FIXED POINT RESULTS FOR GENERALIZED φ-CONTRACTION ON A SET WITH TWO METRICS

Tünde Petra Petru - Monica Boriceanu

$$
\begin{aligned}
& \text { Abstract. The aim of this paper is to present fixed point theorems for } \\
& \text { multivalued operators } T: X \rightarrow P(X) \text {, on a nonempty set } X \text { with two met- } \\
& \text { rics } d \text { and } \varrho \text {, satisfying the following generalized } \varphi \text {-contraction condition: } \\
& \qquad H_{\varrho}(T(x), T(y)) \leq \varphi\left(M^{T}(x, y)\right), \quad \text { for every } x, y \in X, \\
& \text { where } \\
& \qquad \begin{array}{l}
M^{T}(x, y):=\max \left\{\varrho(x, y), D_{\varrho}(x, T(x)), D_{\varrho}(y, T(y)),\right. \\
\left.\qquad 2^{-1}\left[D_{\varrho}(x, T(y))+D_{\varrho}(y, T(x))\right]\right\}
\end{array}
\end{aligned}
$$

1. Introduction

In this paper we will give some local and global fixed point results for multivalued generalized φ-contractions on a set with two metrics. The multivalued operator $T: Y \rightarrow P_{\mathrm{cl}}(X), Y \subset X$ will satisfy a generalized φ-contraction condition of the following type:

$$
H_{\varrho}(T(x), T(y)) \leq \varphi\left(M^{T}(x, y)\right), \quad \text { for every } x, y \in X
$$

[^0]where
\[

$$
\begin{aligned}
& M^{T}(x, y):=\max \left\{\varrho(x, y), D_{\varrho}(x, T(x)), D_{\varrho}(y, T(y))\right. \\
&\left.2^{-1}\left[D_{\varrho}(x, T(y))+D_{\varrho}(y, T(x))\right]\right\}
\end{aligned}
$$
\]

Our results extend and generalize some similar theorems given by Agarwal-Dshalalow-O'Regan in [1] for the case of a space endowed with a metric, as well as, the results given in Lazăr-O'Regan-Petruşel [3] for the case of Ćirić type multivalued operator.

2. Notations

Let us consider the following families of subsets of a metric space (X, ϱ) :

$$
\begin{aligned}
P(X) & :=\{Y \in \mathcal{P}(X) \mid Y \neq \emptyset\} \\
P_{\mathrm{b}}(X) & :=\{Y \in P(X) \mid Y \text { is bounded }\} \\
P_{\mathrm{cl}}(X) & :=\{Y \in P(X) \mid Y \text { is closed }\}
\end{aligned}
$$

If d is another metric on X we will denote by $\bar{B}_{\varrho}^{d}\left(x_{0}, r\right)$ the closure of $B_{\varrho}\left(x_{0}, r\right)$ in (X, d), where $B_{\varrho}\left(x_{0}, r\right):=\left\{x \in X \mid \varrho\left(x_{0}, x\right)<r\right\}$. Let us define the gap functional between the sets A and B in the metric space (X, ϱ) as:

$$
D_{\varrho}: P(X) \times P(X) \rightarrow \mathbb{R}_{+} \cup\{\infty\}, \quad D_{\varrho}(A, B)=\inf \{\varrho(a, b) \mid a \in A, b \in B\}
$$

(in particular, if $x_{0} \in X$ then $\left.D_{\varrho}\left(x_{0}, B\right):=D_{\varrho}\left(\left\{x_{0}\right\}, B\right)\right)$ and the (generalized) Pompeiu-Hausdorff functional as:

$$
\begin{gathered}
H_{\varrho}: P(X) \times P(X) \rightarrow \mathbb{R}_{+} \cup\{\infty\}, \\
H_{\varrho}(A, B)=\max \left\{\sup _{a \in A} D_{\varrho}(a, B), \sup _{b \in B} D_{\varrho}(A, b)\right\} .
\end{gathered}
$$

Let (X, ϱ) be a metric space. If $T: X \rightarrow P(X)$ is a multivalued operator, then $x \in X$ is called fixed point for T if and only if $x \in T(x)$. The set Fix $T:=$ $\{x \in X \mid x \in T(x)\}$ is called the fixed point set of T, while SFix $T=\{x \in X \mid$ $\{x\}=T x\}$ is called the strict fixed point set of T. The operator T is closed if its graphic is a closed set in $X \times X$. For $x, y \in X$ let us denote:

$$
\begin{aligned}
& M_{\varrho}^{T}(x, y)=\max \left\{\varrho(x, y), D_{\varrho}(x, T(x)), D_{\varrho}(y, T(y))\right. \\
& \left.\quad 2^{-1}\left[D_{\varrho}(x, T(y))+D_{\varrho}(y, T(x))\right]\right\} .
\end{aligned}
$$

3. Main results

The starting point of our research was the recently given result, a multivalued version of Maia's fixed point theorem for multivalued contractions, in [5] by A. Petruşel and I. A. Rus.

Theorem 3.1 (A. Petruşel, I. A. Rus [5]). Let X be a nonempty set, d and ϱ two metrics on X and $T: X \rightarrow P(X)$ be a multivalued operator. We suppose that:
(i) (X, d) is a complete metric space;
(ii) there exists $c>0$ such that $d(x, y) \leq c \cdot \varrho(x, y)$, for each $x, y \in X$;
(iii) $T:(X, d) \rightarrow\left(P(X), H_{d}\right)$ is closed;
(iv) there exists $\alpha \in\left[0,1\left[\right.\right.$ such that $H_{\varrho}(T(x), T(y)) \leq \alpha \cdot \varrho(x, y)$, for each $x, y \in X$.
Then we have:
(a) $\operatorname{Fix} T \neq \emptyset$;
(b) for each $x \in X$ and each $y \in T(x)$ there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ such that:
(b1) $x_{0}=x, x_{1}=y$;
(b2) $x_{n+1} \in T\left(x_{n}\right), n \in \mathbb{N}$;
(b3) $x_{n} \xrightarrow{d} x^{*} \in T\left(x^{*}\right)$, as $n \rightarrow \infty$.
Our first main result is a local version of Ćirić's theorem ([2]) for generalized φ-contractions on a set with two metrics.

Theorem 3.2. Let X be a nonempty set, $x_{0} \in X$ and $r>0$. Suppose that d and ϱ are two metrics on X and $F: \bar{B}_{\varrho}^{d}\left(x_{0}, r\right) \rightarrow P(X)$ is a multivalued operator. We suppose that:
(a) (X, d) is a complete metric space;
(b) there exists $c>0$ such that $d(x, y) \leq c \cdot \varrho(x, y)$, for each $x, y \in X$;
(c) (c1) if $d \neq \varrho$ then $F: \bar{B}_{\varrho}^{d}\left(x_{0}, r\right) \rightarrow P\left(X^{d}\right)$ is closed;
(c2) if $d=\varrho$ then $F: \bar{B}_{\varrho}^{d}\left(x_{0}, r\right) \rightarrow P_{\mathrm{cl}}\left(X^{d}\right)$;
(d) there exists a continuous function $\varphi:[0, \infty) \rightarrow[0, \infty)$, with $\varphi(t)<t$, for every $t>0, \varphi(0)=0$ and φ is nondecreasing on $(0, r]$ such that:

$$
\begin{equation*}
H_{\varrho}(F(x), F(y)) \leq \varphi\left(M_{\varrho}^{F}(x, y)\right) \tag{3.1}
\end{equation*}
$$

for every $x, y \in \bar{B}_{\varrho}^{d}\left(x_{0}, r\right)$, with strict inequality if $M_{\varrho}^{F}(x, y) \neq 0$.
Also assume that:

$$
\begin{gather*}
D_{\varrho}\left(x_{0}, F\left(x_{0}\right)\right)<r-\varphi(r) \tag{3.2}\\
\sum_{i=0}^{\infty} \varphi^{i}(t)<\infty, \quad \text { for } t \in(0, r-\varphi(r)] \tag{3.3}\\
\sum_{i=1}^{\infty} \varphi^{i}(r-\varphi(r)) \leq \varphi(r) \tag{3.4}
\end{gather*}
$$

Then F has a fixed point.

Proof. If $M_{\varrho}^{F}(x, y)=0$ for some $x, y \in \bar{B}_{\varrho}^{d}\left(x_{0}, r\right)$ then by $D_{\varrho}(x, F(x)) \leq$ $M_{\varrho}^{F}(x, y)$ we get that $D_{\varrho}(x, F(x))=0$ and thus $x \in \overline{F(x)}^{\varrho} \subseteq \overline{F(x)}^{d}=F(x)$. From (3.2) we may choose $x_{1} \in F\left(x_{0}\right)$ with

$$
\begin{equation*}
\varrho\left(x_{0}, x_{1}\right)<r-\varphi(r) \tag{3.5}
\end{equation*}
$$

then $x_{1} \in \bar{B}_{\varrho}^{d}\left(x_{0}, r\right)$. We may assume $M_{\varrho}^{F}\left(x_{0}, x_{1}\right) \neq 0$, since otherwise x_{1} is a fixed point, so the proof is complete. If $M_{\varrho}^{F} \neq 0$ then from (3.1) we have that $H_{\varrho}\left(F\left(x_{0}\right), F\left(x_{1}\right)\right)<\varphi\left(M_{\varrho}^{F}\left(x_{0}, x_{1}\right)\right)$. We may choose $\varepsilon>0$ with

$$
H_{\varrho}\left(F\left(x_{0}\right), F\left(x_{1}\right)\right)+\varepsilon \leq \varphi\left(M_{\varrho}^{F}\left(x_{0}, x_{1}\right)\right) .
$$

Next we choose $x_{2} \in F\left(x_{1}\right)$ so that

$$
\varrho\left(x_{1}, x_{2}\right) \leq H_{\varrho}\left(F\left(x_{0}\right), F\left(x_{1}\right)\right)+\varepsilon .
$$

It follows that $\varrho\left(x_{1}, x_{2}\right) \leq \varphi\left(M_{\varrho}^{F}\left(x_{0}, x_{1}\right)\right)$. We want to show that

$$
\begin{equation*}
\varrho\left(x_{1}, x_{2}\right) \leq \varphi\left(\varrho\left(x_{0}, x_{1}\right)\right) . \tag{3.6}
\end{equation*}
$$

We have

$$
\begin{aligned}
\varrho\left(x_{1}, x_{2}\right) \leq \varphi\left(\operatorname { m a x } \left\{\varrho\left(x_{0}, x_{1}\right), D_{\varrho}\left(x_{0},\right.\right.\right. & \left.F\left(x_{0}\right)\right), D_{\varrho}\left(x_{1}, F\left(x_{1}\right)\right) \\
& \left.\left.2^{-1}\left[D_{\varrho}\left(x_{0}, F\left(x_{1}\right)\right)+D_{\varrho}\left(x_{1}, F\left(x_{0}\right)\right)\right]\right\}\right) .
\end{aligned}
$$

Let

$$
\begin{aligned}
& \gamma_{1}=\max \left\{\varrho\left(x_{0}, x_{1}\right), D_{\varrho}\left(x_{0}, F\left(x_{0}\right)\right), D_{\varrho}\left(x_{1}, F\left(x_{1}\right)\right),\right. \\
& \\
& \left.2^{-1}\left[D_{\varrho}\left(x_{0}, F\left(x_{1}\right)\right)+D_{\varrho}\left(x_{1}, F\left(x_{0}\right)\right)\right]\right\}
\end{aligned}
$$

If $\gamma_{1}=\varrho\left(x_{0}, x_{1}\right)$ then $\varrho\left(x_{1}, x_{2}\right) \leq \varphi\left(\varrho\left(x_{0}, x_{1}\right)\right)$. If $\gamma_{1}=D_{\varrho}\left(x_{0}, F\left(x_{0}\right)\right)$ then, since $D_{\varrho}\left(x_{0}, F\left(x_{0}\right)\right) \leq \varrho\left(x_{0}, x_{1}\right)$ we have that $\varrho\left(x_{1}, x_{2}\right) \leq \varphi\left(\varrho\left(x_{0}, x_{1}\right)\right)$. If $\gamma_{1}=D_{\varrho}\left(x_{1}, F\left(x_{1}\right)\right)$ then if $\gamma_{1} \neq 0$, since $x_{2} \in F\left(x_{1}\right)$ then $\varrho\left(x_{1}, x_{2}\right) \leq$ $\varphi\left(D_{\varrho}\left(x_{1}, F\left(x_{1}\right)\right)\right)<D_{\varrho}\left(x_{1}, F\left(x_{1}\right)\right) \leq \varrho\left(x_{1}, x_{2}\right)$ which is a contradiction. Then we have that $\gamma_{1}=0=D_{\varrho}\left(x_{1}, F\left(x_{1}\right)\right)$. Thus $\varrho\left(x_{1}, x_{2}\right) \leq \varphi\left(\gamma_{1}\right)=\varphi(0)=0$ and (3.5) is true. If $\gamma_{1}=2^{-1}\left[D_{\varrho}\left(x_{0}, F\left(x_{1}\right)\right)+D_{\varrho}\left(x_{1}, F\left(x_{0}\right)\right)\right]$ then:

- if $\gamma_{1}=0$ then $\varrho\left(x_{1}, x_{2}\right) \leq \varphi\left(\gamma_{1}\right)=\varphi(0)=0$ implies that (3.6) is true;
- if $\gamma_{1} \neq 0$ then

$$
\begin{aligned}
\varrho\left(x_{1}, x_{2}\right) & \leq \varphi\left(\gamma_{1}\right)<\gamma_{1}=\frac{1}{2}\left[D_{\varrho}\left(x_{0}, F\left(x_{1}\right)\right)+D_{\varrho}\left(x_{1}, F\left(x_{0}\right)\right)\right] \\
& \leq \frac{1}{2} \varrho\left(x_{0}, x_{2}\right) \leq \frac{1}{2} \varrho\left(x_{0}, x_{1}\right)+\frac{1}{2} \varrho\left(x_{1}, x_{2}\right) \Rightarrow \varrho\left(x_{1}, x_{2}\right)<\varrho\left(x_{0}, x_{1}\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
\gamma_{1} & =\frac{1}{2}\left[D_{\varrho}\left(x_{0}, F\left(x_{1}\right)\right)+D_{\varrho}\left(x_{1}, F\left(x_{0}\right)\right)\right] \leq \frac{1}{2} \varrho\left(x_{0}, x_{2}\right) \\
& \leq \frac{1}{2} \varrho\left(x_{0}, x_{1}\right)+\frac{1}{2}\left(\varrho\left(x_{1}, x_{2}\right)\right)<\frac{1}{2} \varrho\left(x_{0}, x_{1}\right)+\frac{1}{2} \varrho\left(x_{0}, x_{1}\right)=\varrho\left(x_{0}, x_{1}\right)
\end{aligned}
$$

which is a contradiction with the definition of γ_{1}.
We have that (3.6) is true in all cases. Notice that $x_{2} \in \bar{B}_{\varrho}^{d}\left(x_{0}, r\right)$ since

$$
\begin{aligned}
\varrho\left(x_{0}, x_{2}\right) & \leq \varrho\left(x_{0}, x_{1}\right)+\varrho\left(x_{1}, x_{2}\right) \leq \varrho\left(x_{0}, x_{1}\right)+\varphi\left(\varrho\left(x_{0}, x_{1}\right)\right) \\
& <[r-\varphi(r)]+\varphi(r-\varphi(r)) \leq r-\phi(r)+\varphi(r)=r .
\end{aligned}
$$

We may assume that $M_{\varrho}^{F}\left(x_{1}, x_{2}\right) \neq 0$ since otherwise we are finished. Now choose $\delta>0$ such that

$$
H\left(F\left(x_{1}\right), F\left(x_{2}\right)\right)+\delta \leq \varphi\left(M_{\varrho}^{F}\left(x_{1}, x_{2}\right)\right)
$$

and choose $x_{3} \in F\left(x_{2}\right)$ so that

$$
\varrho\left(x_{2}, x_{3}\right) \leq H\left(F\left(x_{1}\right), F\left(x_{2}\right)\right)+\delta
$$

Thus $\varrho\left(x_{2}, x_{3}\right) \leq \varphi\left(M_{\varrho}^{F}\left(x_{1}, x_{2}\right)\right)$. We now show that

$$
\begin{equation*}
\varrho\left(x_{2}, x_{3}\right) \leq \varphi\left(\varrho\left(x_{1}, x_{2}\right)\right) \leq \varphi^{2}\left(\varrho\left(x_{0}, x_{1}\right)\right) \tag{3.7}
\end{equation*}
$$

Indeed, we can notice that

$$
\begin{aligned}
\varrho\left(x_{2}, x_{3}\right) \leq \varphi\left(\operatorname { m a x } \left\{\varrho\left(x_{1}, x_{2}\right), D_{\varrho}\left(x_{1},\right.\right.\right. & \left.F\left(x_{1}\right)\right), D_{\varrho}\left(x_{2}, F\left(x_{2}\right)\right) \\
& \left.\left.2^{-1}\left[D_{\varrho}\left(x_{1}, F\left(x_{2}\right)\right)+D_{\varrho}\left(x_{2}, F\left(x_{1}\right)\right)\right]\right\}\right) .
\end{aligned}
$$

Let

$$
\begin{aligned}
& \gamma_{2}=\max \left\{\varrho\left(x_{1}, x_{2}\right), D_{\varrho}\left(x_{1}, F\left(x_{1}\right)\right), D_{\varrho}\left(x_{2}, F\left(x_{2}\right)\right),\right. \\
& \\
& \left.\quad 2^{-1}\left[D_{\varrho}\left(x_{1}, F\left(x_{2}\right)\right)+D_{\varrho}\left(x_{2}, F\left(x_{1}\right)\right)\right]\right\} .
\end{aligned}
$$

If $\gamma_{2}=\varrho\left(x_{1}, x_{2}\right)$ then $\varrho\left(x_{2}, x_{3}\right) \leq \varphi\left(\varrho\left(x_{1}, x_{2}\right)\right) \leq \varphi^{2}\left(\varrho\left(x_{0}, x_{1}\right)\right)$, so (3.7) is true. If $\gamma_{2}=D_{\varrho}\left(x_{1}, F\left(x_{1}\right)\right)$ then, since $D_{\varrho}\left(x_{1}, F\left(x_{1}\right)\right) \leq \varrho\left(x_{1}, x_{2}\right),(3.7)$ is true again. If $\gamma_{2}=D_{\varrho}\left(x_{2}, F\left(x_{2}\right)\right)$ and $\gamma_{2} \neq 0$ then, since $x_{3} \in F\left(x_{2}\right)$, we will have the following inequalities

$$
\varrho\left(x_{2}, x_{3}\right) \leq \varphi\left(\gamma_{2}\right)<\gamma_{2}=D_{\varrho}\left(x_{2}, F\left(x_{2}\right)\right) \leq \varrho\left(x_{2}, x_{3}\right)
$$

which is a contradiction. Thus in this case $\gamma_{2}=D_{\varrho}\left(x_{2}, F\left(x_{2}\right)\right)=0$ so $\varrho\left(x_{2}, x_{3}\right) \leq$ $\varphi\left(\gamma_{2}\right)=\varphi(0)=0$ and (3.7) is true. Suppose that $\gamma_{2}=2^{-1}\left[D_{\varrho}\left(x_{1}, F\left(x_{2}\right)\right)+\right.$ $\left.D_{\varrho}\left(x_{2}, F\left(x_{1}\right)\right)\right]$. If $\gamma_{2}=0$ then $\varrho\left(x_{2}, x_{3}\right) \leq \varphi\left(\gamma_{2}\right)=\varphi(0)=0$ thus (3.7) is immediate.

If $\gamma_{2} \neq 0$ then

$$
\begin{aligned}
\varrho\left(x_{2}, x_{3}\right) & \leq \varphi\left(\gamma_{2}\right)<\gamma_{2}=\frac{1}{2}\left[D_{\varrho}\left(x_{1}, F\left(x_{2}\right)\right)+D_{\varrho}\left(x_{2}, F\left(x_{1}\right)\right)\right] \\
& \leq \varrho\left(x_{1}, x_{3}\right) \leq \frac{1}{2} \varrho\left(x_{1}, x_{2}\right)+\frac{1}{2} \varrho\left(x_{2}, x_{3}\right)
\end{aligned}
$$

so $2^{-1} \varrho\left(x_{2}, x_{3}\right) \leq 2^{-1} \varrho\left(x_{1}, x_{2}\right)$. Thus

$$
\begin{aligned}
\gamma_{2} & =\frac{1}{2}\left[D_{\varrho}\left(x_{1}, F\left(x_{2}\right)\right)+D_{\varrho}\left(x_{2}, F\left(x_{1}\right)\right)\right] \\
& \leq \frac{1}{2} \varrho\left(x_{1}, x_{3}\right) \leq \frac{1}{2} \varrho\left(x_{1}, x_{2}\right)+\frac{1}{2} \varrho\left(x_{2}, x_{3}\right)<\varrho\left(x_{1}, x_{2}\right),
\end{aligned}
$$

which contradicts the definition of γ_{2}. Thus in all cases (3.7) is true. Notice again that $x_{3} \in \bar{B}_{\varrho}^{d}\left(x_{0}, r\right)$, since (3.4) implies

$$
\begin{aligned}
\varrho\left(x_{0}, x_{3}\right) & \leq \varrho\left(x_{0}, x_{1}\right)+\varrho\left(x_{1}, x_{2}\right)+\varrho\left(x_{2}, x_{3}\right) \\
& \leq[r-\varphi(r)]+\varphi\left(\varrho\left(x_{0}, x_{1}\right)\right)+\varphi^{2}\left(\varrho\left(x_{0}, x_{1}\right)\right) \\
& <[r-\varphi(r)]+\varphi(r-\varphi(r))+\varphi^{2}(r-\varphi(r)) \\
& \leq r+\left[\sum_{i=1}^{\infty} \varphi^{j}(r-\varphi(r))-\varphi(r)\right] \leq r .
\end{aligned}
$$

Proceeding inductively we obtain $x_{n+1} \in F\left(x_{n}\right)$ for $n \in\{3,4, \ldots\}$ such that

$$
\varrho\left(x_{n+1}, x_{n}\right) \leq \varphi\left(M_{\varrho}^{F}\left(x_{n-1}, x_{n}\right)\right)
$$

We assumed without loss of generality that $M_{\varrho}^{F}\left(x_{n-1}, x_{n}\right) \neq 0$. Thus

$$
\begin{equation*}
\varrho\left(x_{n}, x_{n+1}\right) \leq \varphi\left(\varrho\left(x_{n-1}, x_{n}\right)\right) \leq \varphi^{n}\left(\varrho\left(x_{0}, x_{1}\right)\right) \tag{3.8}
\end{equation*}
$$

and $x_{n+1} \in \bar{B}_{\varrho}^{d}\left(x_{0}, r\right)$ for $n \in\{3,4, \ldots\}$. We want to prove that $\left\{x_{n}\right\}$ is a Cauchy sequence. Notice that (3.8) implies

$$
\begin{aligned}
\varrho\left(x_{n+p}, x_{n}\right) & \leq \varrho\left(x_{n+p}, x_{n+p-1}\right)+\ldots+\varrho\left(x_{n+1}, x_{n}\right) \\
& \leq \varphi^{n+p-1}\left(\varrho\left(x_{0}, x_{1}\right)\right)+\ldots+\varphi^{n}\left(\varrho\left(x_{0}, x_{1}\right)\right) \leq \sum_{j=n}^{\infty} \varphi^{j}\left(\varrho\left(x_{0}, x_{1}\right)\right)
\end{aligned}
$$

thus (3.3) guarantees that $\left\{x_{n}\right\}$ is a ϱ-Cauchy sequence. From (b) we have that $\left\{x_{n}\right\}$ is a d-Cauchy sequence too. Denote by $x \in B_{\varrho}^{d}\left(x_{0}, r\right)$ the limit of the sequence. We can now separate two cases:

- if $d \neq \varrho$ we have from (a) and (c1) that $d\left(x_{n}, x\right) \rightarrow 0$, as $n \rightarrow \infty$, where $x \in \operatorname{Fix} F$. So we have Fix $F \neq \emptyset$ and the proof is complete.
- if $d=\varrho$ we have that there exists $x \in \bar{B}_{\varrho}^{d}\left(x_{0}, r\right)$ with $x_{n} \rightarrow x$ when $n \rightarrow \infty$. It only remains to show that $x \in F(x)$.

$$
\begin{aligned}
D_{\varrho}(x, F(x)) \leq & \varrho\left(x, x_{n}\right)+D_{\varrho}\left(x_{n}, F(x)\right) \\
\leq & \varrho\left(x, x_{n}\right)+H_{\varrho}\left(F\left(x_{n-1}\right), F(x)\right) \\
\leq & \varrho\left(x, x_{n}\right)+\varphi\left(\operatorname { m a x } \left\{\varrho\left(x_{1}, x_{2}\right), D_{\varrho}\left(x_{1}, F\left(x_{1}\right)\right)\right.\right. \\
& \left.\left.D_{\varrho}\left(x_{2}, F\left(x_{2}\right)\right), 2^{-1}\left[D_{\varrho}\left(x_{1}, F\left(x_{2}\right)\right)+D_{\varrho}\left(x_{2}, F\left(x_{1}\right)\right)\right]\right\}\right) .
\end{aligned}
$$

Since

$$
\begin{aligned}
D_{\varrho}\left(x, F\left(x_{n-1}\right)\right) & \leq \varrho\left(x, x_{n}\right) \rightarrow 0 \\
D_{\varrho}\left(x_{n-1}, F\left(x_{n-1}\right)\right) & \leq \varrho\left(x_{n-1}, x_{n}\right) \rightarrow 0 \\
\left|D_{\varrho}\left(x_{n-1}, F(x)\right)-D_{\varrho}(x, F(x))\right| & \leq \varrho\left(x_{n-1}, x\right) \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$, we get by letting $n \rightarrow \infty$ that

$$
D_{\varrho}(x, F(x))=0+\varphi\left(\max \left\{0,0, D_{\varrho}(x, F(x)), 2^{-1} D_{\varrho}(x, F(x))\right\}\right) .
$$

Thus $D_{\varrho}(x, F(x))=0$, so $x \in \overline{F(x)}=F(x)$. The proof is now complete.
Remark 3.3. It is known that if X is a Banach space, then a fixed point theorem for $T: \bar{B}\left(x_{0}, r\right) \rightarrow P_{\mathrm{cl}}(X)$ induces domain invariance theorems for the field associated to T (i.e. $G(x)=x-T(x))$ see [4], as well as, homotopy theorems for multivalued operators (see [3]). From this point of view, it is an open question to obtain such consequences for our multivalued generalized φ-contractions. For a homotopy result see Theorem 3.7.

We continue the section with a global version of Cirić's theorem ([2]) for generalized φ-contractions on a set with two metrics.

Theorem 3.4. Let X be a nonempty set, $r>0$. Suppose that d and ϱ are two metrics on X and $F: X \rightarrow P(X)$ is a multivalued operator. We suppose that:
(a) (X, d) is a complete metric space;
(b) there exists $c>0$ such that $d(x, y) \leq c \cdot \varrho(x, y)$, for each $x, y \in X$;
(c) if $d \neq \varrho$ then $F: X^{d} \rightarrow P\left(X^{d}\right)$ is closed; if $d=\varrho$ then $F: X^{d} \rightarrow P_{\mathrm{cl}}\left(X^{d}\right)$;
(d) there exists a continuous function $\varphi:[0, \infty) \rightarrow[0, \infty)$, with $\varphi(t)<t$, for every $t>0, \varphi(0)=0$ and φ is nondecreasing on $(0, r]$ such that:

$$
H_{\varrho}(F(x), F(y)) \leq \varphi\left(M_{\varrho}^{F}(x, y)\right)
$$

for every $x, y \in X$, with strict inequality if $M_{\varrho}^{F}(x, y) \neq 0$.
Also assume that:

$$
\begin{equation*}
\sum_{i=0}^{\infty} \varphi^{i}(t)<\infty, \quad \text { for } t \in(0, r] \tag{3.10}
\end{equation*}
$$

Then F has a fixed point.
Proof. We claim that we can choose $x_{0} \in X$ and $x_{1} \in F\left(x_{0}\right)$ such that:

$$
\begin{equation*}
\varrho\left(x_{1}, x_{0}\right)<r . \tag{3.11}
\end{equation*}
$$

If (3.11) is true then, as in the proof of theorem Theorem 3.2, we can choose $x_{n+1} \in F\left(x_{n}\right)$ for $n \in\{1,2, \ldots\}$ with $\varrho\left(x_{n}, x_{n+1}\right) \leq \varphi\left(M_{\varrho}^{F}\left(x_{n}, x_{n+1}\right)\right) \leq$
$\varphi^{n}\left(\varrho\left(x_{0}, x_{1}\right)\right)$. The same reasonings guarantees that $\left\{x_{n}\right\}$ is a d-Cauchy sequence, so there exists $x \in X$ with $d\left(x_{n}, x\right) \rightarrow 0$, as $n \rightarrow \infty$. Thus in Theorem 3.2 we have that $x \in F(x)$. It remains to show (3.11). If we are in the case when φ is nondecreasing on $(0, \infty)$ then (3.11) is satisfied. We can observe that (3.11) is immediate if we could show

$$
\begin{equation*}
\inf _{x \in X} D_{\varrho}(x, F(x))=0 \tag{3.12}
\end{equation*}
$$

since if (3.12) is true then there exists $x \in X$ with $D_{\varrho}(x, F(x))<r$, so there exists $y \in F(x)$ with $\varrho(x, y)<r$. Suppose that (3.12) is false, i.e. suppose

$$
\begin{equation*}
\inf _{x \in X} D_{\varrho}(x, F(x))=\delta \tag{3.13}
\end{equation*}
$$

Since $\varphi(\delta)<\delta$ and φ is continuous we have that there exists $\varepsilon>0$ such that

$$
\begin{equation*}
\varphi(t)<\delta \quad \text { for } t \in[\delta, \delta+\varepsilon) \tag{3.14}
\end{equation*}
$$

We can choose $v \in X$ such that $\delta \leq D_{\varrho}(v, F(v))<\delta+\varepsilon$. Then there exists $y \in F(v)$ such that

$$
\begin{equation*}
\delta \leq \varrho(v, y)<\delta+\varepsilon \tag{3.15}
\end{equation*}
$$

Thus

$$
\begin{aligned}
D_{\varrho}(y, F(y)) \leq H_{\varrho}(F(v), F(y)) & \leq \varphi\left(\operatorname { m a x } \left\{\varrho(v, y), D_{\varrho}(v, F(v))\right.\right. \\
& \left.\left.D_{\varrho}(y, F(y)), 2^{-1}\left[D_{\varrho}(v, F(y))+D_{\varrho}(y, F(v))\right]\right\}\right)
\end{aligned}
$$

Let

$$
\gamma=\max \left\{\varrho(v, y), D_{\varrho}(v, F(v)), D_{\varrho}(y, F(y)), 2^{-1}\left[D_{\varrho}(v, F(y))+D_{\varrho}(y, F(v))\right]\right\}
$$

If $\gamma=\varrho(v, y)$ then (3.14) and (3.15) yields

$$
D_{\varrho}(y, F(y)) \leq \varphi(\varrho(v, y))<\delta
$$

If $\gamma=D_{\varrho}(v, F(v))$ then (3.14) and (3.15) also yields

$$
D_{\varrho}(y, F(y)) \leq \varphi\left(D_{\varrho}(v, F(v))\right)<\delta
$$

If $\gamma=D_{\varrho}(y, F(y))$ then $\gamma=0$ since if $\gamma \neq 0$ then

$$
D_{\varrho}(y, F(y)) \leq \varphi\left(D_{\varrho}(y, F(y))\right)<D_{\varrho}(y, F(y))
$$

which is a contradiction.

$$
\begin{aligned}
& \text { If } \gamma=2^{-1}\left[D_{\varrho}(v, F(y))+D_{\varrho}(y, F(v))\right] \text { and } \gamma \neq 0 \text { then } \\
& \begin{aligned}
D_{\varrho}(y, F(y)) & \leq \varphi(\gamma)=\gamma=\frac{1}{2}\left[D_{\varrho}(v, F(y))+D_{\varrho}(y, F(v))\right] \\
& \leq 2^{-1}\left[\varrho(v, y)+D_{\varrho}(y, F(y))+0\right]=2^{-1}\left[\varrho(v, y)+D_{\varrho}(y, F(y))\right]
\end{aligned}
\end{aligned}
$$

so $2^{-1} \cdot D_{\varrho}(y, F(y)) \leq 2^{-1} \cdot \varrho(y, v)$. Thus

$$
\begin{aligned}
\gamma & =\frac{1}{2}\left[D_{\varrho}(v, F(y))+D_{\varrho}(y, F(v))\right] \\
& \leq \frac{1}{2}\left[\varrho(v, y)+D_{\varrho}(y, F(y))\right]<\frac{1}{2} \cdot \varrho(y, v)+\frac{1}{2} \cdot \varrho(y, v)=\varrho(y, v),
\end{aligned}
$$

which contradicts the definition of γ. So we have proved that in this case $\gamma=0$ which implies $D_{\varrho}(y, F(y)) \leq \varphi(\gamma)=\varphi(0)=0$. We can notice that in all cases we have $D_{\varrho}(y, F(y)) \leq \delta$ which contradicts (3.13). Thus (3.12) is true.

REmark 3.5. Some examples of functions φ are:

$$
\begin{array}{ll}
\varphi(t)=a t, & \text { for } a \in[0,1) \\
\varphi(t)=\frac{t}{1+t}, & \text { for } t \in \mathbb{R}_{+}
\end{array}
$$

Hence, our previous results generalise and extend theorems from [1], [3], [5].
In the following we will give a data dependence theorem.
Theorem 3.6. Let X be a nonempty set. Suppose that d and ϱ are two metrics on X and $T, F: X \rightarrow P(X)$ are two multivalued operators. We suppose that:
(a) (X, d) is a complete metric space;
(b) there exists $c>0$ such that $d(x, y) \leq c \cdot \varrho(x, y)$, for each $x, y \in X$;
(c) if $d \neq \varrho$ then $T, F: X \rightarrow P\left(X^{d}\right)$ are closed; if $d=\varrho$ then $T, F: X \rightarrow P_{\mathrm{cl}}\left(X^{d}\right)$;
(d) there exists a continuous function $\varphi:[0, \infty) \rightarrow[0, \infty)$, with $\varphi(t)<t$, for every $t>0, \varphi(0)=0$ and φ is nondecreasing such that:

$$
H_{\varrho}(T(x), T(y)) \leq \varphi\left(M_{\varrho}^{T}(x, y)\right), \quad H_{\varrho}(F(x), F(y)) \leq \varphi\left(M_{\varrho}^{F}(x, y)\right)
$$

for every $x, y \in X$, with strict inequality if $M(x, y) \neq 0$;
(e) Also assume that:

$$
a(t):=\sum_{i=0}^{\infty} \varphi^{i}(t)<\infty
$$

and a is continuous on $(0,+\infty)$;
(f) there exists $\eta>0$ such that

$$
\begin{equation*}
H_{\varrho}(T(x), F(x)) \leq \eta, \quad \text { for every } x \in X \tag{3.16}
\end{equation*}
$$

Then $H_{d}(\operatorname{Fix} T, \operatorname{Fix} F) \leq c \cdot a(\eta)$.
Proof. Let $x_{0} \in$ FixT be arbitrary chosen. We will prove that there exists $y^{*} \in \operatorname{Fix} F$ such that $d\left(x_{0}, y^{*}\right) \leq c \cdot a(\eta)$. From Theorem 3.2 we can choose
a Cauchy sequence $\left\{y_{n}\right\}$ starting from $y_{0}=x_{0}$ and $y_{n} \xrightarrow{d} y^{*}$, as $n \rightarrow \infty$, $y^{*} \in F\left(y^{*}\right)$ with

$$
\varrho\left(y_{n+p}, y_{n}\right) \leq \sum_{i=n}^{\infty} \varphi^{i}\left(\varrho\left(y_{0}, y_{1}\right)\right)
$$

Thus we have that

$$
d\left(y_{n+p}, y_{n}\right) \leq c \cdot \varrho\left(y_{n+p}, y_{n}\right) \leq c \cdot \sum_{i=1}^{\infty} \varphi^{i}\left(\varrho\left(y_{0}, y_{1}\right)\right)
$$

Since $y_{0}=x_{0} \in \operatorname{Fix} T$ we have that $y_{0} \in T\left(y_{0}\right)$. Thus from (3.16) for $x=y_{0}$ and for every $q>1$ we have that there exists $y_{1} \in F\left(y_{0}\right)$ such that

$$
\varrho\left(y_{0}, y_{1}\right) \leq q \cdot H_{\varrho}\left(T\left(y_{0}\right), F\left(y_{0}\right)\right) \leq q \cdot \eta .
$$

Since $\left\{y_{n}\right\}$ is a Cauchy sequence we have that $d\left(y_{n+p}, y_{n}\right) \rightarrow d\left(y^{*}, y_{n}\right)$, as $p \rightarrow \infty$, so we have the following inequality:

$$
d\left(y^{*}, y_{n}\right) \leq c \cdot \sum_{i=0}^{\infty} \varphi^{i}\left(\varrho\left(y_{0}, y_{1}\right)\right) \leq c \cdot \sum_{i=0}^{\infty} \varphi^{i}(q \cdot \eta)=c \cdot a(q \eta)
$$

For $n=0$ we have that $d\left(y^{*}, y_{0}\right) \leq c \cdot a(q \cdot \eta)$. Letting $q \rightarrow 1$ we get that $d\left(y^{*}, y_{0}\right) \leq c \cdot a(\eta)$. By a similar procedure we obtain that for each $x_{0} \in \operatorname{Fix} F$ there exists $x^{*} \in \operatorname{Fix} T$ such that $d\left(x_{0}, x^{*}\right) \leq c a(\eta)$. The proof is complete.

In what follows we will obtain a homotopy result via Zorn's Lemma.
Theorem 3.7. Let (X, d) be a complete metric space and ϱ another metric on X such that there exists $c>0$ with $d(x, y) \leq c \cdot \varrho(x, y)$, for each $x, y \in X$. Let U be an open subset of $(X, \varrho), V$ be a closed subset of (X, d) with $U \subset V$ and $r_{0}>0$. Let $G: V \times[0,1] \rightarrow P(X)$ be a multivalued operator such that the following conditions are satisfied:
(a) $x \notin G(x, t)$, for each $x \in V \backslash U$ and each $t \in[0,1]$;
(b) there exists $r_{0}>0$ and a continuous function $\varphi:[0, \infty) \rightarrow[0, \infty)$, with $\varphi(z)<z$, for every $z>0, \varphi(0)=0$ and φ is nondecreasing on $\left(0, r_{0}\right]$ such that:

$$
H_{\varrho}(G(x, t), G(y, t)) \leq \varphi\left(M_{\varrho}^{G(\cdot, t)}(x, y)\right)
$$

for every $x, y \in X$ with strict inequality if $M_{\varrho}^{G(\cdot, t)}(x, y) \neq 0$;
(c) there exists a continuous increasing function $\psi:[0,1] \rightarrow \mathbb{R}$ such that

$$
H_{\varrho}(G(x, t), G(y, t)) \leq|\psi(t)-\psi(s)|
$$

for all $t, s \in[0,1]$ and each $x \in V$;
(d) $G: V^{d} \times[0,1] \rightarrow P\left(X^{d}\right)$ is closed;
(e) $\phi:[0, \infty) \rightarrow[0, \infty)$ is strictly increasing $($ here $\phi(x)=x-\varphi(x))$;
(f) $\phi^{-1}(a)+\phi^{-1}(b) \leq \phi^{-1}(a+b)$, for $a \geq 0, b \geq 0$;
(g) $\sum_{i=0}^{\infty} \varphi^{i}(t)<\infty$, for $t \in\left(0, r_{0}-\varphi\left(r_{0}\right)\right]$;
(h) $\sum_{i=1}^{\infty} \varphi^{i}\left(r_{0}-\varphi\left(r_{0}\right)\right) \leq \varphi\left(r_{0}\right)$.

Then $G(\cdot, 0)$ has a fixed point if and only if $G(\cdot, 1)$ has a fixed point.
Proof. Suppose $G(\cdot, 0)$ has a fixed point z. Thus from (a) we have that $z \in U$. Define

$$
Q=\{(t, x) \in[0,1] \times U \mid x \in G(x, t)\} .
$$

We can notice that $Q \neq \emptyset$, since $(0, z) \in Q$.
We will consider on Q a partial order defined as follows $(t, x) \leq(s, y)$ if and only if $t \leq s$ and $\varrho(x, y) \leq \phi^{-1}(2[\psi(s)-\psi(t)])$. Let M be a totally ordered subset of Q and consider $t^{*}=\sup \{t \mid(t, x) \in M\}$. Consider a sequence $\left(t_{n}, x_{n}\right)_{n \in \mathbb{N}^{*}} \subset$ M such that $\left(t_{n}, x_{n}\right) \leq\left(t_{n+1}, x_{n+1}\right)$ and $t_{n} \rightarrow t^{*}$ as $n \rightarrow \infty$. Then $\varrho\left(x_{m}, x_{n}\right) \leq$ $\phi^{-1}\left(2\left[\psi\left(t_{m}\right)-\psi\left(t_{n}\right)\right]\right)$, for each $m, n \in \mathbb{N}^{*}, m>n$.

When $m, n \rightarrow \infty$ we obtain $\varrho\left(x_{m}, x_{n}\right) \rightarrow 0$, thus $\left(x_{n}\right)_{n \in \mathbb{N}^{*}}$ is ϱ-Cauchy. So $\left(x_{n}\right)_{n \in \mathbb{N}^{*}}$ is d-Cauchy too. We will denote by $x^{*} \in(X, d)$ its limit. Since $x_{n} \in G\left(x_{n}, t_{n}\right), n \in \mathbb{N}^{*}$ and condition (d) we have that $x^{*} \in G\left(x^{*}, t^{*}\right)$. Also, from (a) we have that $x^{*} \in U$. Hence $\left(t^{*}, x^{*}\right) \in Q$. Since M is totally ordered we get $(t, x) \leq\left(t^{*}, x^{*}\right)$, for each $(t, x) \in M$. Thus $\left(t^{*}, x^{*}\right)$ is an upper bound of M. By applying Zorn's Lemma we obtain that Q admits a maximal element $\left(t_{0}, x_{0}\right) \in Q$.

We will prove that $t_{0}=1$. Suppose that $t_{0}<1$. Choose $r>0$ with $r \leq r_{0}$ and $\left.t \in] t_{0}, 1\right]$ such that $B_{\varrho}\left(x_{0}, r\right) \subset U$, and $r:=\phi^{-1}\left(2\left[\psi(t)-\psi\left(t_{0}\right)\right]\right)$. Then from condition (c) we have

$$
\begin{aligned}
D_{\varrho}\left(x_{0}, G\left(x_{0}, t\right)\right) & \leq D_{\varrho}\left(x_{0}, G\left(x_{0}, t_{0}\right)\right)+H_{\varrho}\left(G\left(x_{0}, t_{0}\right), G\left(x_{0}, t\right)\right) \\
& \leq\left|\psi\left(t_{0}\right)-\psi(t)\right| \leq \frac{\phi(r)}{2}<\phi(r)=r-\varphi(r) .
\end{aligned}
$$

Since $\bar{B}_{\varrho}^{d}\left(x_{0}, r\right) \subset V$, the multivalued operator $G(\cdot, t): \bar{B}_{\varrho}^{d}\left(x_{0}, r\right) \rightarrow P\left(X^{d}\right)$ satisfies for all $t \in[0,1]$ the assumptions of Theorem 3.2. Hence, for all $t \in[0,1]$ there exists $x \in \bar{B}_{\varrho}^{d}\left(x_{0}, r\right)$ such that $x \in G(x, t)$. Thus $(t, x) \in Q$. Since $t_{0}<t$ and $\varrho\left(x_{0}, x\right) \leq r=\phi^{-1}\left(2\left[\psi(t)-\psi\left(t_{0}\right)\right]\right)$ we obtain that $\left(t_{0}, x_{0}\right)<(t, x)$. This contradicts the maximality of $\left(t_{0}, x_{0}\right)$. For the reverse implication, just put $t:=1-t$.

References

[1] R. P. Agarwal, J. Dshalalow and D. O'Regan, Fixed point and homotopy results for generalized contractive maps of Reich-type, Appl. Anal. 82 (2003), 329-350.
[2] L. B. Ćırıć, Fixed points for generalized multi-valued contractions, Math. Vesnik 9 (1972), 265-272.
[3] T. Lazăr, D. O'Regan and A. Petruşel, Fixed points and homotopy results for Ćirić-type multivalued operators on a set with two metrics, Bull. Korean Math. Soc. 45 (2008), 67-73.
[4] T. Lazăr, A. Petruşel and N. Shahzad, Fixed points for non-self operators and domain invariance theorems, Nonlinear Anal. 70 (2009), 117-125.
[5] A. Petruşel and I. A. Rus, Fixed point theory for multivalued operators on a set with two metrics, Fixed Point Theory 8 (2007), 97-104.
[6] I. A. Rus, A. Petruşel and A. Sîntămărian, Data dependence of the fixed points set of multivalued weakly Picard operators, Studia Univ. Babeş-Bolyai Math. 46 (2001), 111-121.

Manuscript received December 4, 2007

Tünde Petra Petru and Monica Boriceanu
Department of Applied Mathematics
Babeş-Bolyai University
Kogălniceanu Str., No. 1
400084, Cluj-Napoca, ROMANIA
E-mail address: petrupetra@gmail.com, bmonica@math.ubbcluj.ro

[^0]: 2000 Mathematics Subject Classification. 47H10, 54H25, 54C60.
 Key words and phrases. Set with two metrics, multivalued operator, fixed point, homotopy result, data dependence.

