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Dedicated to Andrzej Granas on the occasion of his 80th birthday

1. Introduction

In the present paper we consider some extension properties for continuous
maps in metric spaces and, using them, we develop in metric spaces some aspects
of Granas theory of topological essentiality [10].

Let M be a metric space and A a closed subset of M . It is known that if
f :A→ X is a continuous map with values contained in a normed space X then,
by Dugundji’s theorem [6], f admits a continuous extension defined on all of M .

We shall prove some metric versions of this result under the assumption that
X is an α-weakly convex metric space (see Definition 2.1). In this way we improve
a result obtained by Himmelberg [12] under the stronger assumption that X is a
strictly equiconnected metric space (see Definition 2.2). As consequence we obtain
that any α-weakly convex metric space is an AR-space. A similar extension result
is obtained when X is a locally α-weakly convex metric space (see Definition 4.1))
and any such space turns out to be an ANR-space.

By using the above results we will develop some aspects of Granas theory
of topological essentiality in α-weakly convex metric spaces. Furthermore, a few
applications to fixed point theory are given, including a metric version of the
Leray–Schauder alternative theorem.
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In our method of approach to extension problems the notion of pseudo-bary-
center plays an important role. This notion, introduced in [4] for α-convex metric
spaces (see Definition 2.3), was used to prove in these spaces some corresponding
metric versions of the theorems of Cellina [2] and Michael [13]. With minor
modifications it can actually be used also in the more general case of the α-
weakly convex metric spaces and in this setting it will prove useful to establish
our metric versions of Dugundji’s extension theorem.

The present paper consists of six sections, with the introduction. Section 2
contains notations and a review of the main properties of pseudo-barycenters
in α-weakly convex metric spaces. Section 3 contains a version of Dugundji’s
extension theorem in these spaces. In Section 4 a similar result is proved in
locally α-weakly convex metric spaces. In Section 5 essential maps and some
some applications to fixed point theory are considered in α-weakly convex metric
spaces.

2. Notations and preliminaries

In this section we introduce notations and terminology and review some
properties of pseudo-barycenters in α-weakly convex metric spaces, which will
be useful in the sequel.

Let Z be a metric space with distance d and let 2Z be the set of all nonempty
subsets of Z. For z ∈ Z and r > 0, BZ(z, r) stands for an open ball in Z with
center z and radius r, and d(z,A) = infa∈A d(z, a), A ∈ 2Z . Moreover, h(X,Y )
denotes the Pompeiu–Hausdorff distance of two nonempty closed bounded sub-
sets of Z, i.e.

h(X,Y ) = max
{

sup
x∈X

d(x, Y ), sup
y∈Y

d(y,X)
}
.

For A ⊂ Z, A and ∂A (also written clZA and ∂ZA) denote the closure and the
boundary of A. N denotes the set of integers n ≥ 1. If A is a nonempty set, we
put An = A× . . .×A, n ∈ N, and denote by (a1, . . . , an) an element of An, i.e.
an ordered n-tuple of points ai ∈ A, i = 1, . . . , n.

A hint for the following definition can be found in [14].

Definition 2.1. An α-weakly convex metric space (α-WCM space) is a met-
ric space Y which is equipped with a continuous map α:Y ×Y × [0, 1] → Y , and
with a family {By}y∈Y where, for each y ∈ Y , By is a local base at y, such that
the following properties are satisfied:

(i) α(y, y, t) = y for every y ∈ Y and t ∈ [0, 1],
(ii) α(y1, y2, 0) = y1, α(y1, y2, 1) = y2 for every (y1, y2) ∈ Y 2,
(iii) for every y ∈ Y and B ∈ By there exists U ∈ By, with U ⊂ B, such

that:

(P) y1 ∈ B and y2 ∈ U ⇒ α(y1, y2, t) ∈ B, for every t ∈ [0, 1].
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For the following definition see [12] (comp. [7], [16]).

Definition 2.2. A strictly equiconnected metric space (SECM space) is
a metric space Y which is equipped with a continuous map α:Y ×Y × [0, 1] → Y ,
and with family {By}y∈Y where, for each y ∈ Y , By is a local base at y, such
that the following properties are satisfied:

(i) α(y, y, t) = y for every y ∈ Y and t ∈ [0, 1],
(ii) α(y1, y2, 0) = y1, α(y1, y2, 1) = y2 for every (y1, y2) ∈ Y 2,

(iii)’ for every y ∈ Y and B ∈ By,

(P’) y1, y2 ∈ B ⇒ α(y1, y2, t) ∈ B, for every t ∈ [0, 1].

The following definition was introduced in [4] (comp. [3], [14], [15], [18]).

Definition 2.3. An α-convex metric space (α-CM space) is a metric space
Y equipped with a continuous map α:Y ×Y × [0, 1] → Y , such that the following
properties are satisfied:

(i) α(y, y, t) = y for every y ∈ Y and t ∈ [0, 1],
(ii) α(y1, y2, 0) = y1, α(y1, y2, 1) = y2 for every (y1, y2) ∈ Y 2,

(iii)” there is an R > 0 such that for every 0 < ε < R there exists 0 < δ ≤ ε

such that the following property is satisfied:

(P”) for (y1, y2), (y1, y2) ∈ Y 2 with d(y1, y1) < ε and d(y2, y2) < δ, we have

h(Λα(y1, y2),Λα(y1, y2)) < ε,

where

Λα(y1, y2) = {α(y1, y2, t) | t ∈ [0, 1]},
Λα(y1, y2) = {α(y1, y2, t) | t ∈ [0, 1]}.

The map α which occurs in each of the above spaces is called the convexity
map of the space. In the sequel, when we say (for the sake of brevity) “Y is an
α-WCM space” we actually mean that “Y is a metric space equipped with a map
α and a family {By}y∈Y , satisfying the properties stated in Definition 2.1”. The
meaning of “Y is a SECM space” and “Y is an α-CM space”, is to be understood
in a similar manner.

In each of the above spaces, convex sets are naturally defined as follows.

Definition 2.4. A set A ⊂ Y is called convex if α(y1, y2, t) ∈ A for every
(y1, y2) ∈ A2 and t ∈ [0, 1].

The empty set is assumed to be convex. Moreover, the intersection of convex
sets is convex, and the closure of a convex set is convex.
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Remark 2.5. Condition (P) in Definition 2.1 is certainly satisfied if for every
y ∈ Y the sets B ∈ By are convex.

Remark 2.6. In view of the following proposition and Examples 2.8 and 2.9
below, the notion of α-WCM space is strictly more general than either notion,
that of SECM space and α-CM space.

Proposition 2.7.

(a) If Y is a strictly equiconnected metric space, then Y is an α-weakly
convex metric space.

(b) If Y is an α-convex metric space, then Y is an α-weakly convex metric
space, where for each y ∈ Y and R > 0 (independent of y), By =
{BY (y, r)}r∈(0,R).

Proof. (a) is obvious, since condition (iii)’ of Definition 2.2 implies condi-
tion (iii) of Definition 2.1.

(b) Let Y be an α-CM space. Let y ∈ Y and ε ∈ (0, R) be arbitrary (R as
in (iii)”). By (iii)” there is 0 < δ ≤ ε such that, for (y1, y2), (y1, y2) ∈ Y 2,

d(y1, y1) < ε and d(y2, y2) < δ ⇒ h(Λα(y1, y2),Λα(y1, y2)) < ε.

By taking y1 ∈ BY (y, ε), y2 ∈ BY (y, δ), and y1 = y2 = y, we have

h(Λα(y1, y2), {y}) < ε,

which implies d(α(y1, y2, t), y) < ε for all t ∈ [0, 1]. Hence (iii) is verified, with
B = BY (y, ε) and U = BY (y, δ), and also (b) is proved. �

In the following Example 2.8 we construct an α-WCM space which is not
a SECM space, while in Example 2.9 we present an α-WCM space which is not
an α-CM space.

Example 2.8. Consider the space

Y = {y = (u, v) ∈ R2 | v > max{1, |u|}},

and endow it with the metric ‖y1 − y2‖ = max{|u1 − u2|, |v1 − v2|}, where
y1 = (u1, v1) ∈ Y and y2 = (u2, v2) ∈ Y . For y1, y2 ∈ Y , put

(2.1) c =
y1 + y2

2
, e = c+

c

‖c‖
· ‖y1 − y2‖

4
,

and define

(2.2) α(y1, y2, t) =

{
(1− 2t)y1 + 2te for t ∈ [0, 1/2],

(2− 2t)e+ (2t− 1)y2 for t ∈ [1/2, 1].

It is easy to see that (2.2) defines a map α:Y ×Y ×[0, 1] → Y which is continuous
and satisfies conditions (i) and (ii) of Definition 2.1. For x ∈ Y consider a local
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base at x given by Bx = {BY (x, r)}r∈(0,1). We suppose that Y is equipped with
the map α and the family {Bx}x∈Y .

Claim 1. Y is an α-WCM space.

It suffices to prove that condition (iii) of Definition 2.1 is satisfied. Let x ∈ Y
and BY (x, r) ∈ Bx be arbitrary and let 0 < ρ < r/8. Then we have:

(2.3) y1 ∈ BY (x, r) and y2 ∈ BY (x, ρ) ⇒ α(y1, y2, t) ∈ BY (x, r),

for every t ∈ [0, 1]. In view of the definition of α(y1, y2, t), (2.3) is valid if we
show that e ∈ BY (x, r). Indeed, by virtue of (2.1), as ‖y1− y2‖ < r+ ρ, we have

‖e− x‖ ≤ ‖e− c‖+ ‖c− y2‖+ ‖y2 − x‖ < 3
4
‖y1 − y2‖+ ρ < r.

Hence e ∈ BY (x, r) and Claim 1 is proved.

Claim 2. Y is not a SECM space.

To see this let a = (0, 2) and consider an arbitrary ball BY (a, r) ∈ Bx. Take
y1, y2 ∈ BY (a, r) as follows

y1 =
(
− 3

4
r, 2 +

3
4
r

)
, y2 =

(
3
4
r, 2 +

3
4
r

)
.

With this choice of y1 and y2 we have c = (0, 2 + 3r/4), ‖y1 − y2‖ = 3r/2 and
thus, ‖e− c‖ = 3r/8 and ‖c− a‖ = 3r/4. Since

‖e− a‖ = ‖e− c‖+ ‖c− a‖ =
3
8
r +

3
4
r =

9
8
r,

it follows that e 6∈ BY (a, 9
8r). Consequently for some t ∈ (0, 1) we have

α(y1, y2, t) 6∈ BY (a, r),

which shows that condition (P’) in Definition 2.2 is not satisfied. Hence Claim 2
is proved.

Example 2.9. Let S be the unit sphere of R3 with center (0, 0, 0). Consider
the space

Y = {y = (y1, y2, y3) ∈ S | y1 ≥ 0, y2 ≥ 0, y3 6= 1},
and endow it with the metric induced by the Euclidean norm of R3. For y, z ∈ Y
set

(2.4) α(y, z, t) =
(1− t)y + tz

‖(1− t)y + tz‖
, t ∈ [0, 1].

It is easy to see that (2.4) defines a continuous map α:Y ×Y × [0, 1] → Y which
satisfies conditions (i) and (ii) of Definition 2.1. For x ∈ Y consider the local
base at x given by Bx = {BY (x, r)}r∈(0,1). We suppose that Y is equipped with
the map α and the family {Bx}x∈Y .

Claim 1. Y is an α-WCM space.
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In view of Remark 2.5 it suffices to show that, for any x ∈ Y and r ∈ (0, 1),
the set BY (x, r) ∈ Bx is convex. Indeed, let y, z ∈ BY (x, r) be arbitrary. Clearly
‖y − x‖2 < r2, ‖z − x‖2 < r2, and thus

2〈y, x〉 > 2− r2, 2〈z, x〉 > 2− r2,

where 〈 · , · 〉 denotes the inner product in R3. Since for every t ∈ [0, 1] we have∥∥∥∥ (1− t)y + tz

‖(1− t)y + tz‖
− x

∥∥∥∥2

= 2− 2(1− t)〈y, x〉+ 2t〈z, x〉
‖(1− t)y + tz‖

< 2− (2− r2) = r2,

it follows that α(y, z, t) ∈ BY (x, r) for all t ∈ [0, 1]. Hence BY (x, r) is convex
and Claim 1 is proved.

Claim 2. Y is not an α-CM space.

Let us show that condition (iii)” of Definition 2.3 is not satisfied. Supposing
the contrary, there is an R > 0 such that for every 0 < ε < R there exists
0 < δ ≤ ε such that (P”) holds, i.e. for (y, z), (y, z) ∈ Y × Y , if ‖y − y‖ < ε and
‖z − z‖ < δ, then we have

h(Λα(y, z),Λα(y, z)) < ε.

Fix 0 < ε < min{1/
√

2, R} and let 0 < δ ≤ ε correspond. Take now (y, z), (y, z)
in Y × Y as follows:

y = (ε2, 0,
√

1− ε4), y = (0, ε2,
√

1− ε4), z = z = a = (0, 0,−1).

Clearly ‖y − y‖ =
√

2ε2 < ε and z = z, and thus

(2.5) h(Λα(y, z),Λα(y, z)) < ε.

On the other hand, as e = (1, 0, 0) ∈ Λα(y, z) and

d(e,Λα(y, z)) = min
t∈[0,1]

∥∥∥∥e− (1− t)y + tz

‖(1− t)y + tz‖

∥∥∥∥ =
√

2,

it follows that

h(Λα(y, z),Λα(y, z)) ≥
√

2,

which contradicts (2.5). Hence Claim 2 is proved.

For n ∈ N set

Σn = {(λ1, . . . , λn) ∈ Rn | 0 ≤ λi ≤ 1, i = 1, . . . , n, λ1 + . . .+ λn = 1}.

For the following definition of pseudo-barycenter and its properties (Propositions
2.7 and 2.11) see [4].



Extension Theorems and Topological Essentiality 147

Definition 2.10. Let Y be an α-weakly convex metric space. For (y1, . . . yn)
in Y n and (λ1, . . . , λn) in Σn the corresponding pseudo-barycenter

bn(y1, . . . , yn;λ1, . . . , λn)

is defined as follows: for n = 1,

(2.6) b1(y1, λ1) = y1

and, for n ≥ 2,

(2.7) bn(y1, . . . , yn;λ1, . . . , λn)

=


yn if λn = 1,

α

(
bn−1

(
y1, . . . , yn−1;

λ1

1− λn
, . . . ,

λn−1

1− λn

)
, yn, λn

)
if λn < 1.

Clearly, when n = 2, one has

b2(y1, y2;λ1, λ2) = α(y1, y2, λ2), for (y1, y2) ∈ Y 2 and (λ1, λ2) ∈ Σ2.

When we need emphasize the dependence of the pseudo-barycenter on the
convexity mapping α, we shall write

bαn(y1, . . . , yn;λ1, . . . , λn) instead of bn(y1, . . . , yn;λ1, . . . , λn).

The following Propositions 2.11 and 2.12 below were proved in [4] for α-CM
spaces, but by [4, Remark (4.8)] they remain valid also in α-WCM spaces.

Proposition 2.11. Let Y be an α-weakly convex metric space. Then the
function bn:Y n × Σn → Y , given by (2.6) if n = 1 and by (2.7) if n ≥ 2, is
continuous on Y n × Σn.

Proposition 2.12. Let Y be an α-weakly convex metric space. Let (y1, . . . ,
yn) ∈ Y n, (λ1, . . . , λn) ∈ Σn, n ≥ 2. Let (i1, . . . , ik), 1 ≤ k ≤ n− 1, be a subset
of (1, . . . , n), with 1 ≤ i1 < . . . < ik ≤ n, such that

λi > 0 if i ∈ {i1, . . . , ik}, λi = 0 if i ∈ {1, . . . , n} \ {i1, . . . , ik}.

Then bn(y1, . . . , yn;λ1, . . . , λn) = bk(yi1 , . . . , yik
;λi1 , . . . , λik

). Moreover, we
have bn(y1, . . . , yn; 1, . . . , 0) = y1, . . . , bn(y1, . . . , yn; 0, . . . , 1) = yn.

Proposition 2.13. Let Y and Y ′ be an α-weakly convex and α′-weakly con-
vex metric space such that Z = Y ∩ Y ′ 6= ∅. Suppose that

α(y1, y2, t) = α′(y1, y2, t) for every (y1, y2) ∈ Z2, t ∈ [0, 1].

Then, for every (y1, . . . , yn) ∈ Zn, (λ1, . . . , λn) ∈ Σn, n ∈ N arbitrary, we have

bαn(y1, . . . , yn;λ1, . . . , λn) = bα
′

n (y1, . . . , yn;λ1, . . . , λn).
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Proof. The statement can be proved by induction since it holds for n =
1, 2. �

Proposition 2.14. Let Y be an α-weakly convex metric space. For y ∈ Y ,
let B ∈ By be arbitrary and let U ∈ By, U ⊂ B, correspond as in condition (iii)
of Definition 2.1. Then for (y1, . . . yn) ∈ Y n, (λ1, . . . , λn) ∈ Σn, n ≥ 1, we have:

yi ∈ U, i = 1, . . . , n⇒ bn(y1, . . . , yn;λ1, . . . , λn) ∈ B.

Proof. The statement is true for n = 1, 2. Assuming that it holds for n,
let us prove it for n+ 1. Let (y1, . . . , yn+1) ∈ Y n+1, (λ1, . . . , λn+1) ∈ Σn+1 and
suppose that yi ∈ U , i = 1, . . . , n + 1. If λn+1 = 1, we have (λ1, . . . , λn+1) =
(0, . . . , 1) and thus bn+1(y1, . . . , yn+1; 0, . . . , 1) = yn+1 ∈ U ⊂ B. Suppose
λn+1 < 1. By definition of pseudo-barycenter, we have

(2.8) bn+1(y1, . . . , yn+1;λ1, . . . , λn+1)

= α

(
bn

(
y1, . . . , yn;

λ1

1− λn+1
, . . . ,

λn

1− λn+1

)
, yn+1, λn+1

)
.

Now by the induction hypothesis, bn(y1, . . . , yn;λ1/(1 − λn+1), . . . , λn/(1 −
λn+1)) ∈ B, for (λ1/(1− λn+1), . . . , λn/(1− λn+1)) ∈ Σn. Moreover, yn+1 ∈ U
and thus, in view of Definition 2.1(iii), it follows that the right hand side of (2.8)
is in B. This completes the proof. �

Proposition 2.15 (Dugundji [6, p. 83]). Let X,Z be topological spaces. Let
{Aλ}λ∈Λ be a covering of X, where the sets Aλ ⊂ X are open nonempty, and let
{ψλ}λ∈Λ be a family of continuous functions ψλ : Aλ → Z such that, for every
λ, λ′ ∈ Λ, with Aλ ∩Aλ′ 6= ∅,

ψλ(x) = ψλ′(x) for every x ∈ Aλ ∩Aλ′ .

Then there is a unique continuous function f :X → Z which is an extension of
each ψλ, that is, for each λ ∈ Λ

f(x) = ψλ(x) for every x ∈ Aλ.

3. Extensions of maps with values in α-weakly convex metric spaces

In this section we prove a version of Dugundji’s extension theorem for maps
taking values in an α-weakly convex metric space.

Theorem 3.1. Let X be a metric space and Y an α-weakly convex metric
space. Let A be a nonempty closed subset of X and let C be a nonempty convex
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subset of Y . Then each continuous map ϕ:A → C has a continuous extension
f :X → C defined on X.

Proof. Following Dugundji’s argument [6, p. 188], for every x ∈ X \ A
consider the open ball Bx = BX(x, d(x,A)/2). The family B = {Bx}x∈X\A is
an open covering of X \ A, and thus it admits an open neighbourhood finite
refinement V. With each nonempty V ∈ V associate an xV ∈ V and aV ∈ A

such that d(xV , aV ) < 2d(xV , A). As in Dugundji [6, p. 188], one can prove that
the family of the sets V ∈ V, and the family of the corresponding points aV ∈ A,
have the following property:

(P) For every a ∈ A, ρ > 0 and V ∈ V

(3.1) V ∩BX

(
a,

ρ

12

)
6= ∅ ⇒ V ⊂ BX(a, ρ) and aV ∈ BX(a, ρ).

By Zermelo’s well ordering theorem [6, p. 31], there exists a well ordering, say
≺, under which V is a well ordered set.

Let {pV }V ∈V be a partition of unity subordinated to V (see [6, p. 170]), that
is a family of continuous functions pV :X \A→ [0, 1] such that:

(j) supp pV ⊂ V for every V ∈ V,
(jj) {supp pV }V ∈V is a neighbourhood finite closed covering of X \A,
(jjj) ΣV ∈VpV (x) = 1 for every x ∈ X \A.

Let u ∈ X \ A. Since V is neighbourhood finite, there exists an open ball
Wu = BX(u, θu) ⊂ X \ A, for some θu > 0, such that the set VWu = {V ∈ V |
V ∩Wu 6= ∅} is finite and nonempty. Thus for some 1 ≤ n <∞ we have

(3.2) VWu = (V1, . . . , Vn), where V1 ≺ . . . ≺ Vn.

Let (aV1 , . . . , aVn
) correspond, where aVi

∈ A, i = 1, . . . , n.
Define now ψWu

:Wu → C by

(3.3) ψWu(x) = bn(ϕ(aV1), . . . , ϕ(aVn); pV1(x), . . . , pVn(x)).

By Proposition 2.11, ψWu
is well defined and continuous on Wu.

Claim 1. For every u, u′ ∈ X \A, with Wu ∩Wu′ 6= ∅, we have

ψWu(x) = ψWu′ (x), for every x ∈Wu ∩Wu′ .

For u, u′ ∈ X \ A let VWu be given by (3.2) and, similarly, for some n′ ∈ N,
let VWu′ = (V ′

1 , . . . , V
′
n′), where V ′

1 ≺ . . . ≺ V ′
n′ . Let x ∈Wu ∩Wu′ be arbitrary.

Set

Vx
Wu

= {V ∈ VWu
| pV (x) > 0}, Vx

Wu′ = {V ∈ VWu′ | pV (x) > 0}.

We have Vx
Wu

= Vx
Wu′ . In fact let V ∈ Vx

Wu
. As x ∈ supp pV ⊂ V , by (j), and

x ∈ Wu ∩Wu′ , it follows that V ∩Wu′ 6= ∅ and thus V ∈ VWu′ . As pV (x) > 0
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one has V ∈ Vx
Wu′ . By interchanging the roles of Vx

Wu
and Vx

Wu′ it follows that
Vx

Wu
= Vx

Wu′ . This implies that, for some 1 ≤ k ≤ n,

(3.4) Vx
Wu

= (Vi1 , . . . , Vik
) = Vx

Wu′ , where 1 ≤ i1 < . . . < ik ≤ n.

By (3.3), (3.4) and Proposition 2.12, one has

ψWu
(x) = bk(ϕ(aVi1

), . . . , ϕ(aVik
); pVi1

(x), . . . , pVik
(x)) = ψWu′ (x)

and hence, as x ∈Wu ∩Wu′ is arbitrary, Claim 1 holds.
The family {Wu}u∈X\A is an open covering of X \ A and, moreover, the

corresponding family {ψWu}u∈X\A of continuous maps ψWu satisfies Claim 1.
Therefore, by Proposition 2.15, there is a unique continuous function ψ:X \A→
C such that

(3.5) ψ(x) = ψWu
(x), for every x ∈Wu and u ∈ X \A.

Claim 2. Define now f :X → C by

f(x) =

{
ϕ(x) if x ∈ A,

ψ(x) if x ∈ X \A.

Then f is continuous on X.
Let a ∈ A (if a ∈ X \ A there is a nothing to prove). Let B ∈ Bϕ(a)

be arbitrary, where Bϕ(a) is a local base at ϕ(a), and let U ∈ Bϕ(a), U ⊂
B, correspond according to Definition 2.1(iii). Then, by Proposition 2.14, for
(y1, . . . , yn) ∈ Y n, (λ1, . . . , λn) ∈ Σn and n ∈ N,

(3.6) yi ∈ U, i = 1, . . . , n⇒ bn(y1, . . . , yn;λ1, . . . , λn) ∈ B.

Since ϕ is continuous there is σ > 0 such that

(3.7) x ∈ BX(a, σ) ∩A⇒ ϕ(x) ∈ U.

It will be shown that

(3.8) x ∈ BX

(
a,
σ

12

)
∩ (X \A) ⇒ ψ(x) ∈ B.

Let x be as in (3.8). Thus x ∈ Wu, for some u ∈ X \ A. Define VWu
and

Vx
Wu

as before, and suppose that VWu
and Vx

Wu
are given by (3.2) and (3.4).

As x ∈ BX(a, σ/12) and x ∈ supp pVir
⊂ Vir , one has Vir ∩ BX(a, σ/12) 6= ∅,

r = 1, . . . , k. Hence by (3.1) (with ρ = σ) it follows that aVir
∈ BX(a, σ),

r = 1, . . . , k, and thus by (3.7),

ϕ(aVir
) ∈ U, r = 1, . . . , k.

Combining the latter with (3.6) gives

(3.9) bk(ϕ(aVi1
), . . . , ϕ(aVik

); pVi1
(x), . . . , pVik

(x)) ∈ B.



Extension Theorems and Topological Essentiality 151

On the other hand, by (3.3) and Proposition 2.12, one has

ψWu
(x) = bk(ϕ(aVi1

), . . . , ϕ(aVik
); pVi1

(x), . . . , pVik
(x)),

and thus by (3.5) and (3.9) it follows that ψ(x) ∈ B, proving (3.8). ¿From this
and the continuity of ϕ at a, one has that ψ is continuous at a. Hence f is
continuous on X, and Claim 2 holds. This completes the proof. �

By virtue of Borsuk [1, p. 87], we have:

Corollary 3.2. Every α-weakly convex metric space is an AR-space.

Since in an α-weakly convex metric space a Mazur type theorem is not avail-
able, the problem of extending a continuous compact map (considered in the
next theorem) requires a different proof.

Theorem 3.3. Let A be a nonempty closed subset of a metric space X and
let Y be an α-weakly convex metric space. Then each continuous and compact
map ϕ:A → Y has a continuous and compact extension f :X → Y defined on
X.

Proof. Set B = ϕ(A). Since B is a compact metric space it can be home-
omorphically embedded into the Hilbert cube Q (see: [9, p. 8–9], [11, p. 597]).
Denote by h:B → Q such an embedding map and by h1:h(B) → B its inverse,
and let g:A → Q be given by g = h ◦ ϕ. We have the following commutative
diagram

A

h◦ϕ $$IIIIIIIIII
ϕ

// Y

h(B) ⊂ Q.

h1

::uuuuuuuuuu

Let g̃:X → Q be a continuous extension of g to all of X. It is evident that g̃
is compact. By Theorem 3.1, h1 admits a continuous extension say h̃:Q → Y .
Then the map f :X → Y given by f = h̃◦g̃ is the desired continuous and compact
extension of ϕ to X. This completes the proof. �

4. Extensions of maps with values
in locally α-weakly convex metric spaces

In this section we prove a Dugundji type extension theorem for maps taking
values in a locally α-weakly convex metric space.

Definition 4.1. Let Y be a connected metric space. Let Y = {Yλ}λ∈Λ be
a family of nonempty open sets Yλ ⊂ Y such that, for each λ ∈ Λ, Yλ is an
αλ-weakly convex metric space, and let αλ:Yλ × Yλ × [0, 1] → Yλ and {Bλ

x}x∈Yλ

correspond to Yλ, according to Definition 2.1. Suppose that:

(i) for every y ∈ Y there exist Ry > 0 and λ ∈ Λ such that BY (y,Ry) ⊂ Yλ,
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(ii) for every Yλ, Yλ′ , with Yλ ∩Yλ′ 6= ∅, and every y1, y2 ∈ Yλ ∩Yλ′ we have
αλ(y1, y2, t) = αλ′(y1, y2, t) for all t ∈ [0, 1].

Then Y, equipped with the family Y, is called a locally α-weakly convex metric
space (locally α-WCM space).

In the sequel, when we say (for the sake of brevity) “Y is a locally α-WCM
space” we actually mean that “Y equipped with the family Y is a locally α-WCM
space, according to Definition 4.1”.

Remark 4.2. Condition (ii) of the above definition implies that for every
λ, λ′ ∈ Λ the set Yλ ∩ Yλ′ is a convex subset of Yλ and Yλ′ .

Remark 4.3. Under appropriate assumptions (see Whitehead [17]) one can
show that, locally, a Riemannian manifold Y with positive definite C2 metric is
an α-WCM space. If Y is compact, then Y turns out be a locally α-WCM space.

An example of a locally α-WCM space is given in the following

Example 4.4. Let H be a real Hilbert space with inner product 〈 · , · 〉 and
norm ‖ · ‖. Let S be the unit sphere in H centered at 0 and suppose that S is
endowed with the Euclidean metric of H. For u ∈ S and 0 < σ < 1 consider the
space

Yu = {x ∈ S | 〈x, u〉 > 1− σ},

with the induced metric of S. Clearly Yu is open in S.
For y1, y2 ∈ Yu, set

(4.1) αu(y1, y2, t) =
(1− t)y1 + ty2
‖(1− t)y1 + ty2‖

, t ∈ [0, 1].

It is easy to see that (4.1) defines a continuous map αu:Yu × Yu × [0, 1] →
Yu which satisfies the conditions (i) and (ii) of Definition 2.1. Equip now Yu

with the convexity map αu and the family {Bu
x}x∈Yu

where, for every x ∈ Yu,
Bu

x = {BYu
(x, r)}r∈(0,1) is a local base at x. Clearly each ball BYu

(x, r), with
x ∈ Yu and r ∈ (0, 1), is convex and thus by Remark 2.5 also condition (iii) of
Definition 2.1 is fulfilled. Hence Yu is an αu-WCM space. Set Y = {Yu}u∈S . As
conditions (i) and (ii) of Definition 4.1 are satisfied, it follows that the space S,
equipped with the family Y, is a locally α-WCM space.

Theorem 4.5. Let X be a metric space and let Y be a locally α-weakly con-
vex metric space. Let A be a nonempty closed subset of X. Then each continuous
map ϕ:A → Y has a continuous extension f :Z → Y defined on some open set
Z ⊃ A.

Proof. By the second Hanner’s theorem (see [11, p. 286]), any metric space
which is locally an ANR-space is also an ANR-space. In our case, in view of
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Corollary 3.2, the space Y is locally an ANR-space, and hence it is an ANR-
space. Since any metric space is an ANR if and only if it has the local extension
property (see [11]), it follows that the space Y has the local extension property.
This completes the proof. �

Corollary 4.6. Every locally α-weakly convex metric space is an ANR-
space.

Remark 4.7. While Theorem 3.1 remains valid if X is paracompact and Y
α-convex and complete (see [5]), it is not clear if, in Theorem 4.5, the space X
can be taken not necessarily metric and Y locally α-convex and complete.

5. Topological essentiality of compact maps
in α-weakly convex metric spaces

In this section we present some fixed point results which are consequences
of the previous extension theorems, and we develop a Granas type theory for
essential maps in α-weakly convex metric spaces. To this end we introduce some
further notations.

For any two metric spaces X, Y we set

K(Y,X) = {f :Y → X | f is continuous and compact},
C(Y,X) = {f :Y → X | f is completely continuous}.

Here f completely continuous means that f is continuous and, for each bounded
set A ⊂ Y , the set f(A) is compact. Evidently,

K(Y,X) ⊂ C(Y,X).

Now, suppose that X is a locally α-weakly convex metric space and U ⊂ X

is a nonempty bounded open set. Then, define

K∂U (U,X) = {f ∈ K(U,X) | f(x) 6= x for every x ∈ ∂U},

where ∂U denotes the boundary of U .

Definition 5.1. Let f, g ∈ K∂U (U,X). We shall say that f and g are
homotopic in K∂U (U,X) (we write f ∼∂U g) if there exists a continuous and
compact map h:U × [0, 1] → X, satisfying the following conditions:

(i) h(x, t) 6= x for every x ∈ ∂U and t ∈ [0, 1],
(ii) h(x, 0) = f(x) for every x ∈ U ,
(iii) h(x, 1) = g(x) for every x ∈ U .

The map h is called a homotopy in K∂U (U,X) joining f and g.

By Corollary 4.6 X is an ANR and thus the fixed point index function

ind:K∂U (U,X) → Z
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(where Z is the set of all integers) is well defined and has the usual properties
of existence, unity, additivity, homotopy, commutativity, and normalization (see
[8], [9] or [11]).

It is obvious that K∂U (X,X) = K(X,X), if U = X. For our purposes it is
enough to recall the following properties of the index.

(P1) (Homotopy) If f and g are homotopic in K∂U (U,X), then ind(f) =
ind(g).

(P2) (Normalization) If f ∈ K(X,X) then ind(f) = λ(f), where λ(f) is the
generalized Lefschetz number of f (see [8]).

(P3) (Existence) If f ∈ K(X,X) has ind(f) 6= 0, then there exists an x ∈
X such that f(x) = x, i.e. the set Fix(f) of the fixed points of f is
nonempty.

In particular, in view of (P2) and (P3), we have:

Corollary 5.2 (Lefschetz fixed point theorem). Let f ∈ K(X,X). Then
λ(f) 6= 0 implies Fix(f) 6= ∅.

Let X be an α-weakly convex metric space and let f ∈ K(X,X). By Corol-
lary 3.2 X is an AR-space and thus λ(f) = 1. Therefore, we have:

Corollary 5.3 (Schauder fixed point theorem). If X is an α-weakly convex
metric space and f ∈ K(X,X), then Fix(f) 6= ∅.

In 1962 A. Granas ([10]) introduced the notion of topological essentiality of
a map. This notion was developed so far for maps f :U → X, with f continuous
and compact X a convex set and U open in X, or f contractive X a complete
metric space and U open in X. Later the multivalued case was studied by several
authors (see [8] for details).

Now, we shall study the topological essentiality for continuous and compact
maps f :U → X. In the sequel X is an α-weakly convex metric space (with
distance d), and U an open subset of X.

Lemma 5.4. Let f, g ∈ K∂U (U,X). If, for every x ∈ ∂U and t ∈ [0, 1]

x 6= α(f(x), g(x), t),

then f and g are homotopic in K∂U (U,X).

Proof. In fact the map h:U × [0, 1] → X given by

(5.1) h(x, t) = α(f(x), g(x), t)

is continuous, compact and satisfies conditions (i)–(iii) of Definition 5.1. �

Under the hypothesis of Lemma 5.4 the map h is called an α-homotopy in
K∂U (U,X) joining f and g.
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Definition 5.5. Let f ∈ K∂U (U,X). We say that f is an essential map
if every g ∈ K∂U (U,X), satisfying g(x) = f(x) for every x ∈ ∂U , has a fixed
point. A map f is called inessential if it is not essential.

Let us review some properties of essential maps.

Proposition 5.6 (Contraction property). Let f ∈ K∂U (U,X) be an essen-
tial map such that f(U) ⊂ X0, where X0 is a closed and convex subset of X,
with U ∩ X0 = U0 6= ∅. Then the function f0:U0 → X given by f0(x) = f(x),
for each x ∈ U0, is an essential map in K∂X0U0(U0, X0).

Proof. Let ∂U0 = ∂X0U0 be the boundary of U0 in X0. Assume that

g0 ∈ K∂U0(U0, X0)

is an arbitrary map such that g0(x) = f0(x) for every x ∈ ∂X0U0. Since ∂U0 is
a closed subset of ∂U, the map g : U0 ∪ ∂U → X0 defined by

g(x) =

{
g0(x) if x ∈ U0,

f(x) if x ∈ ∂U,

is continuous and agrees with f on the boundary ∂U . By applying Theorem 3.3,
we get a continuous and compact extension g̃:U → X0 of g.

Now, from the essentiality of f , we deduce that Fix(g̃) 6= ∅. Since Fix(g̃) ⊂
X0 we obtain

Fix(g̃) = Fix(g0) 6= ∅.

This implies that f0 is an essential map, which completes the proof. �

Proposition 5.7 (Localization property). Set Ur = BX(x0, r), r > 0. Sup-
pose that f ∈ K∂Ur (Ur, X) is an essential map with the unique fixed point x0.
Then for every 0 < r0 < r the map f0:Ur0 → X given by f0(x) = f(x), for
every x ∈ Ur0 , is essential in K∂Ur0

(Ur0 , X).

Proof. In the contrary case there exists a map f̃0 ∈ K∂Ur0
(Ur0 , X), satisfy-

ing f̃0(x) = f0(x) for every x ∈ ∂Ur0 , such that Fix(f̃0) = ∅. Define f̃ : Ur → X

by

f̃(x) =

{
f̃0(x), if x ∈ Ur0 ,

f(x), if x ∈ Ur \ Ur0 .

The map f̃ is well defined and continuous, for f̃0 and f agree on ∂Ur0 . Moreover,
f̃ ∈ K∂Ur (Ur, X), since f̃(x) = f(x) for each x ∈ ∂Ur. As f is essential, for
some x0 ∈ Ur we have x0 = f(x0). This yields a contradiction, completing the
proof. �



156 F. S. de Blasi — L. Górniewicz — G. Pianigiani

Lemma 5.8. Let f ∈ K∂U (U,X). Then the following properties are equiva-
lent:

(i) f is inessential,
(ii) there is a fixed point free map g ∈ K∂U (U,X) such that f and g are

homotopic in K∂U (U,X),
(iii) there exists a fixed point free map f̃ ∈ K∂U (U,X) and a homotopy h̃ :

U × [0, 1] → X in K∂U (U,X), joining f and f̃ , satisfying the following
property

(5.2) h̃(x, t) = f(x), for every x ∈ ∂U, t ∈ [0, 1].

Proof. (i) ⇒ (ii). Since f is inessential there is a fixed point free map
g ∈ K∂U (U,X) such that g(x) = f(x), for every x ∈ ∂U . Define h:U×[0, 1] → X

by
h(x, t) = α(f(x), g(x), t), for every x ∈ U, t ∈ [0, 1].

Clearly h is continuous, compact and satisfies conditions (ii) and (iii) of Defi-
nition 5.1. Moreover h satisfies also (i), because f(x) = g(x), if x ∈ ∂U , and
thus

h(x, t) = α(f(x), g(x), t) = f(x) 6= x, for every x ∈ ∂U and t ∈ [0, 1].

Hence f and g are homotopic in K∂U (U,X).
(ii) ⇒ (iii). Let h:U × [0, 1] → X be a homotopy in K∂U (U,X) joining f

and g, with h(x, 0) = g(x) and h(x, 1) = f(x), x ∈ U . Set

A = {x ∈ U | h(x, t) = x, for some t ∈ [0, 1]}.

Suppose A = ∅. Hence Fix(f) = ∅ and thus, setting f̃ = f , the map h̃:U ×
[0, 1] → X given by

(5.3) h̃(x, t) = α(f(x), f̃(x), t), for every x ∈ U and t ∈ [0, 1],

satisfies (5.2) and furnishes the required homotopy in K∂U (U,X), joining f and
f̃ . Suppose A 6= ∅. Clearly A is a closed (actually compact) set with A∩∂U = ∅.
Let s:U → [0, 1] be a Uryshon function such that s(x) = 0, if x ∈ A, and
s(x) = 1, if x ∈ ∂U . Define f̃ :U → X by

f̃(x) = h(x, s(x)), x ∈ U

and observe that f̃ ∈ K∂U (U,X), since f̃ is continuous, compact and satisfies
f̃(x) = h(x, 1) 6= x, for each x ∈ ∂U . Moreover, f̃ is fixed point free. In the
contrary case, for some x ∈ U one has x = f̃(x) = h(x, s(x)), which implies that
x ∈ A. Hence s(x) = 0 and thus

x = h(x, 0) = g(x),
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a contradiction as g is fixed point free.
Define now h̃:U × [0, 1] → X by

h̃(x, t) = h(x, (1− t) + ts(x)), for every x ∈ U and t ∈ [0, 1].

This map is continuous, compact and satisfies the following properties:

(a1) h̃(x, 0) = h(x, 1) = f(x), x ∈ U ,
(a2) h̃(x, 1) = h(x, s(x)) = f̃(x), x ∈ U ,
(a3) if x ∈ ∂U then s(x) = 1, and hence

h̃(x, t) = h(x, (1− t) + ts(x)) = h(x, 1) = f(x).

Thus h̃ is the required homotopy in K∂U (U,X) which joins f and f̃ and satisfies
(5.2).

(iii) ⇒ (i). In fact, let h̃:U× [0, 1] → X be a homotopy in K∂U (U,X) joining
f and f̃ , with h̃(x, 0) = f(x) and h̃(x, 1) = f̃(x), x ∈ U , such that (5.2) holds.
Since

f̃(x) = h̃(x, 1) = f(x), for each x ∈ ∂U
and f̃ is fixed point free, it follows that f is inessential. This completes the
proof. �

Proposition 5.9 (Homotopy property). Let f, g ∈ K∂U (U,X) be homo-
topic in K∂U (U,X). Then f is essential if and only if g is essential.

Proof. Suppose that f is inessential. Then, by Lemma 5.8(ii), there exists
a fixed point free map ϕ ∈ K∂U (U,X) homotopic to f in K∂U (U,X). Since
f ∼∂U g, it follows that ϕ ∼∂U g. Hence, by Lemma 5.8(iii), there exists a
fixed point free map ϕ∗ ∈ K∂U (U,X) homotopic to g in K∂U (U,X), such that
ϕ∗(x) = g(x) for every x ∈ ∂U . Consequently g is inessential and the proof is
complete. �

Proposition 5.10 (Normalization property). Let f ∈ K∂U (U,X) be a map
given by f(x) = x0 for each x ∈ U , where x0 ∈ X. Then f is essential if and
only if x0 ∈ U .

Proof. It suffices to show that, if x0 ∈ U , then f is essential (the reverse
implication is obvious). Let g ∈ K∂U (U,X) satisfy g(x) = f(x), x ∈ ∂U . Define
g̃:X → X by

g̃(x) =

{
g(x) for x ∈ U ,

x0 for x ∈ X \ U.
It is evident that g̃ is compact and continuous and thus, by Schauder’s fixed point
theorem (Corollary 5.3), Fix(g̃) 6= ∅. This implies that Fix(g) 6= ∅, completing
the proof. �
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Proposition 5.11 (Perturbation property). Let f ∈ K∂U (U,X) be an es-
sential map. Then there exists an ε > 0 such that each g ∈ K(U,X) satisfying

(5.4) ρ∂U (g, f) = sup
x∈∂U

d(g(x), f(x)) < ε

is an essential map.

Proof. Since f(∂U) is compact, ∂U closed and f(∂U) ∩ ∂U = ∅, there is
an ε0 > 0 such that each g ∈ K(U,X), with ρ∂U (g, f) < ε0, is in K∂U (U,X).

We claim that there exists 0 < ε < ε0 such that, for each g ∈ K(U,X)
satisfying (5.4) the map hg:U × [0, 1] → X given by hg(x, t) = α(f(x), g(x), t)
is an α-homotopy in K∂U (U,X) joining f and g. For this it suffices to show
that for any such g one has x 6= hg(t, x), for every x ∈ ∂U and t ∈ [0, 1].
Arguing by contradiction, assume that there exist a sequence {gn} ⊂ K(U,X),
with ρ∂U (gn, f) → 0 as n → ∞, and corresponding sequences {xn} ⊂ ∂U and
{tn} ⊂ [0, 1], such that

(5.5) xn = α(f(xn), gn(xn), tn), for all n ∈ N.

Passing to subsequences, without change of notation, we can assume that for
some x ∈ U and t ∈ [0, 1] we have f(xn) → x and tn → t, as n→∞. Moreover,
gn(xn) → x as n→∞, because

d(gn(xn), x) ≤ d(gn(xn), f(xn)) + d(f(xn), x) ≤ ρ∂U (gn, f) + d(f(xn), x),

for n ∈ N. Letting n → ∞, (5.5) implies that xn → x, for α(x, x, t) = x. From
f(xn) → f(x) and f(xn) → x one has x = f(x). Moreover, x ∈ ∂U and thus,
from the contradiction, the claim follows.

Let g ∈ K(U,X) satisfy (5.3). As ε < ε0 one has g ∈ K∂U (U,X) and, by
the claim, hg:U × [0, 1] → X is an α-homotopy in K∂U (U,X) joining f and g.
Then by Proposition 5.9 g is essential, completing the proof. �

The above results on the topological essentiality are now applied to study the
equation x = f(x) in an α-weakly convex metric space, where f is continuous
and compact or, more generally, completely continuous.

In the sequel, X is an α-weakly convex metric space, with the convexity
mapping α:X ×X × [0, 1] → X, and U ⊂ X is a nonempty open and bounded
set.

Theorem 5.12 (Nonlinear alternative). Let f ∈ K∂U (U,X) and let u0 ∈ U .
Then at least one of the following properties holds:

(i) there exist x0 ∈ ∂U and t ∈ (0, 1) such that x0 = α(u0, f(x0), t),
(ii) Fix(f) 6= ∅.
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Proof. It suffices to show that, if (i) does not hold, one has Fix(f) 6= ∅.
Suppose that x 6= α(u0, f(x), t) for every x ∈ ∂U and t ∈ [0, 1]. Here t = 0 and
t = 1 have been included, since x ∈ ∂U implies x 6= u0 = α(u0, f(x), 0) and
x 6= f(x) = α(u0, f(x), 1). Define h:U × [0, 1] → X by

h(x, t) = α(g(x), f(x), t), x ∈ U, t ∈ [0, 1],

where g:U → X is given by g(x) = u0, for each x ∈ U . Clearly h is a homotopy
in K∂U (U,X) joining g and f . By Proposition 5.10 g is essential and hence
Fix(f) 6= ∅, completing the proof. �

Remark 5.13. Let E be a normed space endowed with the natural convexity
map

α(x, y, t) = (1− t)x+ ty, x, y ∈ E, t ∈ [0, 1],

and suppose that U is an open and bounded subset of E containing the origin
0 of E. Then, by taking u0 = 0, one has the usual formulation of the above
property (i), that is: x0 = tf(x0) for some x0 ∈ ∂U and t ∈ (0, 1).

Theorem 5.14 (Leray–Schauder alternative). Let f ∈ C(X,X). For u0 ∈
X, set

E(f) = {x ∈ X | x = α(u0, f(x), t), for some t ∈ (0, 1)}.
Then E(f) is unbounded or Fix(f) 6= ∅.

Proof. It suffices to show that E(f) bounded implies Fix(f) 6= ∅. In fact,
if E(f) is bounded, for some r > 0 one has E(f) ⊂ U , where U = BX(u0, r).
Define f0:U → X by f0(x) = f(x), x ∈ U . As f0 ∈ K(U,X) and, for this map,
property (i) of Theorem 5.12 is not satisfied, it follows that Fix(f0) 6= ∅. Hence
Fix(f) 6= ∅, completing the proof. �
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Lech Górniewicz
Schauder Center for Nonlinear Studies

Nicolaus Copernicus University

Chopina 12/18
87-100 Toruń, POLAND
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