same
asymptotic behavior as in (1.7), however here we get a better characterization of
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the lifespan of solutions, see (1.9). The difference follows from another analytical
approach which is applied in proofs. Also we refer to [11], where perturbation of
the Schwarzschild metric has been examined but from a different point of view.

Our technique has an analytical character and does not deal with geomet-
rical aspects of the subject. We concentrate our analysis on examination of
a hyperbolic system by a reduction of the problem to a case of “small solutions”.

Theorem 1.1 will be a conclusion of Theorem 2.1 stated in the next section.
A key element of the proof will be an analysis of the behavior of the speed of
propagation for system (1.2)–(1.3).

2. Analytical statement

The following section introduces the analytical background to state our result
from the theory of PDEs point of view. We study a spacetime manifold generated
by an initial submanifold which is required to be asymptotically flat. Since
we assume that the support of Tµν is localized (see (1.6)), we concentrate our
attention on the vacuum equations, i.e. the Einstein system takes the following
form

(2.1) Gµν = 0.

Since the Einstein tensor is given by the following definition

Gµν = Rµν −
1
2
gµνR,

where Rµν is the Ricci tensor and R = gµνRµν is the scalar curvature. For not
degenerated metrics system (2.1) is equivalent to the following set of equations
(see [2], [12])

(2.2) Rµν = 0.

Our spacetime is required to be a pseudo-Riemannian manifold with a metric
gαβ with the signature (−+ ++). It follows that at least locally we have

(2.3) −g00 > a, b|X|2 ≤ gklX
kX l ≤ c|X|2 for X ∈ R3,

where a, b, c > 0 and k, l = 1, 2, 3.
Let us recall, the Ricci tensor is given by the Christoffel symbols

Rαβ = ∂σΓσ
αβ − ∂αΓσ

βσ + Γσ
αβΓρ

ρσ − Γρ
ασΓσ

βρ,

where Christoffel symbols are given by the metric coefficients as follows

Γγ
βµ =

1
2
gαγ(gαβ,µ + gαµ,β − gβµ,α).

The general form of the Ricci tensor Rαβ is complex and to see a hyperbolic
character of equations (2.2) it is better to look on them in a special coordinate
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system. The easiest way is to take the harmonic coordinates, called wavelike,
too. They are defined by contracted Christoffel symbols

Γµ = gαβΓµ
αβ .

And we say that the metric is harmonic if and only if

Γµ = 0 for µ = 0, 1, 2, 3.

Classical results guarantee that the extension of this type of the coordi-
nates [2] exists as far as the metric exists.

An advantage of the chosen setting is the form of the Ricci tensor. In the
harmonic coordinates it reads

Rµν = −1
2
gαβ ∂2

∂xα∂xβ
gµν + Hµν ,

where Hµν = Hµν(gαβ , (∂gαβ/∂xγ)) and term Hµ is a bilinear operator with
respect to the first derivative of the metric coefficients, i.e. symbolically we have

(2.4) H ∼ H̃(g) ·Dg ·Dg,

where D denotes the whole gradient operator, i.e. D = (∂0, ∂1, ∂2, ∂3).
Hence the Einstein equations in the harmonic gauge read

(2.5) −1
2
gαβ ∂2

∂xα∂xβ
gµν + Hµν = 0.

To start the investigation we describe the initial data. At the beginning we
require

(2.6) gµν |x0=0 = ηµν + O(r−δ),
∂gµν

∂x0

∣∣∣∣
x0=0

= O(r−1−δ)

for a fixed δ > 0. Moreover, due to our harmonic gauge we assume additionally
the following initial conditions

(2.7) Γµ|x0=0 = 0,
∂Γµ

∂x0

∣∣∣∣
x0=0

= 0

which will guarantee preserving of harmonic coordinates. In general, these con-
ditions are required to be satisfied only for

x = (x1, x2, x3) ∈ R3 \B(0, R)

for sufficiently large R.
Our aim is to establish an existence result in a domain

M = ((0,∞)× R3) \ S,
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where S = {x ∈ (0,∞) × R3 : κx0 ≤ r + M}, (M > 0 will be chosen letter),
r = |x| = ((x1)2 + (x2)2 + (x3)2)1/2 and κ is a bound of the maximal speed of
the propagation to system (2.5), i.e.

(2.8) κ > s∗ = sup{speed of propagation in M to (2.5)}.

This type of results is possible to prove for hyperbolic systems, since we are
able to control the speed of propagation of information. Any modification of
equations (2.5) in sector S will follow no changes of solutions in domain M.

Let us introduce the following auxiliary (cut off) function.

(2.9) w(x) =


1 for κx0 ≥ r + M,

0 for κ∗x
0 ≤ r + M0,

∈ [0, 1] for κ∗x
0 −M0 < r < κx0 −M,

where κ is given by (2.8) and numbers κ∗, M0 and M satisfies the below relations

(2.10) 1 < κ∗ < κ and M0 < M.

Moreover, w( · ) is sufficiently smooth and |Dw| ≤ c(1 + (κ− κ∗)x0)−1. Also to
simplify the examination we set κ∗ < 2.

Applying function w( · ) we modify searched functions gαβ as follows

dαβ = ηαβ + whαβ ,

where hαβ are given as solutions to the following system being a modification of
equations (2.5)–(2.6)

−1
2
dαβ ∂2

∂xα∂xβ
hµν+wHµν(ηαβ + hαβ , Dhαβ) = 0 in R3 × (0, T ),(2.11)

hµν |x0=0 = h0
µν = wg0

µν on R3,(2.12)

hµν,0|x0=0 = h1
µν = wg1

µν on R3.(2.13)

Analysis of the above system will give information for problem (2.5)–(2.6) in
set M. A key idea is that smallness of solutions hµν will control the maximal
speed of propagation in set M. It is possible, since choosing suitable large M0

we obtain smallness of data h0
µν and h1

µν , although (2.12) can be arbitrary large.
As a consequence of these considerations we get the following relations between
solutions to systems (2.5)–(2.6) and (2.11)–(2.13) as follows

(2.14)
hµν = gµν − ηµν in M,

dαβ = gαβ in M,
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Figure 2.1

where gµν is the solution to problem (2.5)–(2.6) in the harmonic gauge, see
Figure 2.1.

To begin the statement of our results we introduce some notations and rela-
tions to precise our mathematical background. First, let us define vector fields
related to the Minkowski spacetime. We introduce

Tµ = ∂µ T = {Tµ : µ = 0, 1, 2, 3},(2.15)

Lµν = xµ∂ν − xν∂µ L = {Lµν : 0 ≤ µ < ν ≤ 3},(2.16)

S =xµ∂µ.(2.17)

The whole set of the above vectors fields are denoted by A and

(2.18) A = (T,L, S) = {Γa, a ∈ I},

where I is a finite set of appropriate indices.
Next, we define Banach spaces Gm(R3; 0, T ) by the following norm

(2.19) ||u||Gm(R3;0,T ) = sup
0≤t≤T

||u(t, · )||Gm
(R3),

where

(2.20) ||u||Gm
(R3) =

∑
0≤l≤m

∑
Γ∈A

( ∫
R3
|Γ1 . . .Γlu(x)|2 dx

)1/2

,

where the sum extended over all vector fields Γ1, . . . , Γl belonging to set A.
The kernel of the paper is the following result.

Theorem 2.1. Let δ > 0, κ, κ∗ fulfill (2.10), and initial data (2.12)–(2.13)
satisfy the following regularity conditions:

h0
αβ(1 + r)δ ∈ L∞(R3) and ∇h0

αβ , h1
αβ such that Dhαβ |x0=0 ∈ G

2
(R3).

If

(2.21) ||h0
αβ(1 + r)δ||L∞(R3) + ||Dhαβ |x0=0||G2

(R3)
≤ X0
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and X0 is sufficiently small, then there exists a global in time solution to problem
(2.11)–(2.13) such that:

Dhαβ ∈ G2(R3; 0,∞) and hαβ(1 + r)δ ∈ L∞(R3 × (0,∞)),(2.22)

where ∇ = (∂1, ∂2, ∂3) and D = (∂0, ∂1, ∂2, ∂3).

Although, the general theory for nonlinear wave equations with nonlinearity
of the second order as (2.4) does not imply global in time existence of solutions
[8], we are able to obtain a priori estimates (2.22) using standard techniques. Our
approach is effective, since the character of nonlinear terms reduces our consid-
erations only to analysis on the support of function w. This modification allows
to apply the whole information which can be obtained from analysis in spaces
Gm (see Propositions 3.1–3.3 in the next section). Comparing Theorem 2.1 to
results from [6] we apply here techniques from [9], [10] for the nonlinear wave
equations which essentially extends the standard energy methods.

The required regularity of initial data is not optimal. However in our ap-
proach it is better to work with integer order of derivatives, because definitions
(2.19) and (2.20) for fractional derivatives would be more complex and the en-
ergy method could be less effective. The sharp result in the L2-framework has
been proved in [7].

Proof of Theorem 1.1. Suppose Theorem 2.1 is proved, we show The-
orem 1.1. Choosing ε > 0, we take κ = 1 + ε, it follows that we find so large
M0 and M in (2.9) that X0 is sufficiently small. Then solutions given by Theo-
rem 2.1 generate a spacetime with the maximal speed of propagation less than
1 + ε. It can be possible as we have assumptions (2.6) with extra restrictions on
regularity of initial data. Then the basic features of hyperbolic systems imply
that on domain M we have (2.14). Let us note that there is no un-uniqueness
effects, since the regularity of solutions is sufficiently large. Theorem 1.1 has
been proved. �

In the next section we introduce definitions and auxiliary results for spaces
Gm. Section 4 proves the a priori bound, which via local existence results will
show Theorem 2.1.

3. Preliminaries

In this section we introduce some auxiliary results and notations necessary
to prove Theorem 2.1. First, let us recall some results for spaces Gm from [9].

Proposition 3.1. Let u ∈ G2(R3; 0,∞), then for any x ∈ (0,∞)×R3 holds

(3.1) |u(x)| ≤ c(1 + |r − x0|)−1/2(1 + |r + x0|)−1||u||G2(R3;0,∞).
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Proposition 3.2. Using notation (2.15)–(2.17), we have

∂µ = (xνLµν + xµS)〈S, S〉−1,

where 〈S, S〉 = −(x0)2 + (x1)2 + (x2)2 + (x3)2. It follows that for sufficiently
smooth functions u the following estimate is valid

(3.2) |Du(x)| ≤ c|x0 − r|−1

(
|Su|+

∑
0≤µ<ν≤3

|Lµνu|
)

= c|x0 − r|−1|Λu|.

Proposition 3.3. Let u ∈ G1(R3; 0,∞), then u ∈ L∞(0,∞;L4(R3)) and

(3.2) ||Wu(x0, · )||L4(R3) ≤ c(1 + (κ∗ − 1)x0)−3/4||u||G1(R3,0,∞),

where

(3.4) W =

{
1 for x ∈ supp w,

0 for x ∈ R3 × (0,∞)\ supp w.

Proof. Since Proposition 3.3 is not proved in [9], we show it here. Imbed-
ding u ∈ L4(R3) is trivial. To prove estimate (3.2) we apply the Marcinkiewicz
interpolation theorem (for general theory, see [16]). By Proposition 3.1 we see
that

(3.4) ||Wu||L∞(R3) ≤ c(1 + (κ∗ − 1)x0)−3/2||u||G2 .

Thus, operator T , being an embedding u → u(x0, · ), is bounded as a map

T :G2 → L∞,

where the norm is described by Proposition 3.1. Moreover, we consider the trivial
embedding

(3.5) T :G0 → L2.

Applying the Marcinkiewicz interpolation theorem, we get boundedness of the
following operator

(3.6) T : (G2, G0)1/2,2 → (L∞, L2)1/2,2

with the following norm

(3.7) ||T ||L((G2,G0)1/2,2;(L∞,L2)1/2,2) = ||T ||1/2
L(G2,L∞)||T ||

1/2
L(G0,L2)

.

Since the norm of (3.5) is equal one, from (3.4) and (3.7) we conclude the fol-
lowing bound of the norm of operator (3.6)

||T ||L((G2,G0)1/2,2;(L∞,L2)1/2,2) ≤ c(1 + (κ∗ − 1)x0)−3/4.

To finish the proof, let us note that

(L∞, L2)1/2,2 = L4,2 ⊂ L4,
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where L4,2 is the standard Lorentz space, moreover we have

(G2, G0)1/2,2 = G1.

Thus (3.3) follows from (3.7). The proof of Proposition 3.3 is finished. �

Let us recall commutator rules for the standard d’Alambert operator (where
� = −∂2

0 + ∂2
1 + ∂2

2 + ∂2
3 , see also (2.15)–(2.17))

[�, Tµ] = 0 for 0 ≤ µ ≤ 3,

[�, Lµν ] = 0 for 0 ≤ µ < ν ≤ 3,

[�, S] = 2�.

Main considerations will be concentrated on system (2.11)–(2.13), hence we
distinguish the following operator

�d = dαβ ∂2

∂xα∂xβ
.

For the above operator the following commutator rules hold (which can be stated
symbolically as follows)

[�d, Tµ] ∼ (Dd)D2 for 0 ≤ µ ≤ 3,(3.8)

[�d, Lµν ] ∼ (wh)D2 + (Lµνd)D2 for 0 ≤ µ < ν ≤ 3,(3.9)

[�d, S] ∼ (wh)D2 + (Sd)D2 + 2�d.(3.10)

For any function u defined on (0,∞)× R3 we introduce

(3.11) Ed[u] =
( ∫

R3
(d00u2

,0 + dklu,ku,l) dx

)1/2

.

The above quantity defines function spaces where solutions will be looked
for. Within our considerations metric coefficients dαβ are required to fulfill (2.3)
but with fixed and controlled constants, i.e.

−d00 ≥ 1
2
,

1
2
|X|2 ≤ dklXkXl ≤ 2|X|2 for X ∈ R3.

The above restrictions will be easily satisfied by solutions as we will be able to
control smallness of functions hµν . We can replace numbers 1/2 and 2 by 1− ε

and 1 + ε, however it would not change the final result.
As an elementary corollary of above facts we see that quantity (3.11) is

equivalent to the following norm

Ed[u] ' ||Du(t, · )||L2(R3).

The main quantity, which controls the norm of solutions, is the following

(3.12) X = sup
0≤t<∞

(E2
d [h(t, · )] + E2

d [Γh(t, · )] + E2
d [ΓΓh(t, · )])1/2 + X0,
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where X0 described the norm of initial data, see (2.21), and

(3.13) E2
d [Γh] =

∑
Γa∈A

E2
d [Γah], E2

d [ΓΓh] =
∑

Γa,Γb∈A

E2
d [ΓaΓbh]

denote sums over all possible indices. Finiteness of quantity X implies that
Dh ∈ G2(R3; 0,∞).

4. A priori bound

Here we prove the main result. We will find the a priori bound on quantity X
to control solutions of (2.11)–(2.13) globally in time. To conclude Theorem 2.1
it will be enough to have an a priori estimate, since by the local existence results
(see [7], [12]), controlling norms of solutions we are able to prolong the domain
of the lifespan. Hence we skip the part of the proof concerning the issue of
existence. For our purpose we apply the energy method, which in our case is
split into three steps.

The first energy estimate. Multiplying (2.11) by hµν,0, integrating over
R3, next integrating by parts the l.h.s., we obtain the following inequality

1
4

d

dx0
E2

d [hµν ] ≤
∫

R3
(|wHµν(ηαβ + hαβ , Dhαβ)hµν,0|+ |Dh|2|Dd|) dx

= I1 = I11 + I12.

To obtain the above inequality we used relation (3.8).
Recalling the form of terms Hµν , the estimation for term I11 is reduced to

analyze the following integral consider in the form

(4.1)
∫

R3
W |Dh||Dh|2 dx,

where W is given by (3.3). To apply Proposition 3.1 we estimate term (4.1) as
follows

I11 ≤ sup
x∈R3

|W |Dh||
∫

R3
|Dh|2 dx.

Since supp W = {κ∗x0 ≥ r + M0} relation (3.1) implies that

(4.2) I11 ≤ c(1 + (κ∗ − 1)x0)−3/2X
∫

R3
|Dh|2 dx,

where X is given by (3.12), which implies that Dh ∈ G2.
To treat I12 note that

I12 ≤
∫

R3
W |Dh| |Dh|2 dx +

∫
R3
|Dw| |h| |Dh|2 dx = I121 + I122.

Term I121 is just (4.1), so we examine I122.
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The crucial point is to analyze the behavior of the function h with respect to
time. By the form of I122 we consider only points from the support of function
w. For this purpose we examine the following representation of sought functions

hαβ = h0
αβ +

∫ x0

0

hαβ,0 dt.

We are interested only in finding a suitable estimate on Whαβ , so we may apply
here assumption (2.21) and get

(4.3) sup
x∈R3

|Wh0
αβ | ≤

X0

(1 + x0)δ
.

Thus, to find the desired bound on hαβ , we estimate the following integral

W

∫ x0

0

hαβ,0 dt

and, by Proposition 3.1, we have

≤ cW

∫ x0

0

(1 + (r − t))−1/2(1 + r + t)−1X dt,

by properties of the support of W , we find

(4.4) ≤ cXW

∫ x0

0

(1 + r + t)−3/2 dt ≤ cX 1
(1 + x0)1/2

.

From (4.3) and (4.4) we conclude (taking δ < 1/2) that

(4.5) sup
x∈R3

|Wh(x)| ≤ c(1 + x0)−δX .

By features of function w given by (2.9) we deduce that

(4.6) sup
x∈R3

|Dw| ≤ c(1 + (κ∗ − 1)x0)−1.

Hence by (4.5) and (4.6) we obtain that

(4.7) I122 ≤ c(1 + (κ∗ − 1)x0)−1−δ

∫
R3
|Dh|2 dx.

Thus, summing over indices µ and ν, by (4.2) and (4.7) we get

(4.8)
d

dx0
E2

d [h] ≤ c(1 + (κ∗ − 1)x0))−1−δXE2
d [h],

and by the Gronwall inequality we obtain

sup
0≤t≤∞

E2
d [h(t)] ≤E2

d0
[h|x0=0] exp

{
c

∫ ∞

0

(1 + (κ∗ − 1)t)−1−δX dt

}
≤E2

d0
[h|x0=0] exp{cX},

where d0 = d|x0=0.



194 P. B. Mucha

The second energy estimate. Let Γ ∈ A, then by (3.8)–(3.10) we have

(4.9) −1
2
�d(Γhµν) = Γ(wHµν) +

1
2
[�d,Γ]hµν .

Multiplying (4.9) by (Γhµν),0, we obtain

(4.10)
1
4

d

dx0
E2

d [Γhµν ] ≤
∫

R3

(
|Γ(wHµν(Γhµν),0|+

1
2
|[�d,Γ]hµν(Γhµν),0|

)
dx

= I2 = I21 + I22.

Taking the first term of the r.h.s. of (4.10) we split it into two terms

(4.11) I21 ≤
∫

R3
|(Γw)Hµν(Γhµν),0| dx

+
∫

R3
|w(ΓHµν)(Γhµν),0| dx = I211 + I212.

The second term of (4.11) is treated the same as term I1 in the first energy
estimate, i.e. we have

(4.12) I212 ≤ c(1 + (κ∗ − 1)x0)−3/2XE2
d [Γh].

To consider the first term we note that by the definition of the cut off function
(2.9) we have globally in (0,∞)×R3 for a certain constant the following bound

|Γw| ≤ c ∼ O(1/(κ− κ∗)),

which follows from properties of the support of w.
To examine I211 we see that by (4.11) and Proposition 3.1 we have

I211 ≤ c

∫
R3

W |Dh| |Dh| |(Γh),0| dx(4.13)

≤ c sup
x∈R3

|W |Dh||
∫

R3
|Dh| |(Γh),0| dx

≤ c(1 + (κ∗ − 1)x0)−3/2XEd[h]Ed[Γh].

To finish the estimation for the second energy estimate we find a bound for
the last term of the r.h.s. of (4.10)

I22 ≤ c

∫
R3
|[�d,Γ]hµν(Γh),0| dx

≤
∫

R3
W (|(Γh)D2h(Γh),0|+ |(wh)D2h(Γh),0|+ |�dh(Γh),0|) dx

= I221 + I222 + I223.

Take I221. By the definition of elements of set A (see (2.18)), we note that

(4.14) |Γh| ≤ c(r + x0)|Dh|.
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Moreover, by Proposition 3.2, we have

(4.15) |D2h| ≤ c(1 + (r − x0))−1|ΛDh|.

By properties of the support of function w we see that for a certain constant the
following pointwise estimate holds

(4.16)
∣∣∣∣W r + x0

1 + r − x0

∣∣∣∣ ≤ c.

Hence we conclude from (4.14), (4.15) and (4.16) the following inequality

I221 ≤ c

∫
R3

W |Dh| |ΛDh| |(Γh),0| dx.

Repeating steps for the first energy estimate we get

(4.17) I221 ≤ c(1 + (κ∗ − 1)x0)−3/2XE2
d [Γh].

Term I221 has a similar structure as I122. Applying (4.5) and (4.15) we get

I222 ≤
∫

R3
|hD2h(Γh),0| dx

≤ c(1 + x0)−δX
∫

R3
W (1 + (r − x0))−1(ΛDh)(Γh),0 dx

≤ c(1 + x0)−δX (1 + (κ∗ − 1)x0)−1E2
d(Γh).

The third term I223 is reduced to the first one since −(1/2)�dh = wH.
Summing (4.12), (4.13), (4.17) and (4.18) we obtain the following differential

inequality

(4.19)
d

dx0
E2

d [Γh] ≤ c(1 + (κ∗ − 1)x0)−1−δXEd[Γh](Ed[Γh] + Ed[h]).

The third energy estimate. Differentiating (4.9) by Γ ∈ A we obtain

(4.20) −1
2
�d(ΓΓhµν),0 = Γ

(
Γ(wHµν) +

1
2
[�d,Γ]hµν

)
+

1
2
[�d,Γ]Γhµν .

Multiplying (4.20) by (ΓΓhµν),0, integrating over R3 we get

1
4

d

dx0
E2

d [ΓΓhµν ] ≤
∫

R3
|Γ(Γ(wHµν))(ΓΓhµν),0| dx

+
∫

R3

1
2
|Γ([�d,Γ]hµν)(ΓΓhµν),0| dx +

∫
R3

1
2
|[�d,Γ](Γhµν)(ΓΓhµν),0| dx

= I3 = I31 + I32 + I33.

Take I31. Here, we have

I31 ≤
∫

R3
W |Γ(Γw)| |Hµν | |(ΓΓhµν),0| dx + 2

∫
R3

W |Γw| |ΓHµν | |(ΓΓhµν),0| dx

+
∫

R3
W |ΓΓHµν | |(ΓΓhµν),0|dx = I311 + I312 + I313.
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To analyze I311, we note that by features of function w, we have globally the
following bound

|ΓΓw| ≤ c ∼ O(1/(κ− κ∗)).

Hence I311 is treated as I211 and we get

(4.21) I311 ≤ c(1 + (κ∗ − 1)x0)−3/2XEd[h]Ed[ΓΓh].

The same we have for I312, since

(4.22) I312 ≤ c

∫
R3

W |Dh| |ΓDh| |(ΓΓhµν),0| dx,

thus I312 ≤ c(1 + (κ∗ − 1)x0)−3/2XE[Γh]E[ΓΓh].
The last term delivers a new type of nonlinearity. Let us note that I313 is

bounded as follows

(4.23) I313 ≤ c

∫
R3

W |Dh| |ΓΓDh| |(ΓΓhµν),0| dx

+ c

∫
R3

W |ΓDh| |ΓDh| |(ΓΓhµν),0| dx = I3131 + I3132.

The first term can be estimated as follows

(4.24) I3131 ≤ c(1 + (κ∗ − 1)x0)−3/2XE2
d [ΓΓh].

To analyze the second term of the r.h.s. of (4.23) we apply Proposition 3.3.
Since we can assume that ΓDh ∈ G1, applying the Hölder inequality to integral
I3132, we deduce the following estimate

(4.25) I3132 ≤ c||ΓDh||2L4(R3)||ΓΓDh||L2(R3)

≤ c(1 + (κ∗ − 1)x0)−3/2(Ed[Γh] + Ed[ΓΓh])2Ed[ΓΓh]

≤ c(1 + (κ∗ − 1)x0)−3/2X (Ed[Γh] + Ed[ΓΓh])Ed[ΓΓh].

Thus, from (4.21), (4.22), (4.24) and (4.25) we conclude the following differential
inequality

(4.26)
d

dx0
E2

d [ΓΓh] ≤ c(1 + (κ∗ − 1)x0)−1−δX (E2
d [h] + E2

d [Γh] + E2
d [ΓΓh]).

The above estimate finished the last third step and we show the a priori bound.

A priori estimate. Summing up three energy inequalities (4.8), (4.19) and
(4.26) we obtain

(4.27)
d

dx0
{E2

d [h] + E2
d [Γh] + E2

d [ΓΓh]}

≤ c(1 + (κ∗ − 1)x0)−1−δX{E2
d [h] + E2

d [Γh] + E2
d [ΓΓh]}.
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Applying to (4.27) the Gronwall inequality we get the following bound

(4.28) sup
0≤t<∞

{E2
d [h] + E2

d [Γh] + E2
d [ΓΓh]}

≤ {E2
d0 [h0] + E2

d0 [Γh0] + E2
d0 [ΓΓh0]} exp {π0X}.

Since π0 in (4.28) is an absolute constant, we can require to initial data
satisfy the following bound (smallness condition (2.21))

(4.29) 3{E2
d0 [h0] + E2

d0 [Γh0] + E2
d0 [ΓΓh0]}+ X2

0 ≤ (1/π0)2,

then from (4.28) and (4.29), if we assume suitable smallness of X (≤ 1/π0 — we
can analyze (4.28) only on a time interval where X ≤ 1/π0), we get

sup
0≤t<∞

{E2
d [h] + E2

d [Γh] + E2
d [ΓΓh]} ≤ 3{E2

d0 [h0] + E2
d0 [Γh0] + E2

d0 [ΓΓh0]},

what, by (3.13) and (4.29), closes the estimation, since we conclude

sup
0≤t<∞

{E2
d [h(t, · )] + E2

d [Γh(t, · )] + E2
d [ΓΓh(t, · )]}+ X2

0 ≤ (1/π0)2.

which guarantees that X ≤ 1/π0 (in particular, for a fixed time we get (4.29)
as a new initial data and we can continue this procedure to obtain the global in
time estimate). Finally, by the definition of X , we obtain

(4.30) X ≤ 4X0,

which finishes the proof of the a priori bound showing inclusions (2.22). By
previous remarks and bound (4.30) we conclude the thesis of Theorem 2.1.
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