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A DECOMPOSITION FORMULA
FOR EQUIVARIANT STABLE HOMOTOPY CLASSES

Wac law Marzantowicz — Carlos Prieto

Abstract. For any compact Lie group G, we give a decomposition of the

group {X, Y }k
G of (unpointed) stable G-homotopy classes as a direct sum of

subgroups of fixed orbit types. This is done by interpreting the G-homotopy

classes in terms of the generalized fixed-point transfer and making use of

conormal maps.

1. Introduction

A description of the homotopy classes, or of the stable homotopy classes of
maps between two topological spaces has been a classical question in topology. A
variant of the question arises when we assume that a compact Lie group G acts
on all spaces involved and that all the maps considered commute with the group
action, that is, that the maps are G-equivariant — G-maps for short. Then
the corresponding question is to provide a description of the stable G-homotopy
classes between G-spaces.
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In this paper we give a decomposition of the group of equivariant stable ho-
motopy classes of maps between two G-spaces X and Y , provided that X has
trivial G-action (Theorem 2.6). A similar result was proven by Lewis, Jr., May,
and McClure in [8, V.10.1] under other assumptions (they consider more general
symmetry and their space X is a finite CW-complex) and using rather differ-
ent methods. Using classical methods in algebraic topology, tom Dieck gives
a decomposition of the equivariant homotopy groups in his book [3, II(7.7)].
An advantage of our approach is that it gives a short proof showing the geo-
metric interpretation of the maps that form a term of this decomposition, even
in the unstable range as in [9]. In particular, we do not need the Adams and
Wirthmüller isomorphisms to define the splitting homomorphism. To carry out
the decomposition, we use the equivariant fixed-point transfer given by the sec-
ond author in [11], which is the equivariant generalization of the classical Dold
fixed-point transfer [4], and the fixed-point theoretical arguments used in [9].

One of the purposes of this paper is to make our result clear to nonlinear
analysts. In the framework of nonlinear analysis, the equivariant stems, or some
of their subgroups, are the ranges for various equivariant degrees (cf. [2] and
[6]). With respect to the problem about the existence of periodic solutions, the
most interesting seems to be the case G = S1. Another interesting application
of this trend of ideas is the case of a homotopy class given by a gradient of a
smooth function (cf. [14] for a survey article).

A special case of our main Theorem 2.6 yields a decomposition of the G-
equivariant 1-stem, that was given using different methods by Kosniowski [7],
Hauschild [5], and Balanov-Krawcewicz [1]. This decomposition was also used
by us [10] to give a full description of the first G-stem as follows:

πG st
1 =

⊕
(H)∈OrG

dim W (H)≤1

Π1(H),

where, if dimW (H) = 0,

Π1(H) ∼= Z2 ⊕W (H)ab,

and W (H)ab is the abelianization of W (H), and, if dimW (H) = 1,

Π1(H) ∼=

{
Z W (H) is biorientable,

Z2 if W (H) is not biorientable.

2. The general decomposition formula

In this section, we use the generalized fixed-point transfer to give a direct
sum decomposition of {X,Y }k

G. All along the paper, G will denote a compact
Lie group. We shall assume that X and Y are metric spaces with a G-action.
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Definition 2.1. Let V , W , M , and N denote finite dimensional real G-
modules, namely, orthogonal representations of G, and let ρ be the element
[M ]− [N ] ∈ RO(G). Then the elements of {X,Y }ρ

G are stable homotopy classes
represented by equivariant maps of pairs

α: (N × V,N × V − 0)×X → (M × V,M × V − 0)× Y.

Such a map will be stably homotopic to another

α′: (N × V ′, N × V ′ − 0)×X → (M × V ′,M × V ′ − 0)× Y,

if after taking the product of each map with the identity maps of some pairs
(W,W − 0) and (W ′,W ′ − 0), respectively, they become G-homotopic, where
V ×W ∼=G V ′ ×W ′. Denote the class of α by {α}.

Remark 2.2. Taking the product of X with a pair (L,L − 0) for some
orthogonal representation L ofG amounts to the same as smashingX+ = Xt{∗}
with the sphere SL that is obtained as the one-point compactification of L (which
is G-homeomorphic to the unit sphere S(L ⊕ R) in the representation L ⊕ R,
with trivial action on the last coordinate). Thus

{X,Y }ρ
G
∼= colimV [SN ∧ SV ∧X+,SM ∧ SV ∧ Y +]G
∼= colimV [SN⊕V ∧X+,SM⊕V ∧ Y +]G
∼= colimV [X+,ΩN⊕V SM⊕V ∧ Y +]G,

where the colimit of pointed G-homotopy classes is taken over a cofinal system
of G-representations V . Observe that this does not coincide with the usual
definition, when X is infinite dimensional. For homotopy theoretical purposes,
the definition is given by

G-Stabρ(X,Y ) = [X+, colimV ΩN⊕V SM⊕V ∧ Y +]G

with the colimit taken “inside”. However, for the purposes of nonlinear analysis,
our definition seems to be more adequate.

In [11] (see also [12]) one proves that any {α} ∈ {X,Y }ρ
G can be written as

a composite

(2.1) {α} = ϕ ◦ τ(f),

where τ(f) is the equivariant fixed-point transfer of an equivariant fixed-point
situation

(2.2)

N × E ⊃ U
f

//

p·projE
%%KKKKKKKKKK M × E

p·projE
{{ww

ww
ww

ww
w

X
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where E → X is a G-ENRX and the fixed point set Fix(f) = {(s, e) ∈ U |
f(s, e) = (0, e) ∈ M × E} lies properly over X, ρ = [M ] − [N ] ∈ RO(G). The
transfer is a stable map

τ(f): (N × V,N × V − 0)×X → (M × V,M × V − 0)× U ,

for some orthogonal representation V , and ϕ:U → Y is a nonstable equivariant
map (by the localization property of the fixed-point transfer, U can always be
assumed to be a very small open G-neighbourhood of the fixed point set Fix(f);
see [12, 4.4]), (the composite is made after suspending ϕ by taking its product
with the identity of (M × V,M × V − 0)).

We denote by OrG the set of orbit types of G, that is the set of conjugacy
classes (H) of subgroups H ⊂ G. For any G-ENRX E, where X has trivial
G-action, the set of orbit types in E, denoted by OrG(E), is always finite.

In what follows, we shall only be concerned with the special case N = Rn,
M = Rn+k, k ∈ Z, and we shall assume that X is a space with trivial G-action.

For the statement of the main result of this section we need the following
definitions. The first of them was originally given in [9, 5.4].

Definition 2.3. Consider the fixed-point situation (2.2) above. We say
that the map f :U → Rn+k × E is conormal if for every orbit type (H) ∈
OrG(Rn×E) = OrG(E), there exist an open invariant neighbourhood V of U (H)

in U (H) and an equivariant retraction r:V → U (H) such that for the restricted
map f (H) = f |U(H) we have

f (H)|V = f ◦ r:V → Rn+k × E.

Here U (H) consists of the points in U with isotropy larger than (H) and U (H) to
those with isotropy strictly larger than (H).

Definition 2.4. For any subgroupH⊂G, we define the subgroup {X,Y }k
(H)

of {X,Y }k
G as the subgroup of those classes {α} such that {α} = ϕ◦τ(f), where

(a) f is a conormal map, and
(b) Fix(f) ⊂ U(H), where U(H) consists of the points in U with isotropy

group conjugate to H.

Remark 2.5. The fact that {X,Y }k
(H) is a subgroup of {X,Y }k

G follows
easily by observing that both properties (a) and (b) are preserved by the sum of
two elements {α} = ϕ ◦ τ(f), {β} = ψ ◦ τ(g), that, by the additivity property of
the fixed-point transfer, corresponds to the disjoint union f+g of the fixed-point
situations (see [13, 1.17]).

The main result in this section is the following.
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Theorem 2.6. Let X be a space with trivial G-action. Then there is an
isomorphism

{X,Y }k
G
∼=

⊕
(H)

{X,Y }k
(H).

For the proof we need some preliminary results. Consider a fixed-point sit-
uation as (2.2). First note that it is always possible to provide OrG(E) with
an order (Hj), j = 1, . . . , l such that (Hi) ⊂ (Hj) implies j ≤ i. Define
Ei ⊂ E as

⋃
i≤j E

(Hj). These G-subspaces determine a filtration of E such that
Ei − Ei−1 = E(Hi). Let fi = f |Ui

:Ui → Rn+k × Ei, where Ui = U ∩ (Rn × Ei).

Proposition 2.7. For every i = 1, . . . , l there exists an invariant neigh-
bourhood Vi of Ei−1 in Ei and an equivariant retraction ri:Vi → Ei−1 that
is admissibly homotopic to the identity. Thus fi is admissibly homotopic to
f ′i−1 = fi−1 ◦ (idRn × ri).

The proof is similar to those of [9, 5.3 and 5.7].

Proposition 2.8. The following hold:

(a) f is equivariantly homotopic by an admissible homotopy fτ to a conor-
mal map f ′ = f1:V → Rm×E. Moreover, if A ⊂ U is a closed G-ENR
subspace, then this homotopy can be taken relative to A.

(b) Furthermore, if f0 and f1 are equivariantly homotopic by an admissible
homotopy, and each of them is equivariantly homotopic by an admissible
homotopy to two conormal maps f ′0, f

′
1:U → Rm×E, respectively, then

these two conormal maps are equivariantly homotopic by an admissible
conormal homotopy.

The proof is the same as that of [9, 5.7] (see also [13, 2.10 and 2.11] or [15,
II.6.8 and III.5.2]).

We also need a lemma.

Lemma 2.9. Let f :U → Rn+k×E be a fixed-point situation over X such that
f is a conormal map and take (H) ∈ OrG(E). Then there is a neighbourhood
V of Fix(f |U(H)) such that g = f |V : V → Rn+k × E is a conormal map with
Fix(g) = Fix(f |U(H)). Denote g by f(H). Consequently,

(2.3) τ(f) =
∑

(H)∈OrG(E)

τ(f(H)).

Proof. Since f is conormal, the set F = Fix(f |U(H)) is separated from
all other fixed points. Then there is a neighbourhood V of F in U such that
Fix(f) ∩ V = F . Hence g = f |V :V → Rn+k × E is a conormal map with the
desired properties. By the additivity property of the transfer we obtain the
decomposition (2.3). �
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We now pass to the proof of Theorem 2.6.

Proof. Any {α} ∈ {X,Y }k
G can be written as the composite (2.1) ϕ ◦ τ(f),

where τ(f) is the equivariant fixed-point transfer of an equivariant fixed-point
situation (2.2). By Proposition 2.8(a), f can be assumed to be a conormal
map, and by Lemma 2.9, τ(f) =

∑
(H)∈OrG(E) τ(f(H)). Defining {α(H)} by

{α(H)} = ϕ|U(H) ◦ τ(f(H)), we have immediately

{α} =
∑

(H)∈OrG(E)

{α(H)},

where {α(H)} ∈ {X,Y }k
(H). So, by Proposition 2.8(b), we may define

Φ: {X,Y }k
G →

⊕
(H)

{X,Y }k
(H) by Φ({α}) =

⊕
(H)

{α(H)}.

If (H) 6= (K), then {X,Y }k
(H) ∩ {X,Y }

k
(K) = 0 as easily follows with the same

argument used in the proof of [9, 6.2] (see also [1]). Thus we may also define

Ψ:
⊕
(H)

{X,Y }k
(H) → {X,Y }k

G by Ψ
( ⊕

(H)

{α(H)}
)

=
∑
(H)

{α(H)}.

Then Φ and Ψ are inverse isomorphisms. �

Remark 2.10. For any fixed-point situation f (see (2.2)), it is proven in
[12, 4.4] that the transfer

τ(f) =
∑

(H)∈O(G)

(τ(f (H))− τ(f (H))),

where

f (H) = f |U(H) :U (H) → (M × E)(H)

and U (H) ⊂ (N × E)(H) = Rn × E(H), resp.

f (H) = f |U(H) :U (H) → (M × E)(H)

and U (H) ⊂ (N × E)(H) = Rn × E(H).
As in (2.1) any {α} = ϕ ◦ τ(f) for some fixed-point situation f as above. As

in the proof of [12, 4.4], we have

{α(H)} = ϕ(H) ◦ τ(f (H)):X → Y (H) ⊂ Y,

{α(H)} = ϕ(H) ◦ τ(f (H)):X → Y (H) ⊂ Y.

Thus {α} =
∑

(H)∈O(G)({α(H)} − {α(H)}). Hence it is each difference {α(H)} −
{α(H)} = {α(H)}; that is, α(H), as given by the conormal map, realizes the
(stable) difference {α(H)} − {α(H)} for each orbit type (H) (cf. also [15, III.5]).
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