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ON A MULTIPLICITY RESULT OF J. R. WARD
FOR SUPERLINEAR PLANAR SYSTEMS

Cristian Bereanu

Abstract. The purpose of this paper is to prove, under some assumptions

on g, that the boundary value problem

u′ = −g(t, u, v)v, v′ = g(t, u, v)u,

u(0) = 0 = u(π),

has infinitely many solutions. To prove our first main result we use a

theorem of J. R. Ward and to prove the second one we use Capietto–

Mawhin–Zanolin continuation theorem.

1. Introduction

Consider the following boundary value problem

u′ = −g(t, u, v)v, v′ = g(t, u, v)u,(1.1)

u(0) = 0 = u(π),(1.2)

where g is a continuous function on [0, π]× R2. Assume

g(t, u, v) →∞ as |u|+ |v| → ∞ uniformly with t ∈ [0, π],(1.3)

g(t, 0, 0) = 0 for all t ∈ [0, π],(1.4)

g(t, u, v) ≥ 0 for all (t, u, v) ∈ [0, π]× R2.(1.5)
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Under these assumptions J. R. Ward [10], among other results, proves, using
essentially Rabinowitz global bifurcation theorem (see e.g. [3], [6], [8]) and the
number of rotations associated to the bifurcations branches furnished by it, that
boundary value problem (1.1), (1.2) has infinitely many solutions. Using the
same method as in [10], we prove in Section 2 that (1.3), (1.4) are sufficient for
(1.1), (1.2) to have infinitely many solutions. Remark that (1.4) is essential in
the method used in [10].
Now, suppose that

(1.6) g(0,−u, v) = g(0, u, v) for all (u, v) ∈ R2.

If conditions (1.3), (1.6) hold and if the function g(0, · ) is locally Lipschitzian
on R2, we prove in Section 3 that boundary value problem (1.1), (1.2) has infini-
tely many solutions. We use Capietto–Mawhin–Zanolin continuation theorem [2]
(see also [1], [4], [7]).

2. A first main result

Theorem 2.1. If g: [0, π]×R2 → R is a continuous function satisfying (1.3)
and (1.4), then (1.1), (1.2) has infinitely many topologically distinct solutions.
Indeed, for each k ∈ N there is a solution wk = (uk, vk) such that the odd/even
2π-periodic extension w̃k of wk has rotation number k.

Proof. Let X = {w = (u, v) ∈ C([0, π],R2) : u(0) = 0 = u(π)} be a linear
space equipped whit the norm ||w|| = maxt∈[0,π] |w(t)| where, if w = (u, v) ∈ R2,
then |w|2 = u2 + v2. As in [10], we associate to (1.1), (1.2) the following family
of boundary value problems

u′ = −µv − g(t, u, v)v, v′ = µu+ g(t, u, v)u,(2.1)

u(0) = 0 = u(π).(2.2)

Let S be the closure in R × X of the set of all nontrivial solutions (µ,w) of
(2.1), (2.2). For each k ∈ N let Ck ⊂ R × X denote the component of S
which meets (k, 0). Using [10, Theorem 3] (we can apply this theorem because g
satisfies (1.4)) we have that Ck is unbounded in R×X for each k ∈ N. Consider
(µ,w) ∈ Ck, w 6= 0. Let w̃ be the odd/even 2π-periodic extension of w, and let g̃
be the extension of g on [−π, π] × R2 defined by g̃(t, u, v) = g(−t,−u, v) for all
(t, u, v) ∈ [−π, 0[×R2. Then, if t ∈ [−π, π] \ {0} we have that

ũ′(t) = −µṽ(t)− g̃(t, ũ(t), ṽ(t))ṽ(t), ṽ′(t) = µũ(t) + g̃(t, ũ(t), ṽ(t))ũ(t).

This implies that

d

dt
|w̃(t)|2 = 0 for all t ∈ [−π, π] \ {0},
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from where we deduce that ũ2+ ṽ2 is constant on [−π, π]. Then t � w̃(t)/|w̃(t)|
may be considered as a map of the circle S1 into itself, denoted as in [10] by
ϕ(µ,w). Let rot(ϕ(µ,w)) be the rotating number (Brouwer degree) of ϕ(µ,w).
Using Kronecker formula [9], we have that

(2.3) rot(ϕ(µ,w)) =
1
2π

∫ π
−π

ṽ′ũ− ũ′ṽ
ũ2 + ṽ2

dt = µ+
1
2π

∫ π
−π

g̃(t, ũ, ṽ) dt.

Let k ∈ N, then from [10, Theorem 3] we know that rot(ϕ(µ,w)) = k for all
(µ,w) ∈ Ck, w 6= 0. We have three possible situations:

(I) the projection of Ck onto R is unbounded from below,
(II) the projection of Ck onto R is bounded,
(III) the projection of Ck onto R is unbounded from above.

We show that situations (II) and (III) don’t hold. Using (1.3), we deduce that
there exists c ∈ R such that

(2.4) g(t, u, v) ≥ c for all (t, u, v) ∈ [0, π]× R2.

Suppose that (II) holds. Then, because Ck is unbounded in R×X, there is
a sequence (µn, wn)n in Ck such that (µn)n is bounded in R and ||wn|| → ∞.
As we have already seen, we have for all n ∈ N that

||wn||2 = ũ2n + ṽ2n for all t ∈ [−π, π]

so that |ũn| + |ṽn| → ∞ uniformly in t ∈ [−π, π]. Using (1.3) we deduce that
g̃(t, ũn(t), ṽn(t)) → ∞ uniformly in t ∈ [−π, π]. From this, the fact that the
sequence (µn)n is bounded and (2.3), we have that rot(ϕ(µn, wn))→∞, a con-
tradiction with rot(ϕ(µn, wn)) = k for all n ∈ N.
Suppose that (III) holds. Then, there is a sequence (µn, wn)n in Ck such

that µn → ∞. Using (2.3) and (2.4) it follows that rot(ϕ(µn, wn)) → ∞, which
is again a contradiction with rot(ϕ(µn, wn)) = k for all n ∈ N.
Consequently we can only have situation (I), so, from the connectedness of

Ck and (k, 0) ∈ Ck it follows that there exists wk ∈ X such that (0, wk) ∈ Ck, so
wk 6= 0 is a solution of (1.1), (1.2). On the other hand, because rot(ϕ(0, wk)) = k
for all k ∈ N, we deduce that wk 6= wj if k 6= j. �

3. A second main result

In this section g: [0, π] × R2 → R is a continuous function satisfying (1.3)
and (1.6). Moreover, we suppose that the function g(0, · ) is locally Lipschitzian
on R2. Our second main result is the following one.
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Theorem 3.1. If g is as above, then (1.1), (1.2) has infinitely many topo-
logically distinct solutions.

To prove the theorem above, we use Capietto–Mawhin–Zanolin continuation
theorem. So, we need to make some preparations. Let X be the linear space of
continuous functions w = (u, v) on [0, π] with values in R2 equipped with the
usual norm ||w|| = maxt∈[0,π] |w(t)|. Consider the homotopy G: [0, 1] ×X → X

defined by G(λ, (u, v)) = (x, y), where

x(t) = −
∫ t
0
g(λs, u, v)v ds, y(t) = v(0)− u(π) +

∫ t
0
g(λs, u, v)u ds,

for all t ∈ [0, π].

Lemma 3.2. The homotopy G is completely continuous on [0, 1]×X.

Proof. Let (λn, wn)n ⊂ [0, 1] ×X such that λn → λ0, wn → w0. Then, if
t ∈ [0, π], we have∣∣∣∣ ∫ t

0
g(λns, un, vn)vn ds−

∫ t
0
g(λ0s, u0, v0)v0 ds

∣∣∣∣
≤
∫ π
0
|g(λns, un, vn)vn − g(λ0s, u0, v0)v0| ds =: γn, (n ∈ N).

Using Lebesgue’s dominated convergence theorem, we deduce that γn → 0. Now,
the continuity of G follows obviously. Let (λn, wn)n be a bounded sequence in
[0, 1]×X. Passing if necessarily to a subsequence, we can assume that λn → λ0.
For n ∈ N, define the continuous function xn by

xn(t) =
∫ t
0
g(λns, un, vn)vn ds, (t ∈ [0, π]).

Let M > 0 such that ||wn|| ≤ M for all n ∈ N and M ′ = sup{|g(t, u, v)v| :
(t, u, v) ∈ [0, π]× [−M,M ]2}. Because

|xn(t)| ≤
∫ π
0
|g(λns, un, vn)vn| ds, (t ∈ [0, π]),

we deduce that maxt∈[0,π] |xn(t)| ≤ πM ′ for all n ∈ N. Now, consider t, t′ ∈ [0, π]
and n ∈ N. We have

|xn(t)− xn(t′)| ≤
∣∣∣∣ ∫ t′
t

|g(λns, un, vn)vn| ds
∣∣∣∣ ≤M ′|t− t′|.

It follows that the sequence (xn)n is equicontinous. So, we can apply Arzela-
Ascoli theorem to deduce that (xn)n has a convergence subsequence in C([0, π]).
Now, the compactness of G follows obviously. �
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Consider the family of boundary value problems

u′ = −g(λt, u, v)v, v′ = g(λt, u, v)u,(3.1)

u(0) = 0 = u(π).(3.2)

Lemma 3.3. If (λ,w) ∈ [0, 1] × X, then G(λ,w) = w if and only if w is
a solution of (3.1), (3.2).

Proof. Suppose that G(λ,w) = w. Then, it is clear that we have (3.1). On
the other hand, it follows that u(0) = 0 and v(0) = v(0) − u(π), so u(π) = 0.
Conversely, suppose that w is a solution of (3.1), (3.2). Integrating on [0, t]
the equations in (3.1) and using the boundary condition (3.2), it follows that
G(λ,w) = w. �

Let g̃: [−π, π]×R2 → R be a extension of g defined by g̃(t, u, v) = g(−t,−u, v)
for all (t, u, v) ∈ [−π, 0[×R2. Using (1.6) it follows that g̃ is continuous. On the
other hand, if (u, v) 6= (0, 0) is a solution of (3.1), (3.2), we define the 2π−periodic
odd/even continuous extension of (u, v) by ũ(t) = −u(−t), ṽ(t) = v(−t) for all
t ∈ [−π, 0[.

Lemma 3.4. If (u, v) 6= (0, 0) is a solution of (3.1), (3.2), then (ũ, ṽ) ∈
C1([−π, π],R2) and ũ′ = −g̃(λt, ũ, ṽ)ṽ, ṽ′ = g̃(λt, ũ, ṽ)ũ.

Proof. Let t ∈ ]0, π], then ũ is differentiable in t and

ũ′(t) = u′(t) = −g(λt, u(t), v(t))v(t) = −g̃(λt, ũ(t), ṽ(t))ṽ(t).

Analogously, ṽ is differentiable in t and

ũ′(t) = g̃(λt, ũ(t), ṽ(t))ũ(t).

Now, consider t ∈ [−π, 0[. Then, ũ is differentiable in t and

ũ′(t) = u′(−t) = −g(−λt, u(−t), v(−t))v(−t)
= −g(−λt,−ũ(t), ṽ(t))ṽ(t) = −g̃(λt, ũ(t), ṽ(t))ṽ(t).

Note that the last equality follows by (1.6). On the other hand, ṽ is differentiable
in t and

ṽ′(t) = −v′(−t) = −g(−λt, u(−t), v(−t))u(−t)
= −g(−λt,−ũ(t), ṽ(t))(−ũ(t)) = g̃(λt, ũ(t), ṽ(t))ũ(t).

We have

lim
t↘0

ũ(t)− ũ(0)
t

= lim
t↘0

u(t)
t
= u′(0) = −g(0, 0, v(0))v(0),

lim
t↗0

ũ(t)− ũ(0)
t

= lim
t↗0

−u(−t)
t
= −g(0, 0, v(0))v(0).
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It follows that ũ is differentiable in 0 and ũ′(0) = −g(0, 0, v(0))v(0). On the
other hand we have

lim
t↘0

ṽ(t)− ṽ(0)
t

= v′(0) = g(0, 0, v(0))u(0) = 0, lim
t↗0

ṽ(t)− ṽ(0)
t

= −v′(0) = 0.

So, ṽ is differentiable in 0 and ṽ′(0) = 0. Finally, ũ, ṽ are C1 because of the
continuity of g̃. �

Let w = (u, v) be a non-trivial solution of (3.1), (3.2). Then, using Lemma 3.4
we deduce that (ũ2(t) + ṽ2(t))′ = 0 for all t ∈ [−π, π]. It follows that |w̃(t)|2 = c
for all t ∈ [−π, π], where c > 0 is a constant. Now, w̃(−π) = w̃(π), and
w̃(t)/|w̃(t)| ∈ S1 for all t ∈ [−π, π]. Identifying S1 with [−π, π]/{−π, π} we
obtain a mapping t � w̃(t)/|w̃(t)| of S1 into itself, which we denote by ψ(λ,w).
The rotation (Brouwer degree) is defined. Using again Kronecker formula and
Lemma 3.4 have that

(3.3) deg(ψ(λ,w)) =
1
2π

∫ π
−π

ṽ′ũ− ũ′ṽ
ũ2 + ṽ2

dt =
1
2π

∫ π
−π

g̃(λt, ũ, ṽ) dt.

Let δ:R2 → R, δ(u, v) = min{1, (u2 + v2)−1}. If (u, v) ∈ X, we define as
before (ũ, ṽ) to be the odd/even extension (not necessarily continuous) of (u, v).
Consider ϕ: [0, 1]×X → R+ defined by

ϕ(λ, (u, v)) =
1
2π

∣∣∣∣ ∫ π
−π

g̃(λt, ũ, ṽ)(ũ2 + ṽ2)δ(ũ, ṽ) dt
∣∣∣∣.

Lemma 3.5. The function ϕ defined above is continuous.

Proof. The proof follows easily using the continuity of g̃, δ and Lebesgue’s
dominated convergence theorem. �

Lemma 3.6. There exists R > 1 such that ϕ(λ,w) ∈ N for all (λ,w) ∈ Σ
with ||w|| ≥ R, where Σ = {(λ,w) ∈ X:G(λ,w) = w}.

Proof. From (1.3) we have that there exists R > 1 such that

(3.4) g̃(t, u, v) > 0 if |(u, v)| ≥ R, t ∈ [−π, π].

Let (λ,w) ∈ Σ such that ||w|| ≥ R. Using Lemmas 3.3 and 3.4 we deduce that

(3.5) ũ2(t) + ũ2(t) = ||w||2 ≥ R2 > 1 for all t ∈ [−π, π].

The conclusion follows from relations (3.3)–(3.5) and the definition of ϕ. �

Lemma 3.7. The set ϕ−1(n) ∩ Σ is bounded for each n ∈ N.

Proof. Let n ∈ N and suppose that the set ϕ−1(n) ∩ Σ is unbounded.
There exists a sequence (λk, wk) ∈ Σ such that ϕ(λk, wk) = n for all k ∈ N
and ||wk|| → ∞. Using Lemmas 3.3 and 3.4 we deduce that ũ2k + ṽ2k = ||wk||2

on [−π, π], which implies that |ũk(t)|+ |ṽk(t)| → ∞ uniformly with t ∈ [−π, π].
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So, using (1.3), (3.3) and the definition of ϕ we obtain that ϕ(λk, wk) → ∞.
Contradiction. �

Lemma 3.8. If u0, v0 ∈ R, then the initial boundary value problem

(3.6) u′ = −g(0, u, v)v, v′ = g(0, u, v)u, u(0) = u0, v(0) = v0

has a unique solution (u(·, (u0, v0)), v( · , (u0, v0))) which is defined on R.

Proof. Because the function g(0, · ) is locally Lipschitzian on R2, it follows
that (3.6) has a unique maximal solution (u( · , (u0, v0)), v( · , (u0, v0))): ]a, b[ →
R2. We shall prove that ]a, b[ = R. Remark that (3.6) implies

|(u(t, (u0, v0)), v(t, (u0, v0)))| = |(u0, v0)|

for all t ∈]a, b[. Using again (3.6) and the continuity of g, it follows that the
function (u′( · , (u0, v0)), v′( · , (u0, v0))) is bounded on ]a, b[, which implies that
(u( · , (u0, v0)), v( · , (u0, v0))) has a continuous extension on ]a, b], if b is finite.
Consider (ub, vb) the solution of (3.6) with the initial data (u(b, (u0, v0)),

v(b, (u0, v0))). Let ε > 0 sufficiently small and define (u, v): ]a, b+ ε]→ R2 by

(u, v) = (u( · , (u0, v0)), v( · , (u0, v0)))

on ]a, b[, and (u, v) = (ub, vb) on [b, b + ε]. It is clear that (u, v) verifies (3.6),
contradiction with maximality of (u( · , (u0, v0)), v( · , (u0, v0))). Analogously, it
follows that a = −∞, so b =∞. �

Using Lemma 3.8 we can consider the continuous function U :R2 → R2 de-
fined by U(z1, z2) = (2z1, z2+u(π, (z1, z2))). It is obvious that if (u, v) is a solu-
tion of (3.1), (3.2) with λ = 0, then (0, v(0)) is a fixed point of U , and if (z1, z2)
is a fixed point of U , then z1 = 0 and (u( · , (0, z2)), v( · , (0, z2))) is a solution of
(3.1), (3.2) with λ = 0. If α > 0, define

Ωα = {w ∈ X: ||w|| < α}, Gα = {ξ ∈ R2: |ξ| < α}.

Suppose that α is chosen so that there is no solution (u, v) of (3.1), (3.2) with
λ = 0 such that |v(0)| = α. The open sets Ωα, Gα have the following properties:
there are no initial values of solutions to (3.1), (3.2) with λ = 0 on ∂Gα and no
solution on ∂Ωα; the set of initial values in Gα of solutions to (3.1), (3.2) with
λ = 0 equals the set of values at t = 0 of solutions in Ωα to (3.1), (3.2) with
λ = 0. If G ⊂ R2,Ω ⊂ X are two bounded open sets having the proprieties
above, following Krasnosel’skii and Zabrĕıko, we say that G,Ω have a common
core. Following the same lines as in the proof of [5, Theorem 28.5] we have the
following result.
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Lemma 3.9. If G ⊂ R2,Ω ⊂ X are two open bounded sets having a common
core, then the degrees dB(I −U , G, 0), dLS(I −G(0, · ),Ω, 0) are well defined and
equal.

In what follows we use the notation

(u( · , α), v( · , α)) for (u( · , (0, α)), v( · , (0, α))).

If R > 1 is the constant from Lemma 3.6 and α > R, then, using (3.4) it follows
that the range of (u( · , α), v( · , α)) is the circle of radius α. Let τ(α) > 0 be such
that u(τ(α), α) = 0 and u(t, α) 6= 0 for all t ∈]o, τ(α)[. On the other hand, from
Lemma 3.8 and (1.6), we obtain that u( · , α) is odd and v( · , α) is even. So, we
have that (u( · , α), v( · , α)) is a parametrization from [−τ(α), τ(α)] to the circle
of radius α.

Lemma 3.10. τ(α)→ 0 as α→∞.

Proof. Because (u( · , α), v( · , α)) is a parametrization from [−τ(α), τ(α)]
to the circle of radius α, we have that∫ τ(α)

−τ(α)
(u′2(t, α) + v′2(t, α))1/2 dt = 2πα

which implies that

(3.7) τ(α) inf{(u′2(t, α) + v′2(t, α))1/2 : t ∈ [−τ(α), τ(α)]} ≤ πα.

On the other hand

(3.8) u′2( · , α) + v′2( · , α) = α2[g(0, u( · , α), v( · , α))]2.

Using (1.3) and (3.8) it follows that (3.7) holds only if τ(α)→ 0 as α→∞. �

Consider the set S = {π/n}n. If α > R, then it follows that

(u( · + τ(α), α), v( · + τ(α), α)) = (u( · ,−α), v( · ,−α)),

which implies that if |α| > R then (u( · , α), v( · , α)) is a solution of (3.1), (3.2)
with λ = 0 if and only if τ(|α|) ∈ S. So, if we consider the continuous function
φ:R → R, φ(t) = u(π, t) then, if α > R such that τ(α) /∈ S, it follows that the
degrees dB(I − U , Gα, 0), dB(φ, ]−α, α[, 0) are well defined. Moreover, we have
the following result.

Lemma 3.11. Let α > R such that τ(α) ∈ ]π/(n+ 1), π/n[ for some n ∈ N.
Then

dB(I − U , Gα, 0) = dB(φ, ]−α, α[, 0) = (−1)n+1.

Proof. Because U acts in R2, we have

(3.9) dB(I − U , Gα, 0) = dB(U − I,Gα, 0).
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If we denote the rectangle [−α, α]×[−α, α] byR then, using the excision property
of Brouwer degree it follows that

(3.10) dB(U − I,Gα, 0) = dB(U − I,R, 0).

Now, consider the homotopy

h: [0, 1]×R → R2, h(λ, (z1, z2)) = (z1, u(π, (λz1, z2))).

Remark that h(1, · ) = U − I and h(0, · ) = IR × φ. Moreover, h(λ, (z1, z2)) = 0
if and only if h(1, (z1, z2)) = 0. It follows that h(λ, (z1, z2)) 6= 0 for all λ ∈ [0, 1]
and (z1, z2) ∈ ∂R. So, we can apply the invariance by homotopy property, hence

(3.11) dB(U − I,R, 0) = dB(IR × φ,R, 0) = dB(IR, ]−α, α[, 0)dB(φ, ]−α, α[, 0).

Finally, because φ is odd it follows that dB(φ, ]−α, α[, 0) = sgn(φ(α)), and so,
using (3.9)–(3.11) and the definition of τ(α) the conclusion of lemma follows. �

Denote, for any subset A ⊂ [0, 1] × X, the section of A at λ ∈ [0, 1], by
Aλ = {x ∈ X: (λ, x) ∈ A} Let R > 1 be the constant from Lemma 3.6 and let
k0 be an integer such that

k0 > sup{ϕ(λ,w) : (λ,w) ∈ Σ, ||w|| ≤ R}

and, using Lemma 3.7, consider, for any integer j > k0, the topological degree
dLS(I − G(0, · ),Γj , 0), where Γj ⊃ (ϕ−1(j) ∩ Σ)0 is an open bounded subset of
X for which the Leray–Schauder degree dLS is defined and such that Γj ∩Σ0 =
(ϕ−1(j) ∩ Σ)0.

Lemma 3.12. There exists some integer k > k0 such that

dLS(I − G(0, · ),Γj , 0) 6= 0

for all integers j ≥ k.

Proof. Using the continuity of τ( · ) and Lemma 3.10 it follows that there
exists some integer k > k0 such that τ−1(π/j) 6= ∅ for all integers j ≥ k. If
j ≥ k, let ε > 0 such that ]π/j − ε, π/j + ε[ ⊂ ]π/(j + 1), π/(j − 1)[ and

∆j =
{
(u( · , α), v( · , α)): |α| > R, τ(|α|) ∈

]
π

j
− ε, π

j
+ ε
[}
.

The sets ∆j have the same properties as the sets Γj above. Consider

αj = max
{
α > R: τ(α) =

π

j
+ ε
}
, βj = min

{
α > R: τ(α) =

π

j
− ε
}
.

Using a continuity argument given in [4, Theorem 5.1], we have that

dLS(I − G(0, · ),∆j , 0) = dLS(I − G(0, · ),Ωβj \ Ωαj , 0).
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But, using Lemmas 3.9, 3.11 and the additivity property of the Leray–Schauder
degree, we deduce that

dLS(I − G(0, · ),Ωβj \ Ωαj , 0) = (−1)j+1 − (−1)j 6= 0.

Now, the conclusion follows using the excision property of Leray–Schauder de-
gree. �

Proof of Theorem 3.1. Using Lemmas 3.2, 3.5–3.7, 3.12 we can apply
Capietto–Mawhin–Zanolin continuation theorem to deduce that for all j ≥ k

there exists wj ∈ X such that ϕ(1, wj) = j and G(1, wj) = wj . The conclusion
follows using Lemma 3.3. �
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