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EXISTENCE OF MINIMIZER OF SOME FUNCTIONALS
INVOLVING HARDY-TYPE INEQUALITIES

Paul Sintzoff

(Submitted by M. Willem)

Abstract. We study a class of p-laplacian-type problems with various
unbounded weights and a forcing term on open subsets of RN or on the

positive real axis. To prove the existence of solution, we use variational

methods involving concentration-compactness technique and Hardy-type
inequalities.

1. Introduction

This paper is devoted to the existence of solution of the problem

(1.1)


−∆pu− λ

|u|p−2u

|x|p
=
f(x)
p

in Ω,

u = 0 in ∂Ω,

lim
|x|→∞

u(x) = 0.

This is a p-laplacian-like equation with an unbounded potential and a forcing
term. We will study the corresponding energy functional to obtain a solution
of (1.1). The classical minimization method cannot be used here because the
Lagrangian

L(x, u,∇u) = |∇u|p − λ
|u|p

|x|p
− fu
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is, in general, not bounded from below and Ω is, in general, unbounded. To over-
come this difficulty, we use a concentration-compactness argument (see Lions [5])
or more precisely the decomposition technique (see Smets [10] or Willem [11]).
Contrary to the usual case, we consider here a free minimization problem. An-
other key ingredient to prove the result is the Hardy inequality (see e.g. [4], [12]).
Let us remark that a lack of compactness is due to the invariance by dilation of
the quotient ∫

RN |∇u|p dx∫
RN (|u|p/|x|p) dx

.

The idea of the proof is to consider a minimizing sequence (un) weakly con-
verging to u and ΩR, a region of the space designed to control the lack of compact-
ness, i.e. the components of Ω included in the union of B(0, 1/R) and Bc(0, R).
We decompose the functional in two components

J(un) =
∫

Ω\ΩR

L(x, un,∇un) dx+
∫

ΩR

L(x, un,∇un) dx

and we take the limit of each part

lim
R→∞

lim
n→∞

∫
Ω\ΩR

L(x, un,∇un) dx ≥ J(u),

lim
R→∞

lim
n→∞

∫
ΩR

L(x, un,∇un) dx ≥ 0.

These inequalities are obtained using a decomposition lemma. We deduce from
this that u is a minimizer of the functional.

Problem (1.1) for bounded domains was studied by Garćıa and Peral in
[3]. They proved the existence of a minimizer using an Hardy-type inequality,
Ekeland principle and a convergence theorem. An improvement obtained here is
the validity of the result for unbounded domains Ω.

Moreover, our method is applicable for a large class of problems, provided
the existence of an adapted Hardy-type inequality. As Secchi, Smets and Willem
proved a cylindrical Hardy inequality in [9], we can study the corresponding
equation involving the operator

−div
(
|∇u|p−2∇u

|y|ap

)
− λ

|u|p−2u

|y|(a+1)p
,

where x = (y, z) ∈ Rk × RN−k. This is done in Section 3. The particular case
k = N , corresponding to a radial singularity, is also considered.

In Section 4, we use the same technique to study a corresponding ordinary
differential equation using the one dimensional Hardy inequality.

As Marcus, Mizel and Pinchover [6], Colin [2] and Chabrowski and Willem [1]
developped an inequality on exterior domains with a singularity located on the
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boundary, we can also obtain the existence of solution of associated problems.
This is done in Section 5.

The author thanks Professor Michel Willem for leading him to this class
of problems and for all his suggestions and encouragements. The author also
thanks Professor Christophe Troestler for comments on Section 3.

Remark 1.1. After the completion of this work, we received a manuscript by
X. Zhong [13] and B. Pellacci sended us [7] and [8], papers concerning the study
of problem (1.1). In [13] the case of a bounded Ω is treated by an elementary
argument. In [7] and [8] the classical concentration-compactness principle from
[5] is used.

2. The p-laplacian case

To obtain solutions of problem (1.1), we study the associated energy func-
tional

J(u) :=
∫

Ω

|∇u|p dx− λ

∫
Ω

|u|p

|x|p
dx− 〈f, u〉

defined on D1,p
0 (Ω), the closure of D(Ω) with respect to the norm ||∇u||p and

where Ω is a smooth open subset of RN with compact boundary, 0 /∈ ∂Ω and

if 0 /∈ Ω then 1 < p 6= N and if 0 ∈ Ω then 1 < p < N ,(2.1)

f ∈ (D1,p
0 (Ω))′.

We consider inf J := infu∈D1,p
0 (Ω) J(u).

The aim of this section is to prove the following result.

Theorem 2.1. Assume that (2.1) is satisfied. If λ < λp := |(N − p)/p|p,
then inf J is achieved and problem (1.1) has a solution.

We first recall the classical Hardy inequality (see e.g. [4,12]).

Lemma 2.2. Assume that (2.1) is satisfied. If u ∈ D1,p
0 (Ω), then

λp

∫
Ω

|u|p

|x|p
dx ≤

∫
Ω

|∇u|p dx.

This inequality implies that the functional J is continuous, G-differentiable
and coercive if λ < λp. The key ingredient proving Theorem 2.1 is the following
lemma quantifying the loss of compactness.

Lemma 2.3. Let (un) ⊂ D1,p
0 (Ω) be such that un ⇀ u in D1,p

0 (Ω). We define

ΩR :=
{
x ∈ Ω : |x| < R−1 or |x| > R

}
,

µ0 := lim
R→∞

lim
n→∞

∫
ΩR

|∇un|p dx,

ν0 := lim
R→∞

lim
n→∞

∫
ΩR

|un|p

|x|p
dx,
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then we have

lim
n→∞

∫
Ω

|un|p

|x|p
dx =

∫
Ω

|u|p

|x|p
dx+ ν0,(2.2)

lim
n→∞

∫
Ω

|∇un|p dx ≥
∫

Ω

|∇u|p dx+ µ0,(2.3)

λp ν0 ≤ µ0.(2.4)

Proof. We have, for every R > 0,

lim
n→∞

∫
Ω

|un|p

|x|p
dx = lim

n→∞

∫
Ω\ΩR

|un|p

|x|p
dx+ lim

n→∞

∫
ΩR

|un|p

|x|p
dx,

=
∫

Ω\ΩR

|u|p

|x|p
dx+ lim

n→∞

∫
ΩR

|un|p

|x|p
dx,

as un → u in Lp
loc(Ω), by Rellich’s theorem. So, taking the limit as R→∞, we

obtain (2.2).
We have

lim
n→∞

∫
Ω

|∇un|p dx ≥ lim
n→∞

∫
Ω\ΩR

|∇un|p dx+ lim
n→∞

∫
ΩR

|∇un|p dx.

Hence, as the mapping v 7→
∫
Ω\ΩR

|∇v|p dx is convex, we get

lim
n→∞

∫
Ω

|∇un|p dx ≥
∫

Ω\ΩR

|∇u|p dx+ lim
n→∞

∫
ΩR

|∇un|p dx.

Taking the limit as R→∞, we obtain (2.3) by Levi’s theorem.
Now we introduce the truncation ψR ∈ C∞(RN ) with ψR(x) = 0 if x ∈ Ω\ΩR,

ψR(x) = 1 if x ∈ ΩR+1 and 0 ≤ ψR ≤ 1. For each v ∈ D1,p
0 (Ω), Lemma 2.2

implies that

(2.5) λp

∫
Ω

|ψRv|p

|x|p
dx ≤

∫
Ω

|∇(ψRv)|p dx.

On the other hand, using the fact that for each ε > 0, there exists a constant
c(ε, p) > 0 such that

(2.6) ||a+ b|p − |a|p| ≤ ε|a|p + c(ε, p) |b|p,

it is easy to verify that

µ0 = lim
R→∞

lim
n→∞

∫
ΩR

|∇(un − u)|p dx,

ν0 = lim
R→∞

lim
n→∞

∫
ΩR

|un − u|p

|x|p
dx.
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Using the truncation ψR, this implies that

µ0 = lim
R→∞

lim
n→∞

∫
Ω

|∇(un − u)|pψp
R dx,

ν0 = lim
R→∞

lim
n→∞

∫
Ω

|un − u|pψp
R

|x|p
dx.(2.7)

Using once again (2.6) and the compactness of the embedding D1,p
0 (Ω) ⊂ Lp(Ω)

for bounded domains, we get

(2.8) µ0 = lim
R→∞

lim
n→∞

∫
Ω

|∇((un − u)ψR)|p dx.

Now, putting together (2.5), (2.7) and (2.8) we obtain (2.4), and the lemma is
proved. �

Proposition 2.4. Under assumption (2.1) and if λ < λp, the functionnal
J is weakly lower semi-continuous.

Proof. Let (un) be such that un ⇀ u in D1,p
0 (Ω). Going if necessary to

a subsequence, we can assume that J(un) is convergent. So, we have by the
preceding lemma

lim
n→∞

J(un) = lim
n→∞

∫
Ω

|∇un|p dx− λ lim
n→∞

∫
Ω

|un|p

|x|p
dx− 〈f, u〉,

≥ J(u) + µ0 − λν0,

≥ J(u) + (λp − λ)ν0,

≥ J(u),

concluding the proof. �

Theorem 2.1 is an obvious consequence of Proposition 2.4. Moreover, the
proof of Proposition 2.4 shows that µ0 = ν0 = 0, so the minimizing sequence
(un) is strongly convergent up to a subsequence.

Remark 2.5. In the linear case p = 2, the strict convexity of the functional
ensure the uniqueness of solution. If p 6= 2, the uniqueness is in general not true.
A counter-example is given by Garćıa and Peral [3] for p > 2 and by Zhong [13]
for 1 < p < 2.

3. Cylindrical weight-case

In this section, we study

(3.1)


−div

(
|∇u|p−2∇u

|y|ap

)
= λ

|u|p−2u

|y|(a+1)p
+
f(x)
p

in Ω,

u = 0 on ∂Ω,

lim
|x|→∞

u(x) = 0,
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where x = (y, z) ∈ Rk × RN−k. We introduce the corresponding functional

J(u) :=
∫

Ω

|∇u|p

|y|ap
dx− λ

∫
Ω

|u|p

|y|(a+1)p
dx− 〈f, u〉,

defined on D1,p
a,k(Ω), which is the closure of D(Ω) with respect to the norm

‖u‖ =
( ∫

Ω

|∇u|p

|y|ap
dx

)1/p

and

1 < p <∞,(3.2)

a ≥ 0,(3.3)

(a+ 1)p < k,(3.4)

f ∈ (D1,p
a,k(Ω))′.

For simplicity we assume that Ω is either B(0, R) or the complement of the
corresponding closed ball. The Hardy-type inequality associated to this problem
is due to Secchi, Smets and Willem [9].

Lemma 3.1. Assume that (3.2)–(3.4) are satisfied. If u ∈ D1,p
a,k(Ω), then

λkap

∫
Ω

|u|p

|y|(a+1)p
dx ≤

∫
Ω

|∇u|p

|y|ap
dx, where λkap :=

(
k − (a+ 1)p

p

)p

.

The aim of this section is to prove the following result.

Theorem 3.2. Assume that (3.2)–(3.4) are satisfied. If λ < λkap, then inf J
on D1,p

a,k(Ω) is achieved and problem (3.1) has a solution.

Lemma 3.1 implies that the functional J is continuous, G-differentiable and
coercive if λ < λkap. Let (un) ⊂ D1,p

a,k(Ω) a minimizing sequence for J , i.e.

J(un) → inf J := inf
u∈D1,p

a,k(Ω)
J(u) as n→∞.

The goal is to prove that this sequence (un) contains a subsequence converging
to a minimizer of J . As J is coercive, (un) is bounded so we can assume that
un ⇀ u in D1,p

a,k(Ω). Our first result is the following compactness lemma.

Lemma 3.3. Assume that (3.2)–(3.4) are satisfied. If un ⇀ u in D1,p
a,k(Ω),

then un/|y|a → u/|y|a in Lp(Ac) where Ac := {x = (y, z) ∈ Ω : 1/c <

|y| and |x| < c} for every c > 1.

Proof. The result is clear as Ac is bounded and as the weight |y|−a is
bounded on the set considered. �

We can now obtain the following decomposition lemma.
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Lemma 3.4. Let (un) ⊂ D1,p
a,k(Ω) be such that un ⇀ u in D1,p

a,k(Ω). We define

ΩR := Ω ∩ ((Bk(0, R−1)× RN−k) ∪ (RN \BN (0, R))),

µ0 := lim
R→∞

lim
n→∞

∫
ΩR

|∇un|p

|y|ap
dx,

ν0 := lim
R→∞

lim
n→∞

∫
ΩR

|un|p

|y|(a+1)p
dx,

then we have

lim
n→∞

∫
Ω

|un|p

|y|(a+1)p
dx =

∫
Ω

|u|p

|y|(a+1)p
dx+ ν0,(3.5)

lim
n→∞

∫
Ω

|∇un|p

|y|ap
dx ≥

∫
Ω

|∇u|p

|y|ap
dx+ µ0,(3.6)

λkap ν0 ≤ µ0.(3.7)

Proof. As un → u in Lp
loc(Ω), we have for every R > 0,

lim
n→∞

∫
Ω

|un|p

|y|(a+1)p
dx = lim

n→∞

∫
Ω\ΩR

|un|p

|y|(a+1)p
dx+ lim

n→∞

∫
ΩR

|un|p

|y|(a+1)p
dx,

=
∫

Ω\ΩR

|u|p

|y|(a+1)p
dx+ lim

n→∞

∫
ΩR

|un|p

|y|(a+1)p
dx.

So, taking the limit as R→∞, we obtain (3.5).
We have

lim
n→∞

∫
Ω

|∇un|p

|y|ap
dx ≥ lim

n→∞

∫
Ω\ΩR

|∇un|p

|y|ap
dx+ lim

n→∞

∫
ΩR

|∇un|p

|y|ap
dx,

≥
∫

Ω\ΩR

|∇u|p

|y|ap
dx+ lim

n→∞

∫
ΩR

|∇un|p

|y|ap
dx,

as the mapping v 7→
∫
Ω\ΩR

(|∇v|p/|y|ap) dx is convex. Taking now the limit as
R→∞, we obtain (3.6).

To prove inequality (3.7) we begin finding new formulations for µ0 and ν0.
Using inequality (2.6), we obtain :

µ0 = lim
R→∞

lim
n→∞

∫
ΩR

|∇(un − u)|p

|y|ap
dx,

ν0 = lim
R→∞

lim
n→∞

∫
ΩR

|un − u|p

|y|(a+1)p
dx.

We introduce the truncation ψR ∈ C∞(RN ) with ψR(x) = 0 if x ∈ Ω \ ΩR,
ψR(x) = 1 if x ∈ ΩR+1 and 0 ≤ ψR ≤ 1. With this truncation, we get

µ0 = lim
R→∞

lim
n→∞

∫
Ω

|∇(un − u)|pψp
R

|y|ap
dx,

ν0 = lim
R→∞

lim
n→∞

∫
Ω

|un − u|pψp
R

|y|(a+1)p
dx.
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Using Lemma 3.3 and (2.6) once again we obtain

µ0 = lim
R→∞

lim
n→∞

∫
Ω

|∇((un − u)ψR)|p

|y|ap
dx.

Applying Lemma 3.1 to (un−u)ψR and taking the limits we get inequality (3.7).�

This decomposition lemma implies the weak lower semi-continuity of J , lead-
ing to Theorem 3.2 as in Section 2.

Remark 3.5. When k = N , the singularity in (3.1) is radial, i.e. the problem
is 

−div
(
|∇u|p−2∇u

|x|ap

)
= λ

|u|p−2u

|x|(a+1)p
+
f(x)
p

in Ω,

u = 0 on ∂Ω,

lim
|x|→∞

u(x) = 0.

By Theorem 3.2, there exist a solution in the closure of D1,p
a,N (Ω) when a ≥ 0,

1 < p < N/(a+ 1), λ < λNap and f ∈ (D1,p
a,N (Ω))′. Moreover, the proof works

for every regular domain Ω such that 0 /∈ ∂Ω.

4. One dimensional case

Here we study the one dimensional problem

(4.1)


−

(
|u′|p−2u′

xap

)′
= λ

|u|p−2u

x(a+1)p
+
f(x)
p

in R+,

u(0) = 0,

lim
x→+∞

u(x) = 0.

To obtain solutions of problem (4.1), we consider the associated energy functional

J(u) :=
∫ ∞

0

|u′|p

xap
dx− λ

∫ ∞

0

|u|p

x(a+1)p
dx− 〈f, u〉

defined on D1,p
a (R+), which is the closure of D(R+) with respect to the norm

||u|| = (
∫∞
0

(|u′|p/xap) dx)1/p, where

1 < p <∞,(4.2)

a ≥ 0,(4.3)

1 < (a+ 1)p,(4.4)

f ∈ (D1,p
a (R+))′.

We will consider
inf J := inf

u∈D1,p
a (R+)

J(u).

The aim of this section is to prove the following result.
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Theorem 4.1. Assume that (4.2)–(4.4) are satisfied. If λ < λap := (((a +
1)p− 1)/p)p, then inf J is achieved and problem (4.1) admits a solution.

In order to prove this theorem, we recall the classical Hardy inequality (see
e.g. [4], [12]).

Lemma 4.2. Assume that (4.2)–(4.4) are satisfied. If u ∈ D1,p
a (R+), then

λap

∫ ∞

0

|u|p

x(a+1)p
dx ≤

∫ ∞

0

|u′|p

xap
dx.

This inequality implies that the functional J is continuous, G-differentiable
and coercive if λ < λap. Let (un) ⊂ D1,p

a (R+) a minimizing sequence for J , i.e.

J(un) → inf J as n→∞.

The following lemma is used in the proof of Lemma 4.4.

Lemma 4.3. Assume that (4.2)–(4.4) are satisfied. If un ⇀ u in D1,p
a (R+),

then un/x
a → u/xa in Lp([1/c, c]) for every c > 1.

Proof. The result is clear as x−a is bounded on the interval considered. �

The following decomposition lemma is proved as before.

Lemma 4.3. Let (un) ⊂ D1,p
a (R+) be such that un ⇀ u in D1,p

a (R+). We
define

ΩR := (0, R−1) ∪ (R,∞),

µ0 := lim
R→∞

lim
n→∞

∫
ΩR

|u′n|p

xap
dx,

ν0 := lim
R→∞

lim
n→∞

∫
ΩR

|un|p

x(a+1)p
dx,

then we have

lim
n→∞

∫ ∞

0

|un|p

x(a+1)p
dx =

∫ ∞

0

|u|p

x(a+1)p
dx+ ν0,

lim
n→∞

∫ ∞

0

|u′n|p

xap
dx ≥

∫ ∞

0

|u′|p

xap
dx+ µ0,

λap ν0 ≤ µ0.

Theorem 4.1 follows as Theorem 3.2.

5. Exterior domain-case

In this section, we study the problem

(5.1)


−∆pu = λ

|u|p−2u

δ(x)p
+
f(x)
p

in Ω,

u = 0 on ∂Ω,

lim
|x|→∞

u(x) = 0,
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where Ω is an exterior domain, i.e. an open subset of RN with a compact bound-
ary of class C2 and without bounded component and δ(x) denote the function

δ(x) = dist(x, ∂Ω).

We also suppose that N ≥ 2, 1 < p 6= N and f ∈ (D1,p
0 (Ω))′. To obtain a

solution of problem (5.1) we introduce the associated functional

J(u) :=
∫

Ω

|∇u|p dx− λ

∫
Ω

∣∣∣u
δ

∣∣∣p dx− 〈f, u〉,

defined on D1,p
0 (Ω). Here we use the Hardy’s inequality for exterior domains

(see [1]).

Lemma 5.1. Let N ≥ 2, p > 1 and p 6= N , then there exists λNp > 0 such
that for every u ∈ D1,p

0 (Ω),

λNp

∫
Ω

∣∣∣∣uδ
∣∣∣∣p dx ≤ ∫

Ω

|∇u|p dx.

The main result of this section is the following theorem.

Theorem 5.2. Let N ≥ 2, and 1 < p 6= N . If λ < λNp, then inf J on
D1,p

0 (Ω) is achieved and problem (5.1) has a solution.

As the proof of this theorem is very similar to the proofs of Theorems 2.1,
3.2 and 4.1, we only sketch the main ideas.

As in Sections 2–4 the Hardy inequality implies that the functional J is
continuous, G-differentiable and coercive if λ < λNp. So, let (un) ⊂ D1,p

0 (Ω) a
minimizing sequence for J . We can assume that un ⇀ u in D1,p

0 (Ω). Working
as before we obtain the following decomposition lemma.

Lemma 5.3. Let N ≥ 2, 1 < p 6= N and (un) ⊂ D1,p
0 (Ω) such that un ⇀ u

in D1,p
0 (Ω). We define

ΩR :=
{
x ∈ Ω : δ(x) < R−1 or |x| > R

}
,

µ0 := lim
R→∞

lim
n→∞

∫
ΩR

|∇un|p dx,

ν0 := lim
R→∞

lim
n→∞

∫
ΩR

∣∣∣un

δ

∣∣∣p dx,
then we have

lim
n→∞

∫
Ω

∣∣∣un

δ

∣∣∣p dx =
∫

Ω

∣∣∣u
δ

∣∣∣p dx+ ν0,

lim
n→∞

∫
Ω

|∇un|p dx ≥
∫

Ω

|∇u|p dx+ µ0,

λNp ν0 ≤ µ0.

To prove Theorem 5.1 it suffices to adapt the proof of Theorem 2.1.

Remark 5.4. The same result is valid for bounded C2 domains for any p > 1.
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