Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 33, 2009, 315–326

FIXED POINT RESULTS FOR GENERALIZED φ -CONTRACTION ON A SET WITH TWO METRICS

Tünde Petra Petru — Monica Boriceanu

ABSTRACT. The aim of this paper is to present fixed point theorems for multivalued operators $T: X \to P(X)$, on a nonempty set X with two metrics d and ϱ , satisfying the following generalized φ -contraction condition:

 $H_{\varrho}(T(x), T(y)) \le \varphi(M^T(x, y)), \text{ for every } x, y \in X,$

where

$$M^{T}(x,y) := \max\{\varrho(x,y), D_{\varrho}(x,T(x)), D_{\varrho}(y,T(y)), \\ 2^{-1}[D_{\varrho}(x,T(y)) + D_{\varrho}(y,T(x))]\}.$$

1. Introduction

In this paper we will give some local and global fixed point results for multivalued generalized φ -contractions on a set with two metrics. The multivalued operator $T: Y \to P_{cl}(X), Y \subset X$ will satisfy a generalized φ -contraction condition of the following type:

$$H_{\varrho}(T(x), T(y)) \le \varphi(M^T(x, y)), \text{ for every } x, y \in X,$$

©2009 Juliusz Schauder Center for Nonlinear Studies

²⁰⁰⁰ Mathematics Subject Classification. 47H10, 54H25, 54C60.

 $Key\ words\ and\ phrases.$ Set with two metrics, multivalued operator, fixed point, homotopy result, data dependence.

where

$$\begin{split} M^{T}(x,y) &:= \max\{\varrho(x,y), D_{\varrho}(x,T(x)), D_{\varrho}(y,T(y)), \\ & 2^{-1}[D_{\varrho}(x,T(y)) + D_{\varrho}(y,T(x))]\}. \end{split}$$

Our results extend and generalize some similar theorems given by Agarwal– Dshalalow–O'Regan in [1] for the case of a space endowed with a metric, as well as, the results given in Lazăr–O'Regan–Petrușel [3] for the case of Ćirić type multivalued operator.

2. Notations

Let us consider the following families of subsets of a metric space (X, ϱ) :

$$P(X) := \{Y \in \mathcal{P}(X) \mid Y \neq \emptyset\};$$

$$P_{\mathrm{b}}(X) := \{Y \in P(X) \mid Y \text{ is bounded}\};$$

$$P_{\mathrm{cl}}(X) := \{Y \in P(X) \mid Y \text{ is closed}\}.$$

If d is another metric on X we will denote by $\overline{B}_{\varrho}^{d}(x_{0}, r)$ the closure of $B_{\varrho}(x_{0}, r)$ in (X, d), where $B_{\varrho}(x_{0}, r) := \{x \in X \mid \varrho(x_{0}, x) < r\}$. Let us define the gap functional between the sets A and B in the metric space (X, ϱ) as:

$$D_{\rho}: P(X) \times P(X) \to \mathbb{R}_+ \cup \{\infty\}, \quad D_{\rho}(A, B) = \inf\{\varrho(a, b) \mid a \in A, b \in B\}$$

(in particular, if $x_0 \in X$ then $D_{\varrho}(x_0, B) := D_{\varrho}(\{x_0\}, B)$) and the (generalized) Pompeiu–Hausdorff functional as:

$$\begin{split} H_{\varrho} &: P(X) \times P(X) \to \mathbb{R}_{+} \cup \{\infty\}, \\ H_{\varrho}(A,B) &= \max \left\{ \sup_{a \in A} D_{\varrho}(a,B), \sup_{b \in B} D_{\varrho}(A,b) \right\}. \end{split}$$

Let (X, ϱ) be a metric space. If $T: X \to P(X)$ is a multivalued operator, then $x \in X$ is called fixed point for T if and only if $x \in T(x)$. The set Fix $T := \{x \in X \mid x \in T(x)\}$ is called the fixed point set of T, while SFix $T = \{x \in X \mid x\}$ is called the strict fixed point set of T. The operator T is closed if its graphic is a closed set in $X \times X$. For $x, y \in X$ let us denote:

$$\begin{split} M_{\varrho}^{T}(x,y) &= \max\{\varrho(x,y), D_{\varrho}(x,T(x)), D_{\varrho}(y,T(y)), \\ & 2^{-1}[D_{\varrho}(x,T(y)) + D_{\varrho}(y,T(x))]\}. \end{split}$$

3. Main results

The starting point of our research was the recently given result, a multivalued version of Maia's fixed point theorem for multivalued contractions, in [5] by A. Petruşel and I. A. Rus.

THEOREM 3.1 (A. Petruşel, I. A. Rus [5]). Let X be a nonempty set, d and ϱ two metrics on X and $T: X \to P(X)$ be a multivalued operator. We suppose that:

- (i) (X, d) is a complete metric space;
- (ii) there exists c > 0 such that $d(x, y) \le c \cdot \varrho(x, y)$, for each $x, y \in X$;
- (iii) $T: (X, d) \to (P(X), H_d)$ is closed;
- (iv) there exists $\alpha \in [0,1[$ such that $H_{\varrho}(T(x),T(y)) \leq \alpha \cdot \varrho(x,y)$, for each $x, y \in X$.

Then we have:

- (a) Fix $T \neq \emptyset$;
- (b) for each x ∈ X and each y ∈ T(x) there exists a sequence (x_n)_{n∈N} such that:
 (b1) x₀ = x, x₁ = y;
 (b2) x_{n+1} ∈ T(x_n), n ∈ N;
 - (b3) $x_n \xrightarrow{d} x^* \in T(x^*)$, as $n \to \infty$.

Our first main result is a local version of Ćirić's theorem ([2]) for generalized φ -contractions on a set with two metrics.

THEOREM 3.2. Let X be a nonempty set, $x_0 \in X$ and r > 0. Suppose that d and ϱ are two metrics on X and $F: \overline{B}_{\varrho}^d(x_0, r) \to P(X)$ is a multivalued operator. We suppose that:

- (a) (X, d) is a complete metric space;
- (b) there exists c > 0 such that $d(x, y) \le c \cdot \varrho(x, y)$, for each $x, y \in X$;
- (c) (c1) if $d \neq \varrho$ then $F: \overline{B}^d_{\varrho}(x_0, r) \to P(X^d)$ is closed; (c2) if $d = \varrho$ then $F: \overline{B}^d_{\varrho}(x_0, r) \to P_{\rm cl}(X^d)$;
- (d) there exists a continuous function $\varphi: [0, \infty) \to [0, \infty)$, with $\varphi(t) < t$, for every t > 0, $\varphi(0) = 0$ and φ is nondecreasing on (0, r] such that:

(3.1)
$$H_{\varrho}(F(x), F(y)) \le \varphi(M_{\varrho}^{F}(x, y))$$

for every $x, y \in \overline{B}_{\rho}^{d}(x_{0}, r)$, with strict inequality if $M_{\rho}^{F}(x, y) \neq 0$.

Also assume that:

$$(3.2) D_{\varrho}(x_0, F(x_0)) < r - \varphi(r);$$

(3.3)
$$\sum_{i=0}^{\infty} \varphi^{i}(t) < \infty, \quad \text{for } t \in (0, r - \varphi(r)];$$

(3.4)
$$\sum_{i=1}^{\infty} \varphi^i(r - \varphi(r)) \le \varphi(r).$$

Then F has a fixed point.

PROOF. If $M_{\varrho}^{F}(x,y) = 0$ for some $x, y \in \overline{B}_{\varrho}^{d}(x_{0},r)$ then by $D_{\varrho}(x,F(x)) \leq M_{\varrho}^{F}(x,y)$ we get that $D_{\varrho}(x,F(x)) = 0$ and thus $x \in \overline{F(x)}^{\varrho} \subseteq \overline{F(x)}^{d} = F(x)$. From (3.2) we may choose $x_{1} \in F(x_{0})$ with

(3.5)
$$\varrho(x_0, x_1) < r - \varphi(r)$$

then $x_1 \in \overline{B}_{\varrho}^d(x_0, r)$. We may assume $M_{\varrho}^F(x_0, x_1) \neq 0$, since otherwise x_1 is a fixed point, so the proof is complete. If $M_{\varrho}^F \neq 0$ then from (3.1) we have that $H_{\varrho}(F(x_0), F(x_1)) < \varphi(M_{\varrho}^F(x_0, x_1))$. We may choose $\varepsilon > 0$ with

$$H_{\varrho}(F(x_0), F(x_1)) + \varepsilon \le \varphi(M_{\rho}^F(x_0, x_1))$$

Next we choose $x_2 \in F(x_1)$ so that

$$\varrho(x_1, x_2) \le H_\rho(F(x_0), F(x_1)) + \varepsilon.$$

It follows that $\varrho(x_1, x_2) \leq \varphi(M_{\rho}^F(x_0, x_1))$. We want to show that

(3.6)
$$\varrho(x_1, x_2) \le \varphi(\varrho(x_0, x_1))$$

We have

$$\begin{aligned} \varrho(x_1, x_2) &\leq \varphi(\max\{\varrho(x_0, x_1), D_{\varrho}(x_0, F(x_0)), D_{\varrho}(x_1, F(x_1)), \\ & 2^{-1}[D_{\varrho}(x_0, F(x_1)) + D_{\varrho}(x_1, F(x_0))]\}). \end{aligned}$$

Let

$$\begin{split} \gamma_1 &= \max\{\varrho(x_0, x_1), D_{\varrho}(x_0, F(x_0)), D_{\varrho}(x_1, F(x_1)), \\ & 2^{-1}[D_{\varrho}(x_0, F(x_1)) + D_{\varrho}(x_1, F(x_0))]\} \end{split}$$

If $\gamma_1 = \varrho(x_0, x_1)$ then $\varrho(x_1, x_2) \leq \varphi(\varrho(x_0, x_1))$. If $\gamma_1 = D_\varrho(x_0, F(x_0))$ then, since $D_\varrho(x_0, F(x_0)) \leq \varrho(x_0, x_1)$ we have that $\varrho(x_1, x_2) \leq \varphi(\varrho(x_0, x_1))$. If $\gamma_1 = D_\varrho(x_1, F(x_1))$ then if $\gamma_1 \neq 0$, since $x_2 \in F(x_1)$ then $\varrho(x_1, x_2) \leq \varphi(D_\varrho(x_1, F(x_1))) < D_\varrho(x_1, F(x_1)) \leq \varrho(x_1, x_2)$ which is a contradiction. Then we have that $\gamma_1 = 0 = D_\varrho(x_1, F(x_1))$. Thus $\varrho(x_1, x_2) \leq \varphi(\gamma_1) = \varphi(0) = 0$ and (3.5) is true. If $\gamma_1 = 2^{-1}[D_\varrho(x_0, F(x_1)) + D_\varrho(x_1, F(x_0))]$ then:

- if $\gamma_1 = 0$ then $\varrho(x_1, x_2) \le \varphi(\gamma_1) = \varphi(0) = 0$ implies that (3.6) is true;
- if $\gamma_1 \neq 0$ then

$$\begin{split} \varrho(x_1, x_2) &\leq \varphi(\gamma_1) < \gamma_1 = \frac{1}{2} [D_{\varrho}(x_0, F(x_1)) + D_{\varrho}(x_1, F(x_0))] \\ &\leq \frac{1}{2} \varrho(x_0, x_2) \leq \frac{1}{2} \varrho(x_0, x_1) + \frac{1}{2} \varrho(x_1, x_2) \Rightarrow \varrho(x_1, x_2) < \varrho(x_0, x_1). \end{split}$$

Then

$$\begin{aligned} \gamma_1 &= \frac{1}{2} [D_{\varrho}(x_0, F(x_1)) + D_{\varrho}(x_1, F(x_0))] \leq \frac{1}{2} \varrho(x_0, x_2) \\ &\leq \frac{1}{2} \varrho(x_0, x_1) + \frac{1}{2} (\varrho(x_1, x_2)) < \frac{1}{2} \varrho(x_0, x_1) + \frac{1}{2} \varrho(x_0, x_1) = \varrho(x_0, x_1) \end{aligned}$$

which is a contradiction with the definition of γ_1 .

We have that (3.6) is true in all cases. Notice that $x_2 \in \overline{B}_{\rho}^d(x_0, r)$ since

$$\varrho(x_0, x_2) \le \varrho(x_0, x_1) + \varrho(x_1, x_2) \le \varrho(x_0, x_1) + \varphi(\varrho(x_0, x_1))$$

$$< [r - \varphi(r)] + \varphi(r - \varphi(r)) \le r - \phi(r) + \varphi(r) = r.$$

We may assume that $M_{\varrho}^F(x_1, x_2) \neq 0$ since otherwise we are finished. Now choose $\delta > 0$ such that

$$H(F(x_1), F(x_2)) + \delta \le \varphi(M_o^F(x_1, x_2))$$

and choose $x_3 \in F(x_2)$ so that

$$\varrho(x_2, x_3) \le H(F(x_1), F(x_2)) + \delta.$$

Thus $\varrho(x_2, x_3) \leq \varphi(M_{\varrho}^F(x_1, x_2))$. We now show that

(3.7)
$$\varrho(x_2, x_3) \le \varphi(\varrho(x_1, x_2)) \le \varphi^2(\varrho(x_0, x_1))$$

Indeed, we can notice that

$$\varrho(x_2, x_3) \le \varphi(\max\{\varrho(x_1, x_2), D_{\varrho}(x_1, F(x_1)), D_{\varrho}(x_2, F(x_2)), 2^{-1}[D_{\rho}(x_1, F(x_2)) + D_{\rho}(x_2, F(x_1))]\}).$$

Let

$$\begin{split} \gamma_2 &= \max\{\varrho(x_1,x_2), D_{\varrho}(x_1,F(x_1)), D_{\varrho}(x_2,F(x_2)), \\ & 2^{-1}[D_{\varrho}(x_1,F(x_2)) + D_{\varrho}(x_2,F(x_1))]\}. \end{split}$$

If $\gamma_2 = \varrho(x_1, x_2)$ then $\varrho(x_2, x_3) \leq \varphi(\varrho(x_1, x_2)) \leq \varphi^2(\varrho(x_0, x_1))$, so (3.7) is true. If $\gamma_2 = D_\varrho(x_1, F(x_1))$ then, since $D_\varrho(x_1, F(x_1)) \leq \varrho(x_1, x_2)$, (3.7) is true again. If $\gamma_2 = D_\varrho(x_2, F(x_2))$ and $\gamma_2 \neq 0$ then, since $x_3 \in F(x_2)$, we will have the following inequalities

$$\varrho(x_2, x_3) \le \varphi(\gamma_2) < \gamma_2 = D_{\varrho}(x_2, F(x_2)) \le \varrho(x_2, x_3),$$

which is a contradiction. Thus in this case $\gamma_2 = D_{\varrho}(x_2, F(x_2)) = 0$ so $\varrho(x_2, x_3) \leq \varphi(\gamma_2) = \varphi(0) = 0$ and (3.7) is true. Suppose that $\gamma_2 = 2^{-1}[D_{\varrho}(x_1, F(x_2)) + D_{\varrho}(x_2, F(x_1))]$. If $\gamma_2 = 0$ then $\varrho(x_2, x_3) \leq \varphi(\gamma_2) = \varphi(0) = 0$ thus (3.7) is immediate.

If $\gamma_2 \neq 0$ then

$$\varrho(x_2, x_3) \le \varphi(\gamma_2) < \gamma_2 = \frac{1}{2} [D_{\varrho}(x_1, F(x_2)) + D_{\varrho}(x_2, F(x_1))]$$
$$\le \varrho(x_1, x_3) \le \frac{1}{2} \varrho(x_1, x_2) + \frac{1}{2} \varrho(x_2, x_3)$$

T. P. Petru — M. Boriceanu

so $2^{-1}\varrho(x_2, x_3) \leq 2^{-1}\varrho(x_1, x_2)$. Thus

$$\gamma_2 = \frac{1}{2} [D_{\varrho}(x_1, F(x_2)) + D_{\varrho}(x_2, F(x_1))]$$

$$\leq \frac{1}{2} \varrho(x_1, x_3) \leq \frac{1}{2} \varrho(x_1, x_2) + \frac{1}{2} \varrho(x_2, x_3) < \varrho(x_1, x_2),$$

which contradicts the definition of γ_2 . Thus in all cases (3.7) is true. Notice again that $x_3 \in \overline{B}_{\rho}^d(x_0, r)$, since (3.4) implies

$$\begin{split} \varrho(x_0, x_3) &\leq \varrho(x_0, x_1) + \varrho(x_1, x_2) + \varrho(x_2, x_3) \\ &\leq [r - \varphi(r)] + \varphi(\varrho(x_0, x_1)) + \varphi^2(\varrho(x_0, x_1)) \\ &< [r - \varphi(r)] + \varphi(r - \varphi(r)) + \varphi^2(r - \varphi(r)) \\ &\leq r + \left[\sum_{i=1}^{\infty} \varphi^j(r - \varphi(r)) - \varphi(r)\right] \leq r. \end{split}$$

Proceeding inductively we obtain $x_{n+1} \in F(x_n)$ for $n \in \{3, 4, ...\}$ such that

$$\varrho(x_{n+1}, x_n) \le \varphi(M_{\varrho}^F(x_{n-1}, x_n)).$$

We assumed without loss of generality that $M_{\varrho}^{F}(x_{n-1}, x_n) \neq 0$. Thus

(3.8)
$$\varrho(x_n, x_{n+1}) \le \varphi(\varrho(x_{n-1}, x_n)) \le \varphi^n(\varrho(x_0, x_1))$$

and $x_{n+1} \in \overline{B}_{\varrho}^{d}(x_0, r)$ for $n \in \{3, 4, ...\}$. We want to prove that $\{x_n\}$ is a Cauchy sequence. Notice that (3.8) implies

$$\varrho(x_{n+p}, x_n) \leq \varrho(x_{n+p}, x_{n+p-1}) + \ldots + \varrho(x_{n+1}, x_n)$$

$$\leq \varphi^{n+p-1}(\varrho(x_0, x_1)) + \ldots + \varphi^n(\varrho(x_0, x_1)) \leq \sum_{j=n}^{\infty} \varphi^j(\varrho(x_0, x_1)),$$

thus (3.3) guarantees that $\{x_n\}$ is a ρ -Cauchy sequence. From (b) we have that $\{x_n\}$ is a *d*-Cauchy sequence too. Denote by $x \in B^d_{\rho}(x_0, r)$ the limit of the sequence. We can now separate two cases:

- if $d \neq \rho$ we have from (a) and (c1) that $d(x_n, x) \to 0$, as $n \to \infty$, where $x \in \text{Fix } F$. So we have $\text{Fix } F \neq \emptyset$ and the proof is complete.
- if $d = \rho$ we have that there exists $x \in \overline{B}_{\rho}^{d}(x_{0}, r)$ with $x_{n} \to x$ when $n \to \infty$. It only remains to show that $x \in F(x)$.

$$\begin{aligned} D_{\varrho}(x,F(x)) &\leq \varrho(x,x_{n}) + D_{\varrho}(x_{n},F(x)) \\ &\leq \varrho(x,x_{n}) + H_{\varrho}(F(x_{n-1}),F(x)) \\ &\leq \varrho(x,x_{n}) + \varphi(\max\{\varrho(x_{1},x_{2}),D_{\varrho}(x_{1},F(x_{1})), \\ &D_{\varrho}(x_{2},F(x_{2})),2^{-1}[D_{\varrho}(x_{1},F(x_{2})) + D_{\varrho}(x_{2},F(x_{1}))]\}). \end{aligned}$$

Since

$$D_{\varrho}(x, F(x_{n-1})) \leq \varrho(x, x_n) \to 0,$$

$$D_{\varrho}(x_{n-1}, F(x_{n-1})) \leq \varrho(x_{n-1}, x_n) \to 0,$$

$$|D_{\varrho}(x_{n-1}, F(x)) - D_{\varrho}(x, F(x))| \leq \varrho(x_{n-1}, x) \to 0,$$

as $n \to \infty$, we get by letting $n \to \infty$ that

$$D_{\varrho}(x, F(x)) = 0 + \varphi(\max\{0, 0, D_{\varrho}(x, F(x)), 2^{-1}D_{\varrho}(x, F(x))\}).$$

Thus $D_{\varrho}(x, F(x)) = 0$, so $x \in \overline{F(x)} = F(x)$. The proof is now complete.

REMARK 3.3. It is known that if X is a Banach space, then a fixed point theorem for $T: \overline{B}(x_0, r) \to P_{\rm cl}(X)$ induces domain invariance theorems for the field associated to T (i.e. G(x) = x - T(x)) see [4], as well as, homotopy theorems for multivalued operators (see [3]). From this point of view, it is an open question to obtain such consequences for our multivalued generalized φ -contractions. For a homotopy result see Theorem 3.7.

We continue the section with a global version of Cirić's theorem ([2]) for generalized φ -contractions on a set with two metrics.

THEOREM 3.4. Let X be a nonempty set, r > 0. Suppose that d and ϱ are two metrics on X and $F: X \to P(X)$ is a multivalued operator. We suppose that:

- (a) (X, d) is a complete metric space;
- (b) there exists c > 0 such that $d(x, y) \leq c \cdot \varrho(x, y)$, for each $x, y \in X$;
- (c) if $d \neq \varrho$ then $F: X^d \to P(X^d)$ is closed; if $d = \varrho$ then $F: X^d \to P_{cl}(X^d)$;
- (d) there exists a continuous function $\varphi: [0, \infty) \to [0, \infty)$, with $\varphi(t) < t$, for every t > 0, $\varphi(0) = 0$ and φ is nondecreasing on (0, r] such that:

(3.9)
$$H_{\varrho}(F(x), F(y)) \le \varphi(M_{\rho}^{F}(x, y))$$

for every $x, y \in X$, with strict inequality if $M_{\rho}^{F}(x, y) \neq 0$.

Also assume that:

(3.10)
$$\sum_{i=0}^{\infty} \varphi^i(t) < \infty, \quad for \ t \in (0, r].$$

Then F has a fixed point.

PROOF. We claim that we can choose $x_0 \in X$ and $x_1 \in F(x_0)$ such that:

$$(3.11) \qquad \qquad \varrho(x_1, x_0) < r.$$

If (3.11) is true then, as in the proof of theorem Theorem 3.2, we can choose $x_{n+1} \in F(x_n)$ for $n \in \{1, 2, ...\}$ with $\varrho(x_n, x_{n+1}) \leq \varphi(M_{\varrho}^F(x_n, x_{n+1})) \leq$

321

 $\varphi^n(\varrho(x_0, x_1))$. The same reasonings guarantees that $\{x_n\}$ is a *d*-Cauchy sequence, so there exists $x \in X$ with $d(x_n, x) \to 0$, as $n \to \infty$. Thus in Theorem 3.2 we have that $x \in F(x)$. It remains to show (3.11). If we are in the case when φ is nondecreasing on $(0, \infty)$ then (3.11) is satisfied. We can observe that (3.11) is immediate if we could show

(3.12)
$$\inf_{x \in X} D_{\varrho}(x, F(x)) = 0$$

since if (3.12) is true then there exists $x \in X$ with $D_{\varrho}(x, F(x)) < r$, so there exists $y \in F(x)$ with $\varrho(x, y) < r$. Suppose that (3.12) is false, i.e. suppose

(3.13)
$$\inf_{x \in X} D_{\varrho}(x, F(x)) = \delta.$$

Since $\varphi(\delta) < \delta$ and φ is continuous we have that there exists $\varepsilon > 0$ such that

(3.14)
$$\varphi(t) < \delta \quad \text{for } t \in [\delta, \delta + \varepsilon).$$

We can choose $v \in X$ such that $\delta \leq D_{\varrho}(v, F(v)) < \delta + \varepsilon$. Then there exists $y \in F(v)$ such that

$$(3.15) \qquad \qquad \delta \le \varrho(v,y) < \delta + \varepsilon.$$

Thus

$$\begin{split} D_{\varrho}(y,F(y)) &\leq H_{\varrho}(F(v),F(y)) \leq \varphi(\max\{\varrho(v,y),D_{\varrho}(v,F(v)),\\ D_{\varrho}(y,F(y)),2^{-1}[D_{\varrho}(v,F(y))+D_{\varrho}(y,F(v))]\}). \end{split}$$

Let

$$\begin{split} \gamma &= \max\{\varrho(v,y), D_{\varrho}(v,F(v)), D_{\varrho}(y,F(y)), 2^{-1}[D_{\varrho}(v,F(y)) + D_{\varrho}(y,F(v))]\}. \end{split}$$
 If $\gamma &= \varrho(v,y)$ then (3.14) and (3.15) yields

$$D_{\rho}(y, F(y)) \le \varphi(\varrho(v, y)) < \delta.$$

If $\gamma = D_{\varrho}(v, F(v))$ then (3.14) and (3.15) also yields

$$D_{\varrho}(y, F(y)) \le \varphi(D_{\varrho}(v, F(v))) < \delta.$$

If $\gamma = D_{\rho}(y, F(y))$ then $\gamma = 0$ since if $\gamma \neq 0$ then

$$D_{\varrho}(y, F(y)) \leq \varphi(D_{\varrho}(y, F(y))) < D_{\varrho}(y, F(y)),$$

which is a contradiction.

If
$$\gamma = 2^{-1}[D_{\varrho}(v, F(y)) + D_{\varrho}(y, F(v))]$$
 and $\gamma \neq 0$ then

$$\begin{aligned} D_{\varrho}(y, F(y)) &\leq \varphi(\gamma) = \gamma = \frac{1}{2}[D_{\varrho}(v, F(y)) + D_{\varrho}(y, F(v))] \\ &\leq 2^{-1}[\varrho(v, y) + D_{\varrho}(y, F(y)) + 0] = 2^{-1}[\varrho(v, y) + D_{\varrho}(y, F(y))] \end{aligned}$$

so $2^{-1} \cdot D_{\rho}(y, F(y)) \leq 2^{-1} \cdot \varrho(y, v)$. Thus

$$\begin{split} \gamma &= \frac{1}{2} [D_{\varrho}(v,F(y)) + D_{\varrho}(y,F(v))] \\ &\leq \frac{1}{2} [\varrho(v,y) + D_{\varrho}(y,F(y))] < \frac{1}{2} \cdot \varrho(y,v) + \frac{1}{2} \cdot \varrho(y,v) = \varrho(y,v), \end{split}$$

which contradicts the definition of γ . So we have proved that in this case $\gamma = 0$ which implies $D_{\varrho}(y, F(y)) \leq \varphi(\gamma) = \varphi(0) = 0$. We can notice that in all cases we have $D_{\varrho}(y, F(y)) \leq \delta$ which contradicts (3.13). Thus (3.12) is true.

Remark 3.5. Some examples of functions φ are:

$$\begin{aligned} \varphi(t) &= at, & \text{for } a \in [0, 1), \\ \varphi(t) &= \frac{t}{1+t}, & \text{for } t \in \mathbb{R}_+. \end{aligned}$$

Hence, our previous results generalise and extend theorems from [1], [3], [5].

In the following we will give a data dependence theorem.

THEOREM 3.6. Let X be a nonempty set. Suppose that d and ρ are two metrics on X and T, F: $X \to P(X)$ are two multivalued operators. We suppose that:

- (a) (X, d) is a complete metric space;
- (b) there exists c > 0 such that $d(x, y) \le c \cdot \varrho(x, y)$, for each $x, y \in X$;
- (c) if $d \neq \varrho$ then $T, F: X \to P(X^d)$ are closed; if $d = \varrho$ then $T, F: X \to P_{cl}(X^d)$;
- (d) there exists a continuous function $\varphi: [0, \infty) \to [0, \infty)$, with $\varphi(t) < t$, for every t > 0, $\varphi(0) = 0$ and φ is nondecreasing such that:

$$H_{\varrho}(T(x), T(y)) \leq \varphi(M_{\varrho}^{T}(x, y)), \qquad H_{\varrho}(F(x), F(y)) \leq \varphi(M_{\varrho}^{F}(x, y)),$$

for every $x, y \in X$, with strict inequality if $M(x, y) \neq 0$;

(e) Also assume that:

$$a(t):=\sum_{i=0}^{\infty}\varphi^i(t)<\infty,$$

and a is continuous on $(0, +\infty)$;

(f) there exists $\eta > 0$ such that

(3.16)
$$H_{\varrho}(T(x), F(x)) \le \eta, \text{ for every } x \in X$$

Then $H_d(\operatorname{Fix} T, \operatorname{Fix} F) \leq c \cdot a(\eta).$

PROOF. Let $x_0 \in FixT$ be arbitrary chosen. We will prove that there exists $y^* \in FixF$ such that $d(x_0, y^*) \leq c \cdot a(\eta)$. From Theorem 3.2 we can choose

T. P. Petru — M. Boriceanu

a Cauchy sequence $\{y_n\}$ starting from $y_0 = x_0$ and $y_n \xrightarrow{d} y^*$, as $n \to \infty$, $y^* \in F(y^*)$ with

$$\varrho(y_{n+p}, y_n) \le \sum_{i=n}^{\infty} \varphi^i(\varrho(y_0, y_1)).$$

Thus we have that

$$d(y_{n+p}, y_n) \le c \cdot \varrho(y_{n+p}, y_n) \le c \cdot \sum_{i=1}^{\infty} \varphi^i(\varrho(y_0, y_1)).$$

Since $y_0 = x_0 \in \text{Fix } T$ we have that $y_0 \in T(y_0)$. Thus from (3.16) for $x = y_0$ and for every q > 1 we have that there exists $y_1 \in F(y_0)$ such that

$$\varrho(y_0, y_1) \le q \cdot H_{\varrho}(T(y_0), F(y_0)) \le q \cdot \eta.$$

Since $\{y_n\}$ is a Cauchy sequence we have that $d(y_{n+p}, y_n) \to d(y^*, y_n)$, as $p \to \infty$, so we have the following inequality:

$$d(y^*, y_n) \le c \cdot \sum_{i=0}^{\infty} \varphi^i(\varrho(y_0, y_1)) \le c \cdot \sum_{i=0}^{\infty} \varphi^i(q \cdot \eta) = c \cdot a(q\eta).$$

For n = 0 we have that $d(y^*, y_0) \leq c \cdot a(q \cdot \eta)$. Letting $q \to 1$ we get that $d(y^*, y_0) \leq c \cdot a(\eta)$. By a similar procedure we obtain that for each $x_0 \in \text{Fix } F$ there exists $x^* \in \text{Fix } T$ such that $d(x_0, x^*) \leq ca(\eta)$. The proof is complete. \Box

In what follows we will obtain a homotopy result via Zorn's Lemma.

THEOREM 3.7. Let (X,d) be a complete metric space and ϱ another metric on X such that there exists c > 0 with $d(x,y) \leq c \cdot \varrho(x,y)$, for each $x, y \in X$. Let U be an open subset of (X, ϱ) , V be a closed subset of (X, d) with $U \subset V$ and $r_0 > 0$. Let $G: V \times [0,1] \to P(X)$ be a multivalued operator such that the following conditions are satisfied:

- (a) $x \notin G(x, t)$, for each $x \in V \setminus U$ and each $t \in [0, 1]$;
- (b) there exists $r_0 > 0$ and a continuous function $\varphi: [0, \infty) \to [0, \infty)$, with $\varphi(z) < z$, for every z > 0, $\varphi(0) = 0$ and φ is nondecreasing on $(0, r_0]$ such that:

$$H_{\varrho}(G(x,t),G(y,t)) \le \varphi(M_{\rho}^{G(\,\cdot\,,t)}(x,y)),$$

for every $x, y \in X$ with strict inequality if $M_{\rho}^{G(\cdot,t)}(x,y) \neq 0$;

(c) there exists a continuous increasing function $\psi: [0,1] \to \mathbb{R}$ such that

$$H_{\varrho}(G(x,t),G(y,t)) \le |\psi(t) - \psi(s)|,$$

for all $t, s \in [0, 1]$ and each $x \in V$;

- (d) $G: V^d \times [0,1] \to P(X^d)$ is closed;
- (e) $\phi: [0, \infty) \to [0, \infty)$ is strictly increasing (here $\phi(x) = x \varphi(x)$);
- (f) $\phi^{-1}(a) + \phi^{-1}(b) \le \phi^{-1}(a+b)$, for $a \ge 0$, $b \ge 0$;

Fixed Point Results for Generalized φ -contraction

(g)
$$\sum_{i=0}^{\infty} \varphi^i(t) < \infty$$
, for $t \in (0, r_0 - \varphi(r_0)]$;
(h) $\sum_{i=1}^{\infty} \varphi^i(r_0 - \varphi(r_0)) \le \varphi(r_0)$.

Then $G(\cdot, 0)$ has a fixed point if and only if $G(\cdot, 1)$ has a fixed point.

PROOF. Suppose $G(\cdot, 0)$ has a fixed point z. Thus from (a) we have that $z \in U$. Define

$$Q = \{(t, x) \in [0, 1] \times U \mid x \in G(x, t)\}$$

We can notice that $Q \neq \emptyset$, since $(0, z) \in Q$.

We will consider on Q a partial order defined as follows $(t,x) \leq (s,y)$ if and only if $t \leq s$ and $\varrho(x,y) \leq \phi^{-1}(2[\psi(s) - \psi(t)])$. Let M be a totally ordered subset of Q and consider $t^* = \sup\{t \mid (t,x) \in M\}$. Consider a sequence $(t_n, x_n)_{n \in \mathbb{N}^*} \subset$ M such that $(t_n, x_n) \leq (t_{n+1}, x_{n+1})$ and $t_n \to t^*$ as $n \to \infty$. Then $\varrho(x_m, x_n) \leq$ $\phi^{-1}(2[\psi(t_m) - \psi(t_n)])$, for each $m, n \in \mathbb{N}^*, m > n$.

When $m, n \to \infty$ we obtain $\varrho(x_m, x_n) \to 0$, thus $(x_n)_{n \in \mathbb{N}^*}$ is ϱ -Cauchy. So $(x_n)_{n \in \mathbb{N}^*}$ is d-Cauchy too. We will denote by $x^* \in (X, d)$ its limit. Since $x_n \in G(x_n, t_n), n \in \mathbb{N}^*$ and condition (d) we have that $x^* \in G(x^*, t^*)$. Also, from (a) we have that $x^* \in U$. Hence $(t^*, x^*) \in Q$. Since M is totally ordered we get $(t, x) \leq (t^*, x^*)$, for each $(t, x) \in M$. Thus (t^*, x^*) is an upper bound of M. By applying Zorn's Lemma we obtain that Q admits a maximal element $(t_0, x_0) \in Q$.

We will prove that $t_0 = 1$. Suppose that $t_0 < 1$. Choose r > 0 with $r \le r_0$ and $t \in [t_0, 1]$ such that $B_{\varrho}(x_0, r) \subset U$, and $r := \phi^{-1}(2[\psi(t) - \psi(t_0)])$. Then from condition (c) we have

$$D_{\varrho}(x_0, G(x_0, t)) \le D_{\varrho}(x_0, G(x_0, t_0)) + H_{\varrho}(G(x_0, t_0), G(x_0, t))$$

$$\le |\psi(t_0) - \psi(t)| \le \frac{\phi(r)}{2} < \phi(r) = r - \varphi(r).$$

Since $\overline{B}_{\varrho}^{d}(x_{0},r) \subset V$, the multivalued operator $G(\cdot,t): \overline{B}_{\varrho}^{d}(x_{0},r) \to P(X^{d})$ satisfies for all $t \in [0,1]$ the assumptions of Theorem 3.2. Hence, for all $t \in [0,1]$ there exists $x \in \overline{B}_{\varrho}^{d}(x_{0},r)$ such that $x \in G(x,t)$. Thus $(t,x) \in Q$. Since $t_{0} < t$ and $\varrho(x_{0},x) \leq r = \phi^{-1}(2[\psi(t) - \psi(t_{0})])$ we obtain that $(t_{0},x_{0}) < (t,x)$. This contradicts the maximality of (t_{0},x_{0}) . For the reverse implication, just put t := 1 - t.

References

- R. P. AGARWAL, J. DSHALALOW AND D. O'REGAN, Fixed point and homotopy results for generalized contractive maps of Reich-type, Appl. Anal. 82 (2003), 329–350.
- [2] L. B. CIRIĆ, Fixed points for generalized multi-valued contractions, Math. Vesnik 9 (1972), 265–272.

T. P. Petru — M. Boriceanu

- [3] T. LAZĂR, D. O'REGAN AND A. PETRUŞEL, Fixed points and homotopy results for Ćirić-type multivalued operators on a set with two metrics, Bull. Korean Math. Soc. 45 (2008), 67–73.
- [4] T. LAZĂR, A. PETRUŞEL AND N. SHAHZAD, Fixed points for non-self operators and domain invariance theorems, Nonlinear Anal. 70 (2009), 117–125.
- [5] A. PETRUŞEL AND I. A. RUS, Fixed point theory for multivalued operators on a set with two metrics, Fixed Point Theory 8 (2007), 97–104.
- [6] I. A. RUS, A. PETRUŞEL AND A. SÎNTĂMĂRIAN, Data dependence of the fixed points set of multivalued weakly Picard operators, Studia Univ. Babeş-Bolyai Math. 46 (2001), 111-121.

Manuscript received December 4, 2007

TÜNDE PETRA PETRU AND MONICA BORICEANU Department of Applied Mathematics Babeş-Bolyai University Kogălniceanu Str., No. 1 400084, Cluj-Napoca, ROMANIA *E-mail address*: petrupetra@gmail.com, bmonica@math.ubbcluj.ro

 TMNA : Volume 33 – 2009 – Nº 2