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TOPOLOGICAL DEGREE
AND GENERALIZED ASYMMETRIC OSCILLATORS

Alessandro Fonda

Abstract. We consider periodic perturbations of an isochronous hamil-

tonian system in the plane, depending on a parameter, which generalize the

classical asymmetric oscillator. We compute the associated topological de-
gree, and consider situations where large-amplitude periodic solutions can

arise.

1. Introduction

We consider T -periodic differential systems in the plane which can be written
in the form

(1.1) Ju̇ = ∇H(u) + f(t, u, λ),

where J =
( 0 −1

1 0

)
is the standard symplectic matrix, and λ is a real parameter.

The interest in such type of systems comes from the study of the asymmetric
oscillator

(1.2) x′′ + µx+ − νx− = e(t),

where µ and ν are positive real numbers, e: R → R is a T -periodic continuous
function, x+ = max{x, 0} and x− = max{−x, 0} (see e.g. [1], [3], [10], [12], [13]).
In [5], a new method was proposed for computing the associated topological
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degree, based on phase-plane analysis of the solutions. It will be useful to briefly
recall the main result of [5], focusing our attention on equation (1.2).

We look for the topological degree of P−Id with respect to large disks, where
P is the Poincaré map associated to (1.2) for the period T . Denote by φ(t) a
nontrivial solution of the autonomous equation x′′ + µx+ − νx− = 0, which has
minimal period τ = π/

√
µ+ π/

√
ν, and assume that T is a multiple of τ . It has

been proved in [5] that, if the τ -periodic function

(1.3) Φ(θ) =
∫ T

0

e(t)φ(t+ θ) dt

only has simple zeros, and 2ζ is their number in the interval [0, τ [, then

deg(P − Id, BR) = 1− ζ,

where BR denotes any disk centered at the origin with a sufficiently large ra-
dius R.

To illustrate such a situation, let

e(t) = cos(nt) + ε cos t,

for some integer n ≥ 1, and let µ and ν be such that τ = T = 2π. In this case,
we can choose

φ(t) =


1
√
µ

sin(
√
µt) if t ∈

[
0,

π
√
µ

]
,

− 1√
ν

sin
(√

ν

(
t− π

√
µ

))
if t ∈

[
π
√
µ
, 2π

]
,

and we find

Φ(θ) = ancos(nθ) + bn sin(nθ) + ε

∫ 2π

0

cos(t)φ(t+ θ) dt,

where, if µ 6= n2 and ν 6= n2,

an =
∫ 2π

0

cos(nt)φ(t) dt =
(

cos
(
nπ
√
µ

)
+ 1

)
ν − µ

(µ− n2)(ν − n2)
,

bn =
∫ 2π

0

sin(nt)φ(t) dt = sin
(
nπ
√
µ

)
ν − µ

(µ− n2)(ν − n2)
.

Taking µ, ν in order that
√
µ and

√
ν be irrational, we have that an 6= 0 and

bn 6= 0 for every n, and if |ε| is small (possibly ε = 0), the function Φ has exactly
2n simple zeros in the interval [0, 2π[, so that

deg(P − Id, BR) = 1− n,

for R large enough. This shows, in particular, that the degree can be any negative
integer.
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The above situation has been extended by Wang [14] for a Rayleigh equation
and by Capietto and Wang [2] for a Liénard equation. The novelty in these results
is the appearance of two functions, which permit to determine the topological
degree. In the case of the asymmetric oscillator, these two functions coincide
with Φ, as defined in (1.3), and Φ′, its derivative. In the more general situation,
the two functions differ from the ones determined for the asymmetric oscillator
by two constants. The degree, again, can be any negative number.

Both the results in [2], [14] have been generalized in [7] to systems which are
the same as (1.1), but with no explicit dependence on the parameter λ. There,
the function f was assumed to be asymptotically positively homogeneous of some
degree β ∈ [0, 1[, the precise meaning of which will be recalled in Section 3, and
some different types of applications were proposed.

A further step made in [7] was to consider functions f which can be asymp-
totically positively homogeneous of degree 1, as well, provided that f itself be
multiplied by a small parameter. Even in this situation, the degree can be com-
puted by essentially the same method. As a simple example, f could be a linear
perturbation of a nonlinear equation, which at first seemed rather surprising.

It is one aim of this paper to show how the above results can be viewed as
particular cases of a general theorem for the parameter-dependent system (1.1).
Besides this, we propose a simpler approach to compute the topological degree,
which should clarify the situations considered previously. Moreover, we are able
to give examples where the degree can be an arbitrary positive number, as well
as any negative number.

In the same setting, in Section 4 we propose a theorem on the existence
of large-amplitude periodic solutions, which completes the theory developed in
[6] and shows its connection with the above results on the computation of the
degree. This type of theorem has been used in [6] to prove the occurrence of
bifurcations from infinity of periodic solutions for second order scalar differential
equations modelling asymmetric oscillators with varying parameters.

Besides the study of periodic solutions, the related problem of the bound-
edness of the solutions has attracted much attention. We just mention that,
starting with the asymmetric oscillator, the results in [1], [13] have been recently
extended to systems like (1.1) in [8], [9].

2. The Poincaré map

We consider system (1.1), with the following assumptions which generalize
the situation for the asymmetric oscillator, as will be shown in Section 3.

The C1-function H: R2 → R, with locally Lipschitz continuous gradient, is
positively homogeneous of degree 2 and positive: we have

H(σu) = σ2H(u) > 0,
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for every u ∈ R2 \ {0} and σ > 0. Under these assumptions, the origin 0 is an
isochronous center for the autonomous system

(2.1) Ju̇ = ∇H(u).

Let us fix a reference solution ϕ: R → R2, such that

Jϕ̇(t) = ∇H(ϕ(t)) and H(ϕ(t)) = 1/2,

so that, by Euler’s identity,

(2.2) 〈Jϕ̇(t)|ϕ(t)〉 = 〈∇H(ϕ(t))|ϕ(t)〉 = 2H(ϕ(t)) = 1,

for every t ∈ R. The minimal period of ϕ will be denoted by τ . Any nontrivial
solution of (2.1) is of the type ρϕ(t+ θ), for some ρ > 0 and θ ∈ [0, τ [.

The function f : R×R2× [1,∞[ → R2 is assumed to be continuous in its first
two variables, T -periodic in its first variable, and locally Lipschitz continuous
in its second variable (here and in the following, we denote by R+ the set of
positive real numbers).

A finite number of directions being given,

α1 < α2 < . . . < αl < αl+1 = α1 + 2π,

we define the set Σ = {ρeiαk : ρ ≥ 0, k = 1, . . . , l}, which is made of l rays
starting from the origin. If l = 0, there are none of these directions, and we set
Σ = {0}. Let a: R+ → R+ be a function such that

(2.3) lim
λ→∞

a(λ)
λ

= 0,

and assume that there exists a continuous function F : R × (R2 \ Σ) → R2 such
that

(2.4) F (t, u) = lim
λ→∞

f(t, λu, λ)
a(λ)

,

the above limit being uniform with respect to (t, u) when u varies in compact
subsets of R2 \ Σ. Moreover, for some γ > 0,

(2.5) ‖f(t, λu, λ)‖ ≤ γa(λ)(‖u‖+ 1),

for every t ∈ R, λ ≥ 1 and u ∈ R2. It then follows, in particular, that F
transforms bounded subsets of R× (R2 \ Σ) into bounded sets in R2.

In this paper, we assume throughout that

T is an integer multiple of τ .

In this situation, it is said that system (1.1) is “at resonance”.
By the change of variable v = λ−1u, system (1.1) becomes

(2.6) Jv̇ = ∇H(v) +
1
λ
f(t, λv, λ).
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We denote by P̃λ: R2 → R2 the Poincaré map associated to (2.6) for the period T .
It is well defined, since the right hand side of (2.6) is locally Lipschitz continuous
and, by (2.5) and the fact that ∇H is positively homogeneous of degree 1, has
at most linear growth in v, for every fixed λ ≥ 1.

If v(t) is a solution of (2.6) with starting point v(0) 6= 0, we can write

v(t) = ρ(t)ϕ(t+ θ(t)),

with ρ(0) > 0. As long as ρ(t) > 0, the functions θ(t) and ρ(t) are of class C1

and, since ∇H is positively homogeneous of degree 1,

ρ′(t)Jϕ(t+ θ(t)) + ρ(t)θ′(t)Jϕ̇(t+ θ(t)) =
1
λ
f(t, λρ(t)ϕ(t+ θ(t)), λ).

Since ϕ(t+ θ(t)) and ϕ̇(t+ θ(t)) are linearly independent, for every t, as long as
ρ(t) > 0, by (2.2) the system (2.6) is equivalent to

(2.7)


θ′ =

1
λρ
〈f(t, λρϕ(t+ θ), λ)|ϕ(t+ θ)〉,

ρ′ = − 1
λ
〈f(t, λρϕ(t+ θ), λ)|ϕ̇(t+ θ)〉.

Denote by (θ(t; θ0, ρ0;λ), ρ(t; θ0, ρ0;λ)) the solution of (2.7) with starting point

θ(0; θ0, ρ0;λ) = θ0 ∈ [0, τ [, ρ(0; θ0, ρ0;λ) = ρ0 > 0.

Writing briefly ρ(t) for ρ(t; θ0, ρ0;λ) and θ(t) for θ(t; θ0, ρ0;λ), by (2.5) we have,
for some constants c1, c2 depending only on ϕ,

|ρ(t)− ρ0| =
∣∣∣∣ 1λ

∫ t

0

〈f(s, λρ(s)ϕ(s+ θ(s)), λ)|ϕ̇(s+ θ(s))〉 ds
∣∣∣∣

≤
∫ t

0

γ
a(λ)
λ

(‖ρ(s)ϕ(s+ θ(s))‖+ 1)‖ϕ̇(s+ θ(s))‖ ds

≤ c1γ
a(λ)
λ

∫ t

0

|ρ(s)− ρ0| ds+ c2γ
a(λ)
λ

(ρ0 + 1)t,

so that, by Gronwall inequality,

|ρ(t)− ρ0| ≤ c2γ
a(λ)
λ

(ρ0 + 1)t exp
(
c1γ

a(λ)
λ

t

)
.

Hence, by (2.3),

(2.8) lim
λ→∞

ρ(t; θ0, ρ0;λ) = ρ0,

uniformly with respect to t ∈ [0, T ], θ0 ∈ [0, τ [ and ρ0 in a compact subset of R+.
In particular, for λ large enough, we have ρ(t) > 0 for every t ∈ [0, T ]. Concerning
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θ(t), for λ sufficiently large we have, for some constants c3, c4 depending only
on ϕ,

|θ(t)− θ0| =
∣∣∣∣ 1λ

∫ t

0

1
ρ(s)

〈f(s, λρ(s)ϕ(s+ θ(s)), λ)|ϕ(s+ θ(s))〉 ds
∣∣∣∣

≤
∫ t

0

γ
a(λ)
λ

(
‖ϕ(s+ θ(s))‖+

1
|ρ(s)|

)
‖ϕ(s+ θ(s))‖ ds

≤ γ
a(λ)
λ

(
c3t+

c4
ρ0

)
,

so that, again by (2.3),

(2.9) lim
λ→∞

θ(t; θ0, ρ0;λ) = θ0,

uniformly with respect to t ∈ [0, T ], θ0 ∈ [0, τ [ and ρ0 in a compact subset of R+.
For θ0 ∈ [0, τ [ and ρ0 > 0, writing P̃λ(ρ0ϕ(θ0)) = ρ1ϕ(θ1), for λ large enough

we have 
θ1 = θ0 +

∫ T

0

1
λρ(t)

〈f(t, λρ(t)ϕ(t+ θ(t)), λ)|ϕ(t+ θ(t))〉 dt,

ρ1 = ρ0 −
∫ T

0

1
λ
〈f(t, λρ(t), λϕ(t+ θ(t)))|ϕ̇(t+ θ(t))〉 dt,

where, as before, (θ(t), ρ(t)) denotes the solution of (2.7) with starting point
(θ0, ρ0). Define the two functions

(2.10)
F1(θ, ρ) = −1

ρ

∫ T

0

〈F (t, ρϕ(t+ θ))|ϕ(t+ θ)〉 dt,

F2(θ, ρ) =
∫ T

0

〈F (t, ρϕ(t+ θ))|ϕ̇(t+ θ)〉 dt.

Because of the properties of ϕ, the set {t ∈ [0, T ] : ϕ(t + θ) ∈ Σ} is finite, so
that, since F maps bounded sets into bounded sets, F1 and F2 are well defined
on R× R+ and they are continuous.

Lemma 2.1. We have
θ1 = θ0 −

a(λ)
λ

[F1(θ0, ρ0) +R1(θ0, ρ0;λ)],

ρ1 = ρ0 −
a(λ)
λ

[F2(θ0, ρ0) +R2(θ0, ρ0;λ)],

where R1 and R2 are such that

lim
λ→∞

R1(θ0, ρ0;λ) = lim
λ→∞

R2(θ0, ρ0;λ) = 0,

uniformly for θ0 ∈ [0, τ [ and ρ0 in a compact subset of R+.

Proof. We have to show that

lim
λ→∞

1
a(λ)

∫ T

0

1
ρ(t)

〈f(t, λρ(t)ϕ(t+ θ(t)), λ)|ϕ(t+ θ(t))〉 dt = −F1(θ0, ρ0),
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and

lim
λ→∞

1
a(λ)

∫ T

0

〈f(t, λρ(t)ϕ(t+ θ(t)), λ)|ϕ̇(t+ θ(t))〉 dt = F2(θ0, ρ0),

uniformly with respect to θ0 ∈ [0, τ [ and ρ0 ∈ [a, b], with 0 < a < b. We prove
the first of the two, the second one being similar.

Fix ε > 0. Corresponding to each direction αk defining the set Σ, we consider
a small cone determined by [αk−η, αk +η], for some η > 0. Let Ση be the union
of these cones, and define

Aη(θ0) = {t ∈ [0, T ] : ϕ(t+ θ0) ∈ Ση}.

Writing the above integral and the one defining F1(θ0, ρ0) as∫ T

0

. . . =
∫

Aη(θ0)

. . .+
∫

[0,T ]\Aη(θ0)

. . . ,

we have that, taking η small enough, since F transforms bounded sets into
bounded sets, ∣∣∣∣ ∫

Aη(θ0)

〈F (t, ϕ(t+ θ0))|ϕ(t+ θ0)〉 dt
∣∣∣∣ ≤ ε

4
,

and, for λ large enough, by (2.5) and (2.8),∣∣∣∣ ∫
Aη(θ0)

1
a(λ)ρ(t)

〈f(t, λρ(t)ϕ(t+ θ(t)), λ)|ϕ(t+ θ(t))〉 dt
∣∣∣∣

≤
∫

Aη(θ0)

γ

(
‖ϕ(t+ θ(t))‖+

2
ρ0

)
‖ϕ(t+ θ(t))‖ dt ≤ ε

4
.

On the other hand, for t ∈ [0, T ] \Aη(θ0), by (2.4), (2.8) and (2.9),

lim
λ→∞

1
ρ(t)

〈
f(t, λρ(t)ϕ(t+ θ(t)), λ)

a(λ)

∣∣∣∣ϕ(t+ θ(t))
〉

=
1
ρ0
〈F (t, ρ0ϕ(t+ θ0))|ϕ(t+ θ0)〉,

uniformly in t ∈ [0, T ] \ Aη(θ0), θ0 ∈ [0, τ [, and ρ0 ∈ [a, b], so that, for λ large
enough,∣∣∣∣ ∫

[0,T ]\Aη(θ0)

[
1

a(λ)ρ(t)
〈f(t, λρ(t)ϕ(t+ θ(t)), λ)|ϕ(t+ θ(t))〉

− 1
ρ0
〈F (t, ρ0ϕ(t+ θ0))|ϕ(t+ θ0)〉

]
dt

∣∣∣∣ ≤ ε

2
.

So, taking η small enough and λ large enough, for every θ0 ∈ [0, τ [ and ρ0 ∈ [a, b],
we have∣∣∣∣ 1

a(λ)

∫ T

0

1
ρ(t)

〈f(t, λρ(t)ϕ(t+ θ(t)), λ)|ϕ(t+ θ(t))〉 dt+ F1(θ0, ρ0)
∣∣∣∣ ≤ ε,

and the lemma is thus proved. �
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3. The computation of the degree

We want to compute the degree of P̃λ − Id on the set

Ω = {ρϕ(θ) : θ ∈ [0, τ [, ρ ∈ [0, 1[}.

To this aim, it will be sufficient to consider the solutions of (2.7) starting from
the boundary ∂Ω, i.e. with ρ0 = 1. The generalized polar coordinates (θ, ρ) used
to define the set Ω permit to identify it with the unit ball, and its boundary
∂Ω with S1. It is also convenient to identify R/τZ with S1, and to define the
τ -periodic function

Γ:S1 → R2, Γ(θ) = (Γ1(θ),Γ2(θ)),

where Γ1(θ) = F1(θ, 1) and Γ2(θ) = F2(θ, 1), i.e.

Γ1(θ) = −
∫ T

0

〈F (t, ϕ(t+ θ))|ϕ(t+ θ)〉 dt,

Γ2(θ) =
∫ T

0

〈F (t, ϕ(t+ θ))|ϕ̇(t+ θ)〉 dt.

Assuming that Γ(θ) 6= 0, for every θ ∈ S1, we denote by rot(Γ, S1) its rotation
number (sometimes called the Kronecker degree): it is the number of rotations
around the origin, in clockwise direction, performed by Γ(θ) as θ varies from 0
to τ . We will now see how it is related to the topological degree associated to
our periodic problem.

Proposition 3.1. Assume that Γ(θ) 6= 0, for every θ ∈ S1. Then, for λ
sufficiently large,

deg(P̃λ − Id,Ω) = 1 + rot(Γ, S1).

Proof. Define
Vλ(θ0) = ρ1ϕ(θ1)− ϕ(θ0),

so that
deg(P̃λ − Id,Ω) = rot(Vλ, S

1).

By Lemma 1, with ρ0 = 1,

Vλ(θ0) =
(

1− a(λ)
λ

Γ2(θ0)
)
ϕ

(
θ0 −

a(λ)
λ

Γ1(θ0)
)
− ϕ(θ0) + R̃1(θ0;λ)

=
(

1− a(λ)
λ

Γ2(θ0)
)(

ϕ(θ0)−
a(λ)
λ

Γ1(θ0)ϕ̇(θ0)
)
− ϕ(θ0) + R̃2(θ0;λ)

= −a(λ)
λ

[Γ1(θ0)ϕ̇(θ0) + Γ2(θ0)ϕ(θ0)] + R̃3(θ0;λ),

where R̃1, R̃2, R̃3 are such that

lim
λ→∞

λ

a(λ)
R̃1(θ0;λ) = lim

λ→∞

λ

a(λ)
R̃2(θ0;λ) = lim

λ→∞

λ

a(λ)
R̃3(θ0;λ) = 0,
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uniformly for θ0 ∈ [0, τ [. Let us introduce the auxiliary function

W(θ0) = Γ1(θ0)ϕ̇(θ0) + Γ2(θ0)ϕ(θ0).

For each θ0, the couple {ϕ̇(θ0), ϕ(θ0)} is a basis for R2 and (Γ1(θ0),Γ2(θ0)) are
the coordinates of W(θ0) with respect to this basis. Recalling the definition of
Γ(θ0), we conclude thatW(θ0) rotates exactly rot(Γ, S1) times around the origin,
in clockwise direction, with respect to this basis, as θ0 varies from 0 to τ . Since
the basis itself rotates once in clockwise direction, we finally have

rot(W, S1) = 1 + rot(Γ, S1).

As seen above, for any ε > 0 there is a λε > 0 such that, if λ ≥ λε, then∥∥∥∥ λ

a(λ)
Vλ(θ0) +W(θ0)

∥∥∥∥ ≤ ε.

If ε is small enough, Rouché’s theorem applies and, for λ ≥ λε, we have

rot(Vλ, S
1) = rot(−W, S1) = rot(W, S1) = 1 + rot(Γ, S1) .

The proof is thus completed. �

We are now ready to compute the topological degree associated to the peri-
odic problem for system (1.1). Let Pλ: R2 → R2 be the associated Poincaré map
for the period T . Since

Pλ(u) = λP̃λ(λ−1u),

it is well defined, for λ ≥ 1. Consequently, defining Ωλ = λΩ, i.e.

Ωλ = {ρϕ(θ) : θ ∈ [0, τ, ρ ∈ [0, λ[},

we can conclude as follows.

Theorem 3.2. Assume

(3.1) Γ(θ) 6= 0, for all θ ∈ S1.

Then, for λ sufficiently large,

deg(Pλ − Id,Ωλ) = 1 + rot(Γ, S1) .

We now have a series of corollaries, in some of which we need the following
notation: for a vector v ∈ R2 \ {0}, we write

R+v = {tv : t > 0}.

The first one deals with a situation where there is a “missing direction”.
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Corollary 3.3. Assume (3.1) and that there is a vector v ∈ R2 \ {0} such
that

Γ(θ) 6∈ R+v, for all θ ∈ S1.

Then, for λ sufficiently large, system (1.1) has a T -periodic solution.

Proof. In this case, rot(Γ, S1) = 0, so that deg(Pλ − Id,Ωλ) = 1, for λ
sufficiently large. �

Taking v = (0, 1) or v = (0,−1), we immediately get the following.

Corollary 3.4. Assume (3.1) and that Γ1 has constant sign, or that Γ2

has constant sign on the zeros of Γ1. Then, for λ sufficiently large, system (1.1)
has a T -periodic solution.

The above result generalizes a classical situation, first introduced by Lazer
and Leach, which is better known as Landesman–Lazer type of situation (see [4]
and the references therein).

The next corollary considers a situation in which Γ(θ) rotates in clockwise
direction.

Corollary 3.5. Assume (3.1) and that there is a vector v ∈ R2 \ {0} such
that, if Γ(θ) ∈ R+v for some θ ∈ [0, τ [, then d

dθ 〈Γ(θ)|Jv〉 exists and is negative.
Then, for λ sufficiently large, system (1.1) has a T -periodic solution.

Proof. In this case, rot(Γ, S1) ≥ 0, so that deg(Pλ − Id,Ωλ) ≥ 1, for λ
sufficiently large. �

It is now useful to define the sets

A+ = {θ ∈ S1 : Γ1(θ) = 0, Γ2(θ) > 0},
A− = {θ ∈ S1 : Γ1(θ) = 0, Γ2(θ) < 0}.

Taking v = (0, 1) or v = (0,−1) in Corollary 3.5, we have the following.

Corollary 3.6. Assume (3.1), and that Γ1 is differentiable and one of the
following two situations holds:

(a) Γ′1(θ) > 0 for every θ ∈ A+;
(b) Γ′1(θ) < 0 for every θ ∈ A−.

Then, for λ sufficiently large, system (1.1) has a T -periodic solution.

As a particular case, we have the following.

Corollary 3.7. Assume (3.1), and that Γ1 is differentiable and there are
two constants c1, c2 ∈ R, with c1 > 0, for which Γ2 = c1Γ′1 + c2. Then, for λ
sufficiently large, system (1.1) has a T -periodic solution.

Proof. If c2 ≤ 0, we are in the situation (a) of Corollary 3.6, while if c2 > 0
we have (b). Then, Corollary 3.6 directly applies. �
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In the next corollary, Γ(θ) rotates in counter-clockwise direction at least
twice.

Corollary 3.8. Assume (3.1) and that there is a vector v ∈ R2 \ {0} such
that, if Γ(θ) ∈ R+v for some θ ∈ [0, τ [, then d

dθ 〈Γ(θ)|Jv〉 exists and is positive.
If the set

Av = {θ ∈ S1 : Γ(θ) ∈ R+v}

has at least two elements, then, for λ sufficiently large, system (1.1) has a T -
periodic solution.

Proof. Here, rot(Γ, S1) ≤ −2, so that deg(Pλ − Id,Ωλ) ≤ −1, for λ suffi-
ciently large. �

Taking v = (0, 1) or v = (0,−1) in Corollary 3.8, we readily get the following.

Corollary 3.9. Assume (3.1), and that Γ1 is differentiable and one of the
following two situations holds:

(a) Γ′1(θ) < 0 for every θ in the set A+, which has at least two elements;
(b) Γ′1(θ) > 0 for every θ in the set A−, which has at least two elements.

Then, for λ sufficiently large, system (1.1) has a T -periodic solution.

As a particular case which has often appeared in the applications, we have
the following.

Corollary 3.10. Assume (3.1), and that Γ1 is differentiable and there are
two constants c1, c2 ∈ R, with c1 < 0, for which Γ2 = c1Γ′1 + c2. If Γ2 changes
sign more than twice on the zeros of Γ1 in [0, τ [, then, for λ sufficiently large,
system (1.1) has a T -periodic solution.

Proof. If c2 ≤ 0, we are in the situation (a) of Corollary 3.9, while if c2 > 0
we have (b). Then, Corollary 3.9 directly applies. �

4. Two particular cases

We first assume that the function f in (1.1) does not depend explicitly on λ,
and is asymptotically positively homogeneous of some degree β ∈ [0, 1[, in its
second variable.

We consider the system

(4.1) Ju̇ = ∇H(u) + g(t, u),

and assume that there are some constants α > 0 and β ∈ [0, 1[ for which

(4.2) ‖g(t, u)‖ ≤ α(‖u‖β + 1),
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for every t ∈ R and u ∈ R2, and that there is a continuous function G: R× (R2 \
Σ) → R2 such that

(4.3) G(t, u) = lim
λ→∞

g(t, λu)
λβ

,

uniformly with respect to (t, u) as u varies in compact subsets of R2 \Σ (the set
Σ being defined as in Section 2). In this setting, choosing a(λ) = λβ , we see that
(2.3)–(2.5) hold, with F = G.

The Poincaré map associated to (4.1), not depending on λ, will now be
denoted by P. Assuming (3.1), the excision property of the degree permits, in
this situation, to replace deg(P − Id,Ωλ) in Theorem 3.2 with deg(P − Id, BR),
for any sufficiently large disk BR = {x ∈ R2 : ‖x‖ < R}, for which we have

deg(P − Id, BR) = 1 + rot(Γ, S1).

If Γ1 is not identically zero, it can be shown by classical results from degree
theory (see e.g. [11]) that

rot(Γ, S1) = deg(Γ1, ]a, a+ τ [ ∩ {Γ2 > 0}),

where a is chosen so that Γ1(a) 6= 0. Hence, the excision property lead to

deg(P − Id, BR) = 1 + deg(Γ1, ]a, a+ τ [ ∩ {Γ2 > 0})
= 1− deg(Γ1, ]a, a+ τ [ ∩ {Γ2 < 0}),

for R sufficiently large. This result has been proved in [7, Theorem 2].
We have already presented various examples of applications of this result in

[7] to scalar second order equations of the kind

(4.4) x′′ + µx+ − νx− + h(x, x′) = e(t),

generalizing equation (1.2) for the asymmetric oscillator. Here, we take

H(x, y) =
1
2
[µ(x+)2 + ν(x−)2 + y2],

with µ > 0 and ν > 0. Our results in [7] generalize those by Wang [14] and
Capietto and Wang [2]. However, for equation (4.4), it can be seen that Γ2 =
−Γ′1 + c, for some constant c ∈ R, so that the degree can be at most 1. In
particular, for the asymmetric oscillator, we have that Γ1 = Φ, as defined in (1.3),
and Γ2 = −Φ′, so that we recover the situation described in the Introduction.

A different situation appears for the equation

(4.5) x′′ + n2x = cos(nt)
(

1− σ
x2

1 + (nx)2 + (x′)2

)
+ ε cos t,
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where n is a positive integer. Here, β = 0, Σ = {0}, and nτ = T = 2π. Choosing
ϕ(t) = (sin(nt), n cos(nt)), for n ≥ 2 we have

Γ1(θ) = π

(
1− 3σ

4n2

)
sin(nθ), Γ2(θ) = nπ

(
σ

4n2
− 1

)
cos(nθ).

Then, Γ2(θ) = cn,σΓ′1(θ), with

cn,σ =
σ − 4n2

4n2 − 3σ
,

so that rot(Γ, S1) will be ±n, depending on the sign of cn,σ. Hence,

deg(P − Id, BR) =

{
1 + n if σ ∈ ]4n2/3, 4n2[,

1− n if σ 6∈ [4n2/3, 4n2],

for R large enough. The same is also true for n = 1, provided that ε is sufficiently
small.

We remark that an equation similar to (4.5) was proposed in [8] as an example
of apparently chaotic dynamics.

A second situation considered in [7] deals with a system like

(4.6) Ju̇ = ∇H(u) + εg(t, u),

with a small parameter ε > 0, where the function g is asymptotically positively
homogeneous of degree 1. We assume here that (4.2) and (4.3) hold, with β = 1.
The Poincaré map associated to (4.6), taking into account the small parameter
ε appearing in the equation, will now be denoted by P̂ε.

We can interpret such a situation by considering a function ε(λ) such that

(4.7) lim
λ→+∞

ε(λ) = 0,

and defining
f(t, u, λ) = ε(λ)g(t, u).

We are now in the situation of system (1.1), with a(λ) = λε(λ). Theorem 1
above tells us that, for λ large enough,

deg(P̂ε(λ) − Id,Ωλ) = deg(Pλ − Id,Ωλ) = 1 + rot(Γ, S1).

Since the function ε(λ) satisfying (4.7) is arbitrary, we can conclude that, for
any ε sufficiently small and λ large enough,

deg(P̂ε − Id,Ωλ) = 1 + rot(Γ, S1).

An equivalent version of this result has been given in [7, Theorem 3]. Again, we
can replace deg(P̂ε − Id,Ωλ) by deg(P̂ε − Id, BR), with R large enough.

As a simple example, consider the equation

x′′ + x = ε cos(nt)(|x|+ σ|x′|).
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If n is even, we find that Γ1(θ) = Γ2(θ) = 0, for every θ ∈ R, in which case our
theory does not apply. If n is odd, we find

Γ1(θ) = − 4(2 + nσ(−1)(n−1)/2)
n(n2 − 4)

sin(nθ),

Γ2(θ) =
4(n+ 2σ(−1)(n+1)/2)

n(n2 − 4)
cos(nθ),

so that

deg(P̂ε − Id, BR) =


1 + n if σ ∈

]
2
n

(−1)(n+1)/2,
n

2
(−1)(n+1)/2

[
,

1− n if σ 6∈
[

2
n

(−1)(n+1)/2,
n

2
(−1)(n+1)/2

]
,

for ε small enough, and R large enough. (Here we adopt the convention [a, b] =
[b, a] and ]a, b[=]b, a[.)

5. Large-amplitude periodic solutions

In this section we consider situations where large-amplitude T -periodic so-
lutions for system (1.1) appear. Similar results were proposed in [6] for scalar
second order equations depending on a parameter.

Considering again (θ, ρ) as generalized polar coordinates, we can identify the
set {(θ, ρ) : ρ > 0} with R2 \ {0} and define the function

F : R2 \ {0} → R2, F(θ, ρ) = (F1(θ, ρ),F2(θ, ρ)),

with F1 and F2 as in (2.10).

Theorem 5.1. Assume that there is an open bounded set U , whose closure
is contained in R2 \ {0}, for which deg(F , U) 6= 0. Then, there is a λ ≥ 1 such
that, for every λ ≥ λ, system (1.1) has a T -periodic solution of the form

(5.1) uλ(t) = λρλ(t)ϕ(t+ θλ(t)),

with λ−1uλ(t) ∈ U , for every t ∈ R.

Proof. Let r > 0 be such that U ∩ Br = ∅, and denote by (θ(t), ρ(t)) the
solution of (2.7) with starting point θ(0) = θ0 ∈ [0, τ [, ρ(0) = ρ0 ≥ r. By Lemma
2.1, the function ψλ: R2 \Br → R2, defined for λ sufficiently large by

ψλ(θ0, ρ0) =
(
−

∫ T

0

1
ρ(t)

〈f(t, λρ(t)ϕ(t+ θ(t)), λ)|ϕ(t+ θ(t))〉 dt,∫ T

0

〈f(t, λρ(t)ϕ(t+ θ(t)), λ)|ϕ̇(t+ θ(t))〉 dt
)
,
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has the following property: for every ε > 0, there is a λε such that, if λ ≥ λε,
then ∥∥∥∥ 1

a(λ)
ψλ(θ0, ρ0)−F(θ0, ρ0)

∥∥∥∥ ≤ ε,

for every (θ0, ρ0) in the closure of U . Then, taking ε sufficiently small, we have
that

deg(ψλ, U) = deg(F , U) 6= 0,

so that there is a (θ0, ρ0) ∈ U such that ψλ(θ0, ρ0) = 0. Consequently, (θ0, ρ0) is
the starting point for a T -periodic solution (θλ(t), ρλ(t)) of (2.7). Defining uλ(t)
as in (5.1), we have λ−1uλ(0) = ρ0ϕ(θ0) ∈ U and, by (2.8) and (2.9), if λ is
sufficiently large, then λ−1uλ(t) ∈ U , for every t ∈ [0, T ]. �

Corollary 5.2. Assume that the function F is differentiable and that there
is a point (θ∗, ρ∗), with ρ∗ > 0, for which F(θ∗, ρ∗) = 0 and the jacobian matrix
F ′(θ∗, ρ∗) is invertible. Then, there is a λ ≥ 1 such that, for every λ ≥ λ, system
(1.1) has a T -periodic solution of the form (5.1), with

lim
λ→∞

θλ(t) = θ∗, lim
λ→∞

ρλ(t) = ρ∗.

Proof. Since detF ′(θ∗, ρ∗) 6= 0, there is an open bounded neighborhood U
of (θ∗, ρ∗) on which F is a diffeomorphism, so that |deg(F , U)| = 1. Theorem
5.1 then applies to give a solution of the form (5.1), with (θλ(t), ρλ(t)) ∈ U , for
every t ∈ R, if λ is sufficiently large. Since the neighborhood U can be taken as
small as desired, the proof is easily completed. �

An alternative proof of the above corollary can be provided by the use of the
implicit function theorem.

As an example, consider the system

Ju̇ = ∇H(u) + εAu+ g(t, u),

where A is a 2×2 matrix and ε is a small parameter. We assume (4.2) and (4.3),
for some β ∈ [0, 1[, and setting λ = ε1/(β−1), we define

f(t, u, λ) = λβ−1Au+ g(t, u).

Then, taking a(λ) = λβ , we have

F (t, u) = Au+G(t, u).

Define

Λ1(θ) = −
∫ T

0

〈G(t, ϕ(t+ θ))|ϕ(t+ θ)〉 dt,

Λ2(θ) =
∫ T

0

〈G(t, ϕ(t+ θ))|ϕ̇(t+ θ)〉 dt,
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and Λ(θ) = (Λ1(θ),Λ2(θ)). Then,

F1(θ, ρ) = −κ1 +
1
ρ
Λ1(θ), F2(θ, ρ) = κ2ρ+ Λ2(θ),

where

κ1 =
∫ T

0

〈Aϕ(t)|ϕ(t)〉 dt, κ2 =
∫ T

0

〈Aϕ(t)|ϕ̇(t)〉 dt.

Assume that there are θ∗ ∈ [0, τ [ and ρ∗ > 0, for which Λ1 and Λ2 are differen-
tiable at θ∗,

Λ1(θ∗) = κ1ρ
∗, Λ2(θ∗) = −κ2ρ

∗,

and
Λ1(θ∗)Λ′2(θ

∗)− Λ2(θ∗)Λ′1(θ
∗) 6= 0,

i.e. Λ(θ∗) and Λ′(θ∗) are linearly independent. Then,

F(θ∗, ρ∗) = 0 and detF ′(θ∗, ρ∗) 6= 0,

so that Corollary 5.2 applies.
The above situation is illustrated by the following two examples, where for

simplicity we assume τ = T = 2π. First, consider the asymmetric oscillator with
a positive damping

(5.2) x′′ + εx′ + µx+ − νx− = e(t),

which was treated in [5], [6]. Here we have A =
(

0 1

0 0

)
, while β = 0 and the set

Σ is determined choosing α1 = 0 and α2 = π. Then,

Λ1(θ) =
∫ T

0

e(t)φ(t+ θ) dt,

i.e. Λ1 = Φ, as defined in (1.3), and Λ2 = −Φ′. Moreover, κ1 =
∫ 2π

0
(φφ′) = 0,

and κ2 =
∫ 2π

0
|φ′|2 dt = π. If θ∗ is such that

Φ(θ∗) = 0 and Φ′(θ∗) > 0,

then (5.2) has large amplitude 2π-periodic solutions of the form

(5.3) (xε(t), x′ε(t)) =
1
ε
ρε(t)(φ(t+ θε(t)), φ′(t+ θε(t))),

the functions θε(t), ρε(t) being such that

lim
ε→0+

θε(t) = θ∗, lim
ε→0+

ρε(t) =
Φ′(θ∗)
π

.

Since ε > 0, it can be seen that these solutions are asymptotically stable (see [5]).
As a second example consider the asymmetric oscillator

(5.4) x′′ + (µ+ ε)x+ − (ν + ε)x− = e(t),
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which was treated in [6]. Here we have A =
(

1 0

0 0

)
, while β = 0 and the set Σ

is determined choosing α1 = π/2 and α2 = 3π/2. Then, Λ1 = Φ and Λ2 = −Φ′.
Moreover,

κ1 =
∫ 2π

0

|φ|2 =
π(µ−3/2 + ν−3/2)

2
and κ2 =

∫ 2π

0

(φφ′) = 0.

If there is a θ∗ such that

Φ(θ∗) > 0, Φ′(θ∗) = 0, Φ′′(θ∗) 6= 0,

then (5.4) has large amplitude 2π-periodic solutions of the form (5.3), the func-
tions θε(t), ρε(t) being such that

lim
ε→0+

θε(t) = θ∗, lim
ε→0+

ρε(t) =
2Φ(θ∗)

π(µ−3/2 + ν−3/2)
.
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